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Abstract—In recent years, network coding has emerged as an
innovative method that helps a wireless network approach its
maximum capacity by combining multiple unicasts in one broad-
cast. However, the majority of research conducted in this area is
yet to fully utilize the broadcasting nature of wireless networks
and still assumes a fixed route between the source and destination
that every packet should travel through. This assumption not only
limits coding opportunities but can also cause buffer overflow in
some specific intermediate nodes. Although some studies consid-
ered scattering of the flows dynamically in the network, they still
face some limitations. This paper explains pros and cons of some
prominent research in network coding and proposes a Flexible and
Opportunistic Network Coding Scheme (FlexONC) as a solution
to such issues. Furthermore, this research discovers that the condi-
tions used in previous studies to combine packets of different flows
are overly optimistic and would affect the network performance
adversely. Therefore, we provide a more accurate set of rules for
packet encoding. The experimental results show that FlexONC
outperforms previous methods especially in networks with high
bit error rate, by better utilizing redundant packets spread in the
network.

Index Terms—Coding conditions, network coding, opportunistic
forwarding, wireless mesh networks.

I. INTRODUCTION

IN RECENT years, a significant amount of research has been
conducted to explore the effect of network coding in different

scenarios and improve the network performance. To exploit
network coding, related research mostly focuses on either inter-
flow or intraflow network coding.

One of the most popular examples showing the gain behind
inter-flow network coding is the X-topology in Fig. 1(a), where
S1 sends packet a to D1, and S2 sends packet b to D2 through an
intermediate node N . Since D1 and D2 are able to overhear the
packets of the other flow from its source, the relay node N mixes
packets of two flows and sends their combination to the network.
Doing so, network coding decreases the number of required
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Fig. 1. Some topologies utilizing network coding. (a) X-topology. (b) Cross
topology [1].

transmissions to deliver packets to their final destination and
improves the performance.

COPE [1] is one of the first methods that realize this idea
in practical scenarios. Whenever an intermediate node receives
packets from different flows, it encodes them if it is likely that
the next-hops of the native packets combined in the coded packet
are able to decode this packet and retrieve the original content.
However, coding opportunities in COPE are restricted only to
joint nodes that receive packets from multiple flows. Therefore,
to provide more coding opportunities, COPE needs more pack-
ets to arrive at the same node. However, this traffic concentration
may overload intermediate nodes, and cause longer delay, buffer
overflow, and channel contention.

As a solution to this problem, BEND [2] applies network
coding while trying to avoid traffic concentration. By taking ad-
vantage of the broadcasting nature of wireless networks, BEND
allows all receivers of the packet, in addition to the intended
next-hop specified by the routing protocol, to help in mixing
and forwarding the packet if they believe they can be helpful.
However, these nonintended forwarders (i.e., the receivers of
the packet which are not specified as the next-hop on the route
defined by the routing protocol, and can help in forwarding)
are allowed to assist the intended forwarder only in forwarding
received native packets. In fact, if they receive a coded packet,
they just discard it, even if they were able to decode the re-
ceived packet. This restriction not only limits the number of
coding opportunities in the network but increases the number
of retransmissions as well. The terms intended and nonintended
forwarders as well as some other terms used in this research are
summarized in Table I.

Furthermore,almost all inter-flow network coding methods,
which mix packets within a two-hop region, follow a similar
set of coding conditions to encode packets. We call this set
“common coding conditions.” Based on these coding conditions,
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TABLE I
DEFINITION OF SOME TERMS USED IN THIS PAPER

Term Definition

native packet a packet that is not combined with any other packet
coded packet XORed of more than one native packet
intended forwarder the designated next-hop by the routing protocol
nonintended the neighbors of the next-hop
forwarder which can help in forwarding
coding node a node in which coded packets are generated
eligible a node which is the neighbor of both the
forwarder next-hop and the second next-hop of a packet
decoded-native a native packet which was received coded
packet and has been decoded
coding partner each native packet encoded with other packets
common coding the conditions used by previous methods
conditions (e.g., COPE and BEND) to combine packets

given a high delivery probability between nodes, two packets
are combined if the next-hop of each packet is the previous
hop of the other packet or one of the neighbors of the previous
hop. However, in some scenarios as shown in this research, the
common coding conditions may decide incorrectly to mix some
packets that cannot be decoded at the next-hops. This wrong
encoding causes failures in decoding, increases the number of
required retransmissions to deliver the packets and consequently
decreases the network throughput.

To better utilize the broadcasting nature of wireless networks,
we introduce Flexible and Opportunistic Network Coding (Flex-
ONC), which provides more flexibility to previous methods
like COPE and BEND by adding opportunistic forwarding, and
allowing nonintended forwarders to help in decoding in addition
to encoding and forwarding. Moreover, FlexONC proposes an
additional coding condition to find coding opportunities more
accurately, and designs a mechanism to merge it with the com-
mon coding conditions.

The main contributions of FlexONC are as follows:
1) More diffusion gain since more packets (i.e., coded and

native packets) can be forwarded by a node other than
their intended forwarder.

2) Faster packet delivery to the final destination because even
if the intended forwarder does not receive the packet or
cannot decode the received coded packet, some nonin-
tended forwarders can still help.

3) More coding opportunities as nonintended forwarders are
eligible to receive and probably decode coded packets
and consider them as candidates to be mixed with other
packets.

4) More intelligent and comprehensive encoding decisions
to avoid transmitting undecodable packets in the network.

The rest of the paper is organized as follows. Related research
on network coding, especially COPE and BEND, is discussed
in Section II. Section III provides two examples to show the
effectiveness of FlexONC. Section IV describes the objectives
and challenges of FlexONC, and introduces its implementa-
tion details. Section V presents performance evaluation results
and compares FlexONC with a noncoding scheme as well as
other inter-flow network coding methods. In Section VI, some
intrinsic features of FlexONC are discussed further. Finally,

Section VII concludes the paper and provides ideas to extend
FlexONC in future research.

II. BACKGROUND AND RELATED WORK

Network coding represents an innovative idea introduced by
Ahlswede et al. [3] in 2000 to increase the transmission capacity
of the network, as well as its robustness. In general, two differ-
ent types of network coding can be applied, namely intraflow
and inter-flow network coding. While in the former, nodes mix
packets of the same flow to increase the robustness [4]–[6], in
the latter packets of different flows are mixed to reach the max-
imum capacity of the network [1], [2], [7]. Xie et al. provide a
survey on inter-flow network coding under both reliable links
and lossy links [8].

In inter-flow network coding, an intermediate node combines
two packets if the next-hop of each packet has already received
the other coding partner. To keep track of the packets received
by each node, two types of information are used: deterministic
information and probabilistic information. Deterministic infor-
mation are provided by exchanging “reception reports” among
nodes, where each node’s reception report contains the packets
that recently have been received or overheard by the node [1].
These reception reports are usually piggybacked on data packets
or broadcasted periodically.

In the absence of deterministic information (e.g., when a node
does not transmit any data packet and only relies on periodic up-
dates), probabilistic information is used to decide on encoding.
In this case, if the delivery probability between nodes is greater
than a threshold, two packets are combined if the next-hop of
each packet is the previous-hop of the other coding partner or
one of the neighbors of the previous-hop. In this research, we
present scenarios where encoding decisions made based on the
probabilistic information through the common coding condi-
tions are not accurate enough and cause a significant number of
decoding failures.

COPE is one of the prominent examples of inter-flow network
coding. In COPE, a node combines the packets, P1, P2,..., Pn ,
with different next-hops, NH1, NH2,..., NHn , when in the
combined packet 1) for each next-hop there is at most one packet,
and 2) for each packet Pi , all the next-hops have already received
the packet except for its corresponding next-hop, NHi . For
example, let us assume that in the cross topology depicted in
Fig. 1(b), for each node all nodes are in its transmission range
except for the diametrically opposed node, and n1, n3, n4, and n5

are the sources of four flows intersecting at n2. Then, n2 can mix
four packets received from all sources because each next-hop
contains all other coding partners except for its intended packet.
However, the improvement of throughput in COPE depends on
the traffic pattern. In fact, it limits coding opportunities because
coding can be accomplished only at joint nodes. As an example,
if in Fig. 1(b) the sources choose a different intermediate node
than n2, all flows cannot intersect at the same node and less
coding opportunities are provided by COPE.

A variety of improvements over COPE have been put for-
ward, especially by adding opportunistic forwarding [9]. In
CORMEN [10], as a network coding scheme enhanced with
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Fig. 2. Diffusion gain in BEND [2].

opportunistic routing, the nodes in the forwarder set are neigh-
bors of the nodes in the shortest path to avoid diverging the path
and unnecessary duplicate packets. However, similar to source
routing protocols, the packet header should contain not only
the forwarder set but the nodes in the shortest path as well. In
addition, since the packet may not follow the shortest path, the
forwarders need to keep updating it. Also, end-to-end acknowl-
edgments are sent instead of hop-by-hop ones.

CORE [11] is also one of the first research that integrates inter-
flow network coding with opportunistic forwarding to increase
the coding opportunities in the network. In each transmission,
among all neighbors of the last forwarder which are closer than
it to the destination, CORE selects the node with more coding
gain as the next forwarder. To prioritize the nodes with different
coding opportunities, forwarding timers are used so that the
node with more coding opportunities forwards its packet earlier.
In addition, in CORE the packets are broadcasted without any
acknowledgment and retransmission mechanism. While CORE
defines a coding gain function in each node only in terms of
the number of neighbors that are able to decode a coded packet,
CoAOR [12] takes into account the number of flows coded in a
packet and the link quality as well.

CAR [13] is another coding-aware opportunistic routing
scheme that aims to maximize the number of native packets
coded together in a single transmission by dynamically select-
ing the route based on real-time coding opportunities. In some
described works, the closeness to the destination (i.e., to find
the forwarding set) is calculated in terms of the geographical
distance, which does not necessarily represent the quality of the
path. In addition, in most of the research in this area, the maxi-
mum coding opportunities is the only factor taken into account
to select the next forwarder, even if the path traveled by the node
is excessively longer than the shortest path.

BEND, as another advancement of COPE, introduces a type
of gain, referred to as the diffusion gain, which is the benefit of
being able to scatter flows through multiple forwarders dynam-
ically. In BEND, each node has three queues: Q1 for intended
native packets, Q2 for overheard native packets, and mixing-Q
for coded packets. A node can combine two packets if the next-
hop of the first packet is the previous hop of the second packet
or one of its neighbors, and vice versa.

To avoid traffic concentration in BEND, a nonintended
forwarder may receive a native packet and mix and forward
it on behalf of the intended forwarder. For example in Fig. 2,
where A and C are the intended forwarders of the flows from X
and U to Y and V , respectively, COPE cannot find any coding

Fig. 3. In BEND, nonintended forwarders drop coded packets.

opportunity. On the other hand, BEND allows nonintended
forwarders which can overhear packets of both flows (e.g., B1,
B2, and B3) to combine and forward the packets on behalf
of the intended forwarders. To do so, a second-next-hop field
is included in native packets. As such, when a nonintended
forwarder receives a native packet, it can find the address of the
next-hop in the second-next-hop field.

However for coded packets, the second-next-hop field does
not present the correct address in a way that the packets still
travel near the original route. Therefore, nonintended forwarders
must drop coded packets since they do not know the address of
the next-hop from the intended forwarder to the destination. To
illustrate the idea, let us assume in Fig. 3 that the source S sends
a packet P0 to D. Based on the information provided by the
routing protocol, it fills the next-hop and second-next-hop fields
with F0 and F1, respectively. We assume that F0 fails to receive
the packet, and N0 overhears it. In addition, N0 can mix P0 with
a packet P1 in its buffer and forward it. Based on P0’s header,
N0 sets the new next-hop field with the current second-next-
hop field, F1. However, N0 cannot set the second-next-hop field
in P0 because N0 does not know the second-next-hop from the
intended forwarder’s point of view (i.e., the second-next-hop
from F0). Now, if F1 receives and decodes P0 successfully, it
can consult the routing module and find the next-hop because F1

is the designated intended forwarder. However, if nonintended
forwarder N1 receives the coded packet, since second-next-hop
was not set as well as N1 was not specified in the route, it may not
be able to find the correct next-hop. Thus, N1 as a nonintended
forwarder must drop coded packets.

A preliminary version of FlexONC [14] moves one step fur-
ther for more diffusion gain than BEND, and allows nonintended
forwarders to cooperate in receiving and forwarding not only na-
tive packets but coded packets as well. In fact, it provides the
next-hop information of decoded packets to nonintended for-
warders so that they are able to forward the packet to the correct
next-hop toward the destination. As we explained in the previous
section, by doing so, FlexONC provides more diffusion gain and
more coding opportunities, which lead to a higher throughput
in comparison to previous methods.

In this paper, we discover and address the problem related to
the common coding conditions, and we augment the implemen-
tation of FlexONC to incorporate our solution for this problem.
In addition, we further discuss FlexONC as a media access
control (MAC) layer solution that not only increases the coding
opportunities in the network, but also allows us to control
effectively how far packets stray away from a designated
shortest path. We conduct more experiments to show the
efficiency of our solution by comparing FlexONC with other
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Fig. 4. Nonintended forwarders can help decoding.

schemes from different aspects such as throughput, end-to-end
delay, the number of duplicate packets, the number of coding
opportunities, and overall overhead and complexity.

III. FLEXONC MOTIVATING EXAMPLES

A. More Diffusion Gain

Fig. 4 presents an eight-node topology where there exist two
flows from N0 to N4, and vice versa. In all topologies used in
this research, we assume each node can receive packets only
from nodes immediately next to it horizontally, vertically, or
diagonally. As shown in this figure, N1’s queue contains two
native packets P0 and P2 with different next-hops N0 and N2,
respectively. Let us assume P0’s next-hop is P2’s previous for-
warder or one of its neighbors, and vice versa. So, N1 decides
to mix these packets together, hoping that N2 (N0) has already
received P0 (P2) and it can decode P2 (P0). Therefore, N1 sends
a coded packet P = P0 ⊕ P2 to N0 and N2 (i.e., next-hop list
in the packet header contains N0 and N2) while we assume N6

overhears the packet.
In the previous methods like COPE and BEND, N6 discards

the packet immediately because either it is not the next-hop (as
in COPE) or the packet is not a native packet (as in BEND).
Here, we assume that N2 does not receive the coded packet or
P0, so it cannot decode P2, and that N6 receives it successfully,
and also can decode the packet. In such a scenario, in previous
methods, after a time-out N1, which has not heard any ACK
from N2, retransmits the packet. However, FlexONC avoids
such unnecessary retransmissions, and N6 forwards the packet
to its next-hop on behalf of N2.

In fact, FlexONC allows nonintended forwarders like N6 to
decode a received coded packet if they can, and forward it toward
the final destination as long as the intended forwarder fails to
do so. By doing so, since N2 is not the only node in charge of
forwarding packets, the traffic is spread in the network. That is
if N2 fails to receive or decode a packet, its role is immediately
covered by N6. This idea not only can accelerate packet delivery
by removing some retransmissions but can provide more coding
opportunities as well. For example, let us further assume N6 is
going to forward P2 on behalf of N2. If P2 is eligible to be
mixed with some packets queued at N6, by allowing N6 to
decode and forward it, we capture more coding opportunities
in N6. However as will be described later, we provide some
strategies to ensure that the nodes do not stray far away from the
original route, and also to limit the number of duplicate packets
in the network.

Fig. 5. Common coding conditions are not sufficient.

B. Right Coding Opportunities

Let us assume that in the grid topology provided in Fig. 5,
our focus is on three specific flows: 1) F1 with packets like
P1 from N0 to N7, 2) F2 with packets like P2 from N7 to N9,
and 3) F3 with packets like P3 from N2 to N0. Let us further
assume that N5 transmits a coded packet from flows F1 and F3,
P1 ⊕ P3. We assume N6, as the intended forwarder of P1 can
decode the packet successfully, but N9 cannot decode it as N9

cannot overhear P3. Let us call a packet like P1, which has been
received coded by the node and then it is decoded, a decoded-
native packet. Now, the question is that under what conditions
a node (e.g., N6) can combine a decoded-native packet (e.g.,
P1) with other packets? For example, can N6 combine packets
received from N5 and N7? Are the common coding conditions
enough to decide on encoding such packets?

Based on the common coding conditions, the combination
of P1 and P2 at N6 seems a valid encoding strategy because
the next-hop of P1 (i.e., N7) is the previous hop of P2, and
the next-hop of P2 (i.e., N9) is one of the neighbors of the
previous hop of P1 (i.e., N5). However, one may notice that
if N9 receives the coded packet P1 ⊕ P2, it cannot decode P2

correctly as it has only overheard P1 ⊕ P3 and neither P1 nor
P3. In fact, the problem happens because the previous hop of P1

(i.e., N5) sends it as a coded packet; therefore, its neighbors (e.g.,
N9) do not receive P1 natively. As a result, if N6 encodes this
decoded-native packet, N9 cannot decode the received coded
packet P1 ⊕ P2.

Note that although COPE uses reception reports, in such a
scenario COPE could not rely on them for encoding. Since N9

does not send any packet, it has to send the reception reports
periodically, which reduces the probability that its neighbors
receive a fresh report on time. Therefore, most of the time the
neighbors do not have deterministic information required for
encoding and would need to guess based on the delivery proba-
bility between nodes. Hence, if the delivery probability between
different nodes is high, in COPE, N6 will encode P1 and P2.
To show the severity of the issue, we ran simulations, using a
simulation version of COPE in ns-2, to decide on encoding of
the packets in the topology depicted in Fig. 5.

Fig. 6 presents the number of coded packets received by N6

(i.e., coded@6), the number of coded packets received by N9

(i.e., coded@9), as well as the number of coded packets that N9

cannot decode (i.e., failure@9) because of the explained issue.
As shown in this figure, by decreasing the interarrival time (i.e.,
increasing the arrival rate), the length of the transmission queue
as well as the coding opportunities at nodes increase. Therefore,
the probability that an encoded packet received and decoded
by N6 (i.e., a decoded-native packet) can be encoded again
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Fig. 6. Decoding failure of COPE by applying the common coding conditions.

increases, which in this scenario causes the explained issue and
consequently increases decoding failures at N9.

This example and simulation results show that the com-
mon coding conditions are not enough, and more restrictive
coding conditions are required to address the issue stated
here. Therefore, we not only provide cooperative forwarding
for native and coded packets, but also address this issue by
proposing an additional rule to restrict the common coding
conditions.

IV. DESIGN DETAILS

As described earlier, the idea behind FlexONC is to have
backup nodes to decode and forward a packet in case where the
intended forwarder fails, either due to unsuccessful reception of
the packet or lack of required packets in the buffer to decode
the original packet. In addition, FlexONC provides more com-
prehensive coding conditions and a mechanism to detect right
coding opportunities and avoid undecodable encodings. In this
section, we first discuss some of the challenges that FlexONC
addresses. Then, we describe in detail the responsibilities of the
sender and receiver of a coded packet to realize these ideas, and
address these challenges.

A. Objective and Challenges

FlexONC should avoid unnecessary changes to the standard
MAC protocols, and be as simple as possible to be feasible in
real scenarios. Moreover, it should be compatible with different
routing protocols despite few modifications. To realize such
compatibility, while having more flexibility and accuracy in
forwarding and coding, FlexONC should address the following
questions:

1) How to select the nodes that can help the intended for-
warder to forward packets: In other words, how should
we decide which nodes are eligible for packet forward-
ing? For example, in Fig. 4, when N1 sends the packet, N5,
N2, and N6 may receive it, but are they good candidates
to forward the packet?

2) How to limit the number of duplicate packets: Since more
nodes cooperate to move packets toward the destination,
their imperfect collaboration may cause a significant num-
ber of duplicate packets travelling in the network leading

to unnecessary contention and collision. Some mecha-
nisms are required to control duplicate packets.

3) How to provide flexible forwarding but not too far from
the specified route: Although in FlexONC, like BEND,
packets may not follow the exact route specified by the
routing protocol, we need to keep them around the deter-
mined route. To do so, BEND uses the second-next-hop
field in native packets. However, as we described earlier,
it is not applicable to coded packets at nonintended for-
warders. For example, in Fig. 4 when N6 receives the
coded packet, even if it can decode P2, it does not know
the address of the next-hop from N2 toward the desti-
nation. Thus in FlexONC, we need a new approach for
nonintended forwarders to find the correct address of the
next-hop.

4) How to propose a complete set of rules to combine pack-
ets: As illustrated in Section III-B, the common coding
conditions used in other inter-flow network coding meth-
ods are not accurate enough to recognize right coding
opportunities in some scenarios, and may lead to decod-
ing failures. The question is how to establish a complete
set of rules to correctly decide on mixing the packets of
flows which are decodable at the next-hop?

We address all these aspects in the next sections.

B. Decoding and Forwarding Strategy

In FlexONC, nodes in the network are in promiscuous mode,
and store all received and overheard packets in a buffer, called
coding buffer. Each packet is kept there for a period of time,
long enough that the node can use these packets to decode
the received coded packets. In case of successful decoding, the
receiver sends an ACK while a NACK (i.e., negative acknowl-
edgement) signals failure in decoding. In terms of forwarding,
native packets are only sent by intended forwarders. A nonin-
tended forwarder may forward a packet on behalf of an intended
forwarder if the nonintended forwarder can provide more coding
opportunities.

In FlexONC, although packets may not follow the exact route
specified by the routing protocol, they travel near it and do not
stray too far away. Thus, when a nonintended forwarder for-
wards the packet on behalf of the intended forwarder, it should
send it to the next-hop toward the destination from the intended
forwarder’s point of view. For example in Fig. 4, when N1 sends
the coded packet P = P0 ⊕ P2, N0, N5, N2, and N6 may re-
ceive the packet. If N2, which is the intended next-hop for P2,
fails to receive the packet successfully, and if one of the nonin-
tended forwarders (e.g., N5, N0, N6) wants to forward it, they
need to know the address of the next-hop from N2 toward the
destination (not from themselves), which is N3 in this example.

Since the second-next-hop field in BEND cannot solve this
problem, instead of adding this field to the packet header, in
FlexONC, the routing protocol is enhanced such that each node
also maintains forwarding tables of all its neighbors. As such,
when for example N6 forwards P2 on behalf of N2, it knows
the address of the next-hop from N2 toward the destination, and
simply sends the packet to it.
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C. Receivers in FlexONC

Since every node in the vicinity of the sender can receive
the packet, we classify the receivers of a packet in two groups,
intended forwarders and nonintended forwarders. As summa-
rized in Table I, an intended forwarder is a node whose address
has been specified in the packet header as the next-hop of the
packet by the routing protocol. On the other hand, nonintended
forwarders are the nodes that are in the neighborhood of the
next-hop and can help it in forwarding packets.

When a sender transmits a coded packet, all of its neighbors
may receive it. However, every node that receives the packet is
not necessarily eligible to forward it. In addition, if all eligible
nodes were to forward the same packet, that would be a waste
of the network bandwidth as well as a source of collision. We
need a method to choose and prioritize eligible forwarders.

A node is an eligible nonintended forwarder if it is not only
the neighbor of the sender, but also a neighbor of both next-
hop and the second next-hop of a coding partner. Following this
rule ensures that a packet would travel correctly toward its final
destination, even if it is forwarded by a different node than its
next-hop. In the rest of this paper, we use the term “nonintended
forwarder” to refer to “eligible nonintended forwarders.”

If an intended forwarder (e.g., N2 in Fig. 4) receives a coded
packet and can decode the packet, it simply replies with an
ACK. However, if it cannot decode the packet, it sends a NACK
instead. In FlexONC, ACKs and NACKs contain the address of
their sender (i.e., the transmitter of ACK/NACK) instead of the
receiver, the same as in BEND. If nonintended forwarders (e.g.,
N6) hear the ACK, they realize that the intended forwarder has
decoded the packet successfully and does not need their help.

In FlexONC, when a node like N6 in Fig. 4 receives a coded
packet, it first looks for its address in the next-hop list. If it cannot
find its address, clearly it is not the intended forwarder for any
coding partner in the coded packet. Therefore, N6 searches for a
native packet in the coded packet that 1) its intended forwarder
(e.g., N2 for P2 in Fig. 4) is N6’s neighbor, 2) its next-hop
from the intended forwarder (e.g., N3 for P2 in Fig. 4) is N6’s
neighbor, and 3) it is decodable by N6. Based on these criteria,
in Fig. 4, although when N1 sends the coded packet P , N0, N5,
and N6 as well as N2 may receive the packet, N0 is not eligible
to forward P2 due to the first criterion. Furthermore, N5 is not
qualified for the second criterion, and therefore N6 is the only
nonintended forwarder which can send P2 on behalf of N2 if it
can decode it.

However, a nonintended forwarder should not forward a
packet immediately after decoding it because the intended for-
warder may forward the packet itself and would not need the
nonintended forwarders’ help. In addition, if there are more than
one eligible nonintended forwarder, an ordering among them is
required to avoid the transmission of more than one ACK to the
packet sender. Due to this reason, in FlexONC the sender adds
the index of all eligible nonintended forwarders to the packet
header.1 Specifically, when a nonintended forwarder receives a

1We assume that all nodes in the network agree on the same numbering
system which represents each of them with a unique index known by all other
nodes.

Fig. 7. Flowchart for receivers of coded packets in FlexONC.

coded packet, it sorts the list of indexes (i.e., all nonintended
forwarders), gives the first priority to the intended forwarder of
the decoded packet, and considers its index in the sorted list
as its rank. Then, it sets a timer and waits for an ACK from
any node with a higher rank. If it does not hear any ACK after
time-out, it is likely that none of the nodes with a higher rank
has received and can forward the packet, so it is its turn to send
the ACK back to the sender, mixes possibly the decoded packet
with other packets in the queue, and forwards it. Fig. 7 presents
the flowchart for receivers of a coded packet in FlexONC.

D. Senders in FlexONC

When a node sends a coded packet, it adds the list of the
next-hops of all coding partners to the packet header. Thus,
when each next-hop receives the packet, it does not send the ac-
knowledgement (either ACK or NACK) immediately, but after
some time proportional to its position in the next-hop list as well
as the transmission and propagation time of the acknowledge-
ment. For example, if a node transmits the combination of three
packets with the next-hops N1, N2, and N3, after receiving the
coded packet, N3 waits for a certain amount of time to ensure
that N1 and N2 have sent their packet acknowledgements, and
then N3 sends back ACK/NACK.

Furthermore, the sender detects all eligible nonintended for-
warders of a coded packet, and adds a bitmap to the packet
header where each bit represents one of the nodes in the net-
work (as discussed in Section VI-G, the overhead introduced by
adding this bitmap is less than a few bytes). If the node is an el-
igible forwarder, the corresponding bit is set to 1, otherwise the
bit keeps the default value which is 0. We assume that each node
is represented with a unique index known by all other nodes,
and each node ranks eligible nonintended forwarders based on
their indexes.

In FlexONC, the fields in the packet header of native packets
do not change. However, the MAC-layer header of coded packets
includes some additional information, such as the number of
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Fig. 8. MAC header for coded packets.

Fig. 9. Time-window dedicated to different nodes to send back the acknowl-
edgment, where in the topology depicted in Fig. 4, N2 transmits a coded packet
to the next-hops N1 and N3, and N5 and N7 are nonintended forwarders.

coding partners, the bitmap, and the address of the next hop and
the packet-id of all coding partners as presented in Fig. 8. Note
that we keep the original format of the upper layers’ headers, and
the XOR of the coding partners is added to the MAC dataframe
as payload.

Since the sender stores the forwarding table of its neighbors, it
can check which neighbors are eligible nonintended forwarders.
Doing so, the sender can calculate its maximum waiting time
for receiving an ACK which is proportional to the number of the
next-hops (i.e., intended forwarders) and eligible nonintended
forwarders of coding partners. It is obvious that when a sender
sends a combination of n packets, it should wait to receive n
ACKs. Thus, its waiting time before time-out is more than when
it transmits a native packet. In FlexONC, because more nodes
can help in decoding and forwarding a packet, if the sender does
not hear an ACK from the intended forwarder, there is still a
chance that it receives the ACK from a nonintended forwarder.
Therefore, the sender should wait a little longer before it retrans-
mits the packet. As such, in FlexONC the waiting time of the
sender for coded packets is calculated in terms of the number of
both coding partners and eligible nonintended forwarders.

To illustrate the idea in more details, let us assume that in
Fig. 4, N2 mixes two native packets and forwards the coded
packet to the next-hops N1 and N3 (i.e., N1 and N3 are the
intended forwarders of these two packets), while N5 and N7 are
eligible nonintended forwarders specified in the bitmap. Fig. 9
shows the maximum waiting time at the sender N2 after trans-
mitting the data packet and the time-window dedicated to the
intended and nonintended forwarders to reply if they need. Note
that the intended forwarders reply by an ACK after successful
decoding and send a NACK after decoding failure. In addition,
a nonintended forwarder replies by an ACK only if decoding
is successful and no ACK was heard from neither the corre-
sponding intended forwarder nor higher ranking nonintended
forwarders.

When the sender receives an ACK for a packet, it removes
the packet from its transmission queue; it may still keep it in
the coding buffer for decoding purposes. On the other hand,
when the sender receives a NACK for the sent packet, it keeps

Fig. 10. RecodingRule, sufficient but not necessary.

waiting until either time-out or receiving an ACK for the same
packet. In the case of time-out for native packets, the sender
retransmits the same packet if the number of transmissions does
not exceed the maximum retransmission count. However, for
coded packets, if the node receives ACKs or NACKs for none
of the coding partners, it retransmits the same coded packet.
Otherwise, it inserts the coding partners which are not ACKed
in the transmission queue.

E. Encoding Strategy

As explained earlier to decide on encoding packets, the major-
ity of encoding methods, within a two-hop region, use a similar
coding structure called two-hop coding structure [8] with the
same coding conditions [1], [2], [15]–[18]. Based on these com-
mon coding conditions, node N can combine two packets P1

and P2 if:
1) The next-hop of P1 is the previous hop of P2 or one of its

neighbors.
2) The next-hop of P2 is the previous hop of P1 or one of its

neighbors.
However, as illustrated in Section III-B in some scenarios

such as Fig. 5, these coding conditions are not sufficient. In fact,
the issue happens because in the common coding conditions, it
is assumed that all the neighbors of the previous hop (e.g., N5)
are able to decode the coded packet sent by it (e.g., P1 ⊕ P3).
However, this is not necessarily a valid assumption as some of
these neighbors (e.g., N9) may not be able to do so. To address
this issue, we add an additional condition to the common coding
conditions as follows.

RecodingRule—To combine a decoded-native packet (i.e., a
packet received as a coded packet from its previous hop and has
been decoded) with other packets (i.e., recode the packet), the
node does not check the neighborhood of the previous hop of
the packet. In fact, if P1 is a decoded-native packet the common
coding conditions should be modified as follows:

1) The next-hop of P1 is the previous hop of P2 or one of its
neighbors.

2) The next-hop of P2 is the previous hop of P1.
RecodingRule is sufficient but may not always be necessary.

That is, although it avoids misleading coding opportunities and
decoding failures in the scenario depicted in Fig. 5, in some
other scenarios it limits the number of right coding opportunities
in the network. As an example, let us describe the effect of our
RecodingRule on the scenario presented in Fig. 10. In this figure,
the route of flow F3, in comparison to Fig. 5, has changed so that
N9 can overhear the packets of this flow. Now, N9 overhears P3
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from N10, and P1 ⊕ P3 from N5. As a result, we do not need to
apply RecodingRule, and N9 can decode P1 ⊕ P2 received from
N6 successfully.

Therefore, RecodingRule should be intelligently used only in
cases that the interaction between flows is so that the common
coding conditions may provide misleading coding opportuni-
ties. This type of encoded packets cannot be decoded in the
next-hop, and the sender will receive a NACK for it. Thus, we
propose a solution called SwitchRule to decide properly on ap-
plying RecodingRule on different flows at different nodes. In
fact, SwitchRule, based on the received NACKs for each flow at
each node, decides to switch back and forth to use and not to use
RecodingRule. Note that SwitchRule only needs to be applied at
the flow-granularity, not the packet-granularity.

At the beginning, every node uses the common coding con-
ditions to encode packets. However, when each node combines
a decoded-native packet P1, with another packet P2, if the next-
hop of P2 is not the previous hop of P1 but one of its neighbors,
P1 is tagged as a suspect packet. This means we are suspicious
that decoding failure may happen because the next-hop of P1’s
partner (i.e., P2) may have not overheard the suspect packet P1.
Each node keeps track of the number of NACKs received for
the partners of suspect packets of each flow. If the number of
NACKS for a flow is greater than a threshold, the node applies
RecodingRule for the rest of the packets of that particular flow.
This means the node will not combine a decoded-native packet
of that flow with any other partner if the next-hop of the partner
is not the previous-hop of the decoded-native packet.

Furthermore, a node will switch back to not using Recodin-
gRule whenever it hears packets of a new flow or it does not
hear any packet from a flow anymore. To implement the latter
case in SwitchRule, each node set a timer for each flow. If the
timer of a flow times-out before receiving a new packet of that
flow, the node switches back to the common coding conditions
for all flows. The waiting time before the time-out is several
times of the estimated interarrival time of the packets of the
flow. The interarrival time of each flow is estimated using a
weighted-average over the previous average and the latest mea-
sured interarrival time. Fig. 11 presents the pseudocode of the
SwitchRule’s mechanism.

F. How to Limit the Number of Duplicate Packets?

Although FlexONC aims to eliminate duplicate packets by
prioritizing nonintended forwarders and making the sender wait
for their ACKs, duplicate packets may still exist in the network,
due to various reasons such as lack of perfect synchronization.
For example, a nonintended forwarder may not hear the ACK
sent by the intended forwarder or higher ranking nonintended
forwarders, and transmit the packet unnecessarily. Therefore,
FlexONC relies on more strategies to control the number of
duplicate packets in the network.

First, after receiving an ACK for a given packet-id, if the node
finds a packet with the same packet-id in its transmission queue
that the sender of the ACK is the next-hop of the packet or one of
corresponding eligible nonintended forwarders, the node drops
the packet (i.e., the packet has already been received by down

Fig. 11. Pseudocode of SwitchRule. The number of NACKs received for
flow F is stored in NACK[F]. NH(P), PH(P), and F(P) denote the next-hop,
the previous-hop, and the flow of P, respectively. ng(N) represents the set of
neighbors of node N. IAT[F] and MIAT[F] denote the interarrival time and
the mean interarrival time of flow F. The timer for flow F is set to α times of
MIAT[F], where α > 1.

TABLE II
INFORMATION AVAILABLE AT NODES IN DIFFERENT SCHEMES

Information Non COPE CORE BEND FlexONC
coding

next-hop
√ √ √ √

second
√

next-hop
neighbors’

√
forwarding info
forwarder set

√ √
node’s

√
geo-position

stream nodes). Second, in FlexONC each node stores a limited
number of received ACKs, and if it receives a packet, it searches
this ACK list. If it finds an ACK for the same packet sent by its
next-hop or one of its eligible nonintended forwarders, it also
drops the packet.

V. PERFORMANCE EVALUATION

We use the Network Simulator (ns-2) to compare the perfor-
mance of FlexONC, with and without RecodingRule, against the
noncoding scheme, a simulation version of COPE as a prominent
research on network coding, and two opportunisitc forwarding
schemes in network coding (i.e., BEND and CORE).2 Table II

2Note that in all simulations, IEEE 802.11 [19] is selected as the data link
layer signaling method.
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summarizes the type of information provided at nodes in differ-
ent schemes. The rest of this section describes the experiment
scenarios as well as the performance results in three different
topologies.

A. Settings

To study the performance under different link qualities and
packet loss probabilities in our simulation, bit error rate (BER) is
added to the physical layer. In fact, even if the signal strength of
a received packet is higher than reception threshold, the packet
may still be dropped with a probability calculated in terms of
BER. BEND and CORE also use a similar physical layer model.
The channel propagation used in ns-2 is a two-ray ground re-
flection model [20], and the maximum transmission range is
250 m. The data rate is fixed to 1 Mb/s. The sources, in our sim-
ulation scenarios, send constant bit rate (CBR) data flows with
a datagram size of 1000 bytes. In addition, we use destination-
sequenced distance-vector (DSDV) [21] as the routing protocol
and apply a few minor changes so that each node can obtain
forwarding tables from its neighbors.

We compare the performance of FlexONC with other base-
lines in several scenarios. In the first part, we use scenarios
in which common coding conditions are enough to encode the
packets in all methods, including FlexONC. Then in the sec-
ond part, we present the performance of different methods in
scenarios where RecodingRule is required to avoid erroneous
encoding causing decoding failures.

B. Performance Under Common Coding Conditions

To investigate the performance of FlexONC in comparison to
BEND, CORE, COPE, and the noncoding scheme, we test them
in different scenarios and compare their throughput as well as
the throughput gain of FlexONC over the baselines for different
BERs in two topologies. First, we compare them using a simple
8-node topology shown in Fig. 4, and then we use a 5 × 5 grid
topology as a more general case. In both topologies, different
flows have been selected so that in most cases the common
coding conditions are enough and we compare all methods using
the same coding conditions (i.e., common coding conditions).

1) 8-Node Topology: In the 8-node topology presented in
Fig. 4, two flows in opposite directions transmit packets from
N0 to N4 and vice versa. Since the distance between adjacent
nodes in both X and Y axes is 150 m, each node can receive
packets only from nodes immediately next to it horizontally,
vertically, or diagonally (e.g., N1 can hear from N0, N5, N2,
and N6). The interarrival time of CBR flows in these scenarios
is 0.07 s and its duration is 150 s.

In this topology, for each intended forwarder except for the
destination, there exists at least one nonintended forwarder that
can help the intended forwarder and forward packets when the
intended forwarder fails to do so. Regarding CORE, it means
that at least two nodes can be chosen in the forwarder set of
each packet. Fig. 12 presents the throughput of BEND, CORE,
COPE, noncoding, and FlexONC for three lowest BERs in our
experiments.

Fig. 12. Throughput of different methods in 8-node topology for different
BERs.

Fig. 13. FlexONC’s gain over other methods in 8-node topology.

We observe that when BER = 2 × 10−6 (i.e., the network con-
dition is almost perfect), most transmitted packets are received
by the intended forwarders successfully. Therefore, there hardly
exists an opportunity for nonintended forwarders to decode and
forward a packet on behalf of the intended forwarder. It is ob-
vious that in such a situation, FlexONC does not show its real
power and its throughput is close to BEND. However, as the
BER increases, more opportunities for nonintended forwarders
are provided and FlexONC’s gain over other methods increases
significantly.

Furthermore, Fig. 13 presents the performance gain of Flex-
ONC over BEND, CORE, COPE, and noncoding for six dif-
ferent BER levels, which corroborates our observation. In
particular, by increasing the BER, FlexONC becomes more
powerful in comparison to the baselines, and its throughput gain
increases. The throughput gain of FlexONC over each baseline
is calculated as:

throughput gain =
Tr(FlexONC) − Tr(baseline)

Tr(baseline)
× 100 (1)

where Tr(x) denotes the calculated throughput for scheme x.
As shown in these figures, although at lower BER, CORE’s

performance is very close to FlexONC’s, in lossy networks
FlexONC outperforms CORE due to the following reasons.
First, in this topology with a small forwarder set, at high BERs
many packets are lost without being received by any forwarder.
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Fig. 14. 5 × 5 grid topology.

Fig. 15. Throughput of different methods in the grid topology for different
BERs.

Fig. 16. FlexONC’s gain over other methods in the grid topology.

Second, in CORE the packets are broadcasted without any
retransmission mechanism to compensate for packet loss.

2) Grid Topology: To investigate the performance of Flex-
ONC in a general topology, we test it in a 5 × 5 grid, where
again the distance between two adjacent nodes is 150 m. Eight
different flows with an interarrival time of 0.1 s and duration
of 150 s transmit packets between Row 2 and Row 4, and also
Column 2 and Column 4 of the grid, as shown in Fig. 14(a).

The performance results depicted in Figs. 15 and 16 again
show that at nontrivial BER levels, FlexONC almost always
outperforms other methods. In perfect network conditions (BER
= 2 × 10−6), CORE performs slightly better than FlexONC
because there is no intended forwarder in CORE, and it dis-
tributes packet transmissions more evenly than FlexONC among

Fig. 17. Effect of SwitchRule on the throughput of FlexONC in the topology
depicted in Fig. 5.

possible forwarders. However, as explained earlier, in lossy
environments CORE cannot benefit from opportunistic forward-
ing and network coding as much as FlexONC due to the lack
of any retransmission mechanism, especially in such multihop
routes (i.e., each node should pass at least four hops to be de-
livered to the destination).

In addition, one may notice that by increasing the BER, the
throughput gain of FlexONC over CORE increases faster in
the 8-node topology in comparison to the grid topology. In
fact, the larger forwarder set in the grid topology decreases the
probability of packet loss in each transmission.

C. Performance Under SwitchRule

We investigate the effect of SwitchRule on the performance
of FlexONC in two different scenarios, where at some nodes the
common coding conditions may not be sufficient to combine the
right packets. First, we compare the throughput of FlexONC in
the topology depicted in Fig. 5 with different interarrival times
for cases that the SwitchRule functionality is OFF (i.e., only
common coding conditions are used) and is ON. We call the latter
version of FlexONC, which uses SwitchRule, FlexONC-SR. In
this scenario, three flows transmit their packets for 150 s, BER
equals 2 × 10−6, and in FlexONC-SR, the NACK threshold to
start applying RecodingRule is equal to 5.

As shown in Fig. 17, although at lower packet arrival rates
(i.e., longer interarrival time) the performance of FlexONC and
FlexONC-SR is close, at higher arrival rates FlexONC-SR can
benefit from SwitchRule to avoid decoding failures and more
retransmissions to deliver packets to the destination. As an
evidence, Fig. 18 presents the number of retransmitted packets
and the number of received NACKs in both FlexONC and
FlexON-SR. As explained in Section III-B, the common coding
conditions may wrongly decide to combine the decoded-native
packets with other packets, and obviously at higher arrival rates,
more decoded-native packets are generated (i.e., the probability
that the same packet is encoded at different nodes increases).

We also compare the performance of FlexONC-SR with other
baselines in a 5 × 5 mesh network with eight different CBR
flows, as depicted in Fig. 14(b), with duration of 150 s. As shown
in Fig. 19, although BER is very small (BER = 2 × 10−6),
FlexONC outperforms other schemes. Moreover, when the
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Fig. 18. Number of retransmissions and received NACKs with and without
applying SwitchRule in FlexONC.

Fig. 19. Throughput of different methods in the topology depicted in
Fig. 14(b).

functionality of SwitchRule is added to FlexONC (i.e.,
FlexONC-SR), its throughput is even further boosted.

VI. DISCUSSION

A. Routing Protocol

In our experiments, we selected DSDV as the routing protocol
for its well-known behavior. Moreover, it is a distance-vector
approach that makes fewer assumptions about the routing infor-
mation in comparison to source routing protocols. Therefore,
if FlexONC works well with DSDV, it will work with source
routing protocols as well. As a matter of fact, choosing DSDV
as the routing module does not lose generality of our scheme
in a stationary mesh network. We believe choosing any other
routing protocol would not make a big difference in FlexONC’s
performance gain, as long as the routing protocol can be mod-
ified in a way that each node contains forwarding information
for its neighbors.

B. End-to-End Delay

On one hand, FlexONC decreases the delay in forwarding
packets and increases the throughput by avoiding packet
retransmission when an intended forwarder fails to decode the
coded packet, and a nonintended forwarder alternatively passes
the packet toward the destination. On the other hand, when
more nodes have the responsibility of passing the packet further

Fig. 20. End-to-end delay of different methods in 8-node topology for
different BERs.

to the destination, in case of retransmissions, the sender should
wait longer for an ACK before it retransmits the packet, and
this longer waiting time means longer delay which may lead to
a lower throughput.

Therefore, we face a tradeoff here. While the maximum
waiting time of the sender is proportional to the number of
eligible forwarders, the gain of FlexONC is also related to the
number of neighbors of the sender (i.e., more precisely, eligible
nonintended forwarders), as well as the probability of intended
forwarder’s failure in receiving or decoding a coded packet,
which is in turn affected by the packet loss probability and BER
in the network. The performance result showed that even for a
very low BER when the intended forwarder itself can decode
and forward the majority of received coded packets and Flex-
ONC does not have much chance to be applied, its performance
is comparable to BEND’s performance or even better.

Fig. 20 shows the average end-to-end delay of delivered
packets in different methods, for the scenario described in
Section V-B1. While the noncoding scheme has the highest av-
erage end-to-end delay, the delay in FlexONC is slightly longer
than BEND. As explained earlier, the most important reason of
this longer delay is that the sender of coded packets in Flex-
ONC waits longer to receive an ACK than in BEND. Therefore,
if the packet transmission fails and no ACK is received, BEND’s
timer, for anticipated ACKs, usually expires earlier than Flex-
ONC’s, leading to a faster retransmission in BEND, which can
reduce its average end-to-end delay in comparison to FlexONC.

In addition, one may notice that in CORE the end-to-end delay
does not vary much over different BERs. While at lower BERs,
CORE’s delay is longer than that of other coding schemes, at
higher BERs its delay is significantly shorter than that of other
protocols. The main reason of this shorter and almost constant
delay in delivery is the lack of any retransmission mechanism;
any packet either is delivered by one transmission or is dropped.

As shown in Fig. 20, the delay in the noncoding scheme is
significantly higher than other methods. The main reason is that
coding enables free-riding. In other methods, more than one
packet can be combined and sent simultaneously, which means
that packets can free-ride on other packets. Therefore, the pack-
ets are forwarded faster. In addition, this decreases the queue
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Fig. 21. End-to-end delay of different methods in 8-node topology for differ-
ent BERs with less CBR traffic.

length at nodes, causing shorter waiting time and consequently
shorter delay.

To verify this explanation, we repeat simulations with less
CBR traffic with the interarrival time of 0.15 s (instead of
0.07 s). By increasing the interarrival time, less packets are
injected to the network per second, which reduces the probabil-
ity of having more than one packet in the queues, and in turn,
creates less coding opportunities at nodes. The results are shown
in Fig. 21, where the delay in noncoding is comparable to the
other methods, as the coding schemes provide less free-riding
opportunities for the packets.

Furthermore, while this figure justifies the almost constant
end-to-end delay in CORE over different BERs, it also shows
that the delay in CORE is significantly longer than that of other
methods. As mentioned earlier, in this scenario with a small
packet arrival rate, the coding opportunities are rare in the net-
work, and most packets are sent natively. To provide higher
priority for coded transmissions in CORE, the native packets
are delayed before transmission; therefore, forwarding a large
number of native packets in this scenario increases the end-to-
end delay significantly.

C. Duplicate Packets

As explained in [2], since in BEND more nodes cooperate in
forwarding packets toward the final destination, it is prone to
generating more duplicate packets in case of imperfect collabo-
ration among nodes. The situation in FlexONC could seem even
more severe, as it allows nonintended forwarders to cooperate in
more ways (i.e., forwarding of not only received native packets,
but also received coded packets). To control duplicate packets
in FlexONC, we introduced some mechanisms in Section IV-F.

Fig. 22 shows the number of duplicate packets generated by
different methods. As shown in this figure, the largest number of
duplicate packets are generated at CORE, as nodes should only
rely on overhearing other transmissions to avoid duplicate pack-
ets. In addition, while the number of duplicate packets in BEND
is higher than noncoding and COPE, FlexONC is able to con-
trol the number of duplicate packets, especially at lower BERs.
The reason could be related to the additional mechanisms intro-
duced in FlexONC to control the number of duplicate packets.

Fig. 22. Duplicate packets of different methods in 8-node topology for differ-
ent BERs.

Fig. 23. Coding opportunities in different methods in 8-node topology for
different BERs.

However at higher BER = 5 × 10−5, there are more duplicate
packets in FlexONC than in BEND because these mechanisms
are highly susceptible to the reception of ACKs and at higher
BERs the probability of losing ACKs increases.

D. Coding Opportunities

As shown in Fig. 23, at lower BERs the code opportunities
at CORE are more than that of FlexONC. However, at higher
BERs, FlexONC provides more coding opportunities than other
schemes. One may notice that, by increasing BER, first coding
opportunities in all methods increases. The reason is that, due
to a greater need for retransmission, packets stay longer in the
queue and the chance of combining them with the packets of
other nodes increases, leading to more coding opportunities. On
the other hand, when BER further increases, the number of re-
transmissions increases significantly; therefore, the probability
of generating new coding opportunities decreases. That is why
for BERs higher than 5 × 10−5, the coding opportunities in the
networks drops. In CORE, although there is no retransmission,
at higher BERs and in this topology many packets can not go
further than one or two hops, which decreases the number of
packets in nodes’ queues as well as the number of coding op-
portunities.
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Fig. 24. Distribution of coding opportunities at different nodes in different
methods in 8-node topology.

Fig. 25. What happens to coded packets when BER changes.

To show the distribution of coding opportunities at differ-
ent nodes, we run simulations using the topology depicted in
Fig. 4 and the scenario explained in Section V-B1, but the route
between N0 and N4 is fixed through N1, N2, and N3 for COPE,
BEND, and FlexONC (i.e., the intended forwarders are N1, N2,
and N3). As shown in Fig. 24, coding opportunities in COPE
are restricted to the intended forwarders; however, other coding
schemes use nonintended forwarders (i.e., N5, N6, and N7) to
accelerate packet forwarding and provide more coding opportu-
nities. In addition, since in CORE there is no intended forwarder,
and possible forwarders are prioritized only based on coding op-
portunities, the coding opportunities are distributed more evenly
in CORE than in other coding schemes.

E. What Happens to Coded Packets in FlexONC?

To show why by increasing BER FlexONC outperforms other
schemes in throughput, we run simulations using the scenario
depicted in Section V-B1, and calculate: 1) the total number of
coded packets sent, 2) the number of coded packets received and
forwarded by the intended forwarder, 3) the number of coded
packets only received and forwarded by one of the nonintended
forwarders (i.e., on behalf of the intended forwarder), and 4) the
number of coded packets for which the sender does not receive
any ACK (or NACK) and retransmits.

As shown in Fig. 25, by increasing BER, intended forwarders
receive a smaller percentage of total coded packets sent, and the
portion of coded packets which are received only by nonintended
forwarders increases. This means that nonintended forwarders

can cooperate more effectively in forwarding and be more bene-
ficial. This collaboration among nodes, which increases at higher
BER, is the key idea of FlexONC, which leads to increased ro-
bustness and higher packet delivery ratio in comparison to the
baselines.

F. Packet Delivery Rate

Opportunistic forwarding is utilized to increase the probabil-
ity of successful delivery of a packet as more nodes can help in
forwarding packets. In this section, we investigate the effect of
the number of nodes in the forwarder set, and the link quality
on the performance of opportunistic forwarding protocols, espe-
cially BEND and FlexONC, for both native and coded packets.
We focus on the case with no retransmission first, and the case
with retransmission is a natural extension, as we see later. In
addition, we assume that the nodes in the forwarder set have a
perfect coordination mechanism, which means that all nodes in
the forwarder set know which one of them forwards the packet.

Let us denote p as the probability of successful transmission at
each link, and N as the average number of nodes in the forwarder
set. Then, the probability of successful transmission of a native
packet to at least one of the nodes in the forwarder set equals:
pn

f = 1 − (1 − p)N . If a packet traverses H hops in average
to be delivered to the destination, in each transmission N − 1
nonintended forwarders help the intended forwarder except for
the transmission to the destination. Then, the probability of
successful delivery to the destination can be calculated as: pn

d =
(1 − (1 − p)N )H−1 × p. It is worth noting that for N = 1 (i.e.,
only one node in the forwarder set of each transmission) pn

d =
pH , which is basically the probability of successful delivery of
a packet in traditional forwarding with H hops. Furthermore,
when N increases pn

d > pH , which shows that by increasing
the number of nonintended forwarders (i.e., the nodes in the
forwarder set) the packet delivery rate increases.

Regarding coded packets, a received coded packet with m
coding partners is decoded successfully if m − 1 coded part-
ners have already been received. Therefore, the probability of
delivery of a coded packet to the next-hop equals pm . As dis-
cussed earlier, in BEND coded packets are only forwarded by the
intended forwarder (i.e., no opportunistic forwarding). There-
fore, the probability of delivery of a coded packet with m cod-
ing partners to the destinations in BEND equals pc

d(BEND) =
(1 − (1 − p)N )(pm )H−1, given that the source always sends na-
tive packets. On the other hand, since FlexONC extends oppor-
tunistic forwarding to coded packets as well, the probability of
delivery of coded packets to the destination in FlexONC equals:
pc

d(FlexONC) = (1 − (1 − p)N )(1 − (1 − pm )N )H−2pm .
To compare the delivery rate in BEND and FlexONC, we

focus on the delivery of coded packets, which is different in
these two approaches. Assuming that the coding opportunities
at both protocols are similar, when the number of nonintended
forwarders (i.e., N ) increases, pc

d(FlexONC) increases faster
than pc

d(BEND), which shows that the gain obtained by op-
portunistic forwarding is greater in FlexONC than in BEND.
Furthermore, when the link quality is perfect (i.e., p = 1), the
packet delivery ratio for both protocols is the same and inde-
pendent of N , justifying the fact that in perfect network con-
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ditions opportunistic forwarding is not beneficial. However, as
shown below, in imperfect link qualities (i.e., p < 1), FlexONC
outperforms BEND

0 < p < 1

⇒ 0 < pm < 1

N >1⇒ (1 − pm ) > (1 − pm )N

⇒ (1 − (1 − pm )) < (1 − (1 − pm )N )

⇒ (pm )H−2 < (1 − (1 − pm )N )H−2

⇒ pc
d(BEND) < pc

d(FlexONC).

In addition, we can prove in a similar fashion that the perfor-
mance gap between BEND and FlexONC in terms of the packet
delivery rate increases as the link quality decreases. Further-
more, when retransmission is enabled, since pc

d(FlexONC) >
pc

d(BEND), each coded packet in FlexONC needs less number
of retransmissions to be delivered to the destination, which in-
creases the capacity of the network, and consequently improves
the performance.

G. Overall Comparison

In this section, we provide an overall comparison of FlexONC
with other methods, especially BEND, in terms of required
storage, packet overhead, computational complexity, delay, and
throughput. FlexONC provides more coding opportunities, and
outperforms other schemes in terms of throughput, especially
at higher BERs. Even though having a more powerful protocol
may imply increased complexity and overhead, this is not the
case of FlexONC, and it is able to keep other metrics such
as the end-to-end delay and the number of duplicate packets
comparable to other methods, particularly BEND.

Regarding the packet header overhead, while BEND adds
the second-next-hop field to the packet header of native packets
(i.e., four bytes), FlexONC does not need this field. Instead, it
adds a bitmap to the header of coded packets to specify eligible
forwarders, which is the case in CORE as well. Given the total
number of nodes N in the network, the array needs N bits in the
packet header, which does not exceed a few bytes in average.
Furthermore, to find the forwarder set in each node, CORE adds
the geographical-position of the sender and the final destination
of each packet to its header, which is not required by FlexONC.

On the other hand, COPE needs neither the second-next-hop
field nor the bitmap since it does not benefit from opportunistic
forwarding. Moreover, in FlexONC as well as all other oppor-
tunistic forwarding protocols with network coding (e.g., CORE
and BEND), all nodes are in promiscuous mode, and store over-
heard (in addition to intended) packets. Therefore, this overhead
is common in all mentioned baselines except for COPE. In fact,
in all experiments over different methods, nodes have the same
buffer size.

As explained earlier, in FlexONC, in contrast with COPE,
CORE, and BEND, each node stores the forwarding infor-
mation of its neighbors. This information is used to control
the route followed by packets and avoid them from straying
too away from the designated shortest path. If K denotes the

maximum number of neighbors of a node in the network, and
each entry of the forwarding table needs at most 10 bytes, the
total memory required to store the forwarding information of
the neighbors equals 10 × K × N bytes. Thus, in a network
with about 30 nodes, even if we assume all nodes are connected
to each other, the total required storage is less than 9 KB. On
the other hand, while in BEND each node only stores its own
forwarding table, the size of this forwarding table is greater than
a regular forwarding table, as it stores the IP addresses of the
second-next-hops in addition to the next-hops themselves.

All mentioned schemes need to utilize a routing protocol
except for CORE as it broadcasts the packets. However, this
broadcasting mechanism and lack of retransmission affects the
performance of CORE significantly in lossy networks, as shown
in the last section. Having routing information of the neighbors
in FlexONC only requires adding one extra field to the route ad-
vertisement messages of a proactive routing protocol to include
the next hop leading to each destination. However, this very
small additional routing overhead is not limited to FlexONC;
BEND also adds the same field to the route control packets to
update second-next-hop field in the forwarding table of each
node.

Regarding the computational complexity, the most important
processes are encoding and decoding which are almost the same
in all coding schemes except for CORE. While in FlexONC
and other mentioned coding schemes, nodes encode the packets
in advance immediately after reception, in CORE a packet is
encoded when it is going to be transmitted. In addition, to in-
crease the coding gain in lossy environments, CORE introduces
a more complicated encoding algorithm in which each node
checks all possible coding patterns of the first K packets in its
queue.

In terms of the average end-to-end delay, as explained in
Section VI-B, the delay in FlexONC is slightly longer than that
in BEND because of the longer maximum waiting time be-
fore triggering retransmission of coded packets. Compared with
CORE, at lower arrival rates the delay in CORE is significantly
longer than that of FlexONC, since CORE delays native trans-
missions. On the other hand, at higher arrival rates the delay in
FlexONC is longer.

Although the experiments in this paper are conducted in grid
topologies, the benefit of having more diffusion gain as well as an
additional rule in the coding conditions and having a mechanism
to turn it ON/OFF dynamically is still present in general scenarios
with random node distribution and flow assignments, and we
expect the relative performance among these different methods
to be similar to what we have shown here.

VII. CONCLUSION AND FUTURE WORK

This paper presented FlexONC, an enhancement over BEND,
which provides more flexibility and coding opportunities in the
network. By utilizing the broadcasting nature of wireless net-
works, FlexONC is able to spread different flows better than
BEND and enable a higher level of cooperation between in-
tended and nonintended forwarders at the link layer in a multi-
hop wireless network. Furthermore, by adding an additional rule
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to the current conditions used to encode the packets in different
methods, FlexONC provides more accurate coding conditions,
and utilizes SwitchRule to apply these coding conditions appro-
priately and limit decoding failures.

By applying SwitchRule, FlexONC is able to adapt coding
conditions in different scenarios, and uses a more complete set
of rules for encoding when common coding conditions are not
sufficient. Furthermore, FlexONC benefits from opportunistic
forwarding especially at higher BERs. The performance results
show that at higher BERs, when an intended forwarder may fail
to receive or decode a coded packet and needs its neighbor’s
help, FlexONC significantly outperforms previous methods like
BEND, CORE, COPE, and noncoding. Even under an ideal net-
work condition, when intended forwarders usually do not need
any help and can decode and forward received coded packets,
FlexONC outperforms other schemes because of more precise
coding conditions.

In future work, we plan to provide an analytical model for the
combination of opportunistic forwarding and inter-flow network
coding in multihop wireless mesh networks. Furthermore, in
recent years a number of publications have been presented that
apply both inter- and intraflow network coding, but in some
limited scenarios [22]–[24]. We believe that this combination,
if realized carefully, could introduce further improvement in the
performance, and represents another way to extend FlexONC.

Moreover, to address the coding condition problem described
in this paper, SwitchRule is proposed which decides on more pre-
cise coding conditions (i.e., RecodingRule) in certain scenarios.
In future, we plan to propose a scheme that provides nodes with
more timely deterministic information and also more accurate
probabilistic decisions in encoding. In addition, FlexONC can
be extended to include a combination of cooperative forwarding
with more powerful detection of coding opportunities beyond a
two-hop region [25], [26].
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