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Abstract—Opportunistic forwarding and network coding uti-
lize the broadcasting nature of wireless transmission and fluc-
tuation of link quality for enhanced performance in multi-
hop wireless networks. However, TCP is not well supported
because of the way they operate. The frequent occurrences of
dropped packets and out-of-order arrival of them in opportunistic
forwarding and decoding delay in network coding overthrow
TCP’s congestion control. We propose a mechanism, dubbed
TCPFender, for TCP to function over the network layer that
uses opportunistic data forwarding and network coding, to
properly conduct congestion control in TCP and provide reliable
data transport. Our experiment shows that TCPFender achieves
significantly higher throughput compared to TCP over IP in a
simulated wireless mesh.

I. INTRODUCTION

A multi-hop wireless network, also known as wireless
mesh, is a wireless data communication network, where nodes
are situated beyond radio transmission ranges such that in-
termediate nodes are required to forward data [1]. They origi-
nated from military communication and disaster relief scenario
but are nowadays finding civilian applications. Compared
to single-hop wireless networks, such as Wi-Fi and cellular
networks, multi-hop wireless networks can be deployed rapidly
because they do not usually require infrastructure support[2].
However, to have such capabilities, important issues must be
worked out, such as finding a path from one node to another
efficiently, maintaining reliable wireless links, protecting nodes
from network attacks, conserving power consumption, support
applications of different characteristics, and so on.

Link quality variation has traditionally been treated as
an adversarial factor in wireless networks, where their effect
must be concealed from upper-layer protocols using strong
codes or automatic retransmission. However, recent innovative
data transfer methods utilize such a characteristic explicitly to
achieve network performance that would not be possible in
wireline networks [3]. In particular, ExOR [4] is a seminal
effort in utilizing the quality fluctuation of wireless links. It
involves an interplay between the network and link layers so
that packet forwarding can be scheduled cooperatively on a
per-packet, per-transmission basis. Another important feature
of wireless links is broadcasting and it is natural to support
network coding by mixing multiple data flows at a common
intermediate node [5] [6] [7] [8]. For example, COPE [9] is a
framework to combine and code data flows through such joint
nodes to achieve higher throughput than IP forwarding in IEEE
802.11 wireless mesh networks. Interestingly, these ideas can

be realized at the same time for another level of performance
improvement. In particular, MORE [10] uses random linear
network coding at the source and intermediate nodes and
allows them to forward the coded packets opportunistically.
It is able to ensure that nodes hearing the same transmission
do not forward the same packets, so it does not need a special
scheduler and achieve a better spatial reuse.

In general, opportunistic data forwarding and wireless
network coding are proven to be effective in transporting
UDP data streams. However, they are inherently unsuitable for
supporting TCP. In such forwarding mechanisms, the frequent
occurrences of dropped packets or out-of-order arrival of
them overthrow TCP’s congestion control, which has precise
interpretations of the timing and presence of the feedback
coming from the network layer. Unfortunately, opportunistic
data forwarding does not attempt to forward packets in the
same order as they are injected in the network so many packets
will arrive in a different order. Similarly, in network coding,
because both encoding and decoding introduce delay at the
network layer, along with possible scenarios of not being able
to decode some packets, TCP will also see many duplicate
ACK segments and frequent timeouts. In fact, we know that the
performance of TCP suffers from transient link quality fades
and frequent collisions in wireless mesh networks despite of
MAC layer retransmissions [11] [12].

In this article, we propose a solution for TCP function over
the network layer that uses opportunistic data forwarding and
network coding, dubbed TCPFender. By replacing part of the
TCP’s control feedback loop with a new mechanism, TCP is
able to provide reliable data transport and congestion control as
it is meant to. We tested TCPFender using computer simulation
of a wireless mesh network, and observed a 80% throughput
gain over TCP over IP forwarding.

The rest of this paper is organized as follows. In Section II
we briefly describe related work. Section III is the description
of our TCPFender and Section IV reports experimental results.
We conclude this article with some discussion and outlook in
Section V.

II. RELATED WORK

ExOR [4] utilizes link quality variation of wireless chan-
nels at the link layer and obtains the opportunistic forwarding
gains. It is an explorative cross-layer opportunistic data for-
warding mechanism, which proposes a forwarding schedule
on nodes to reduce duplicate transmissions. However, the strict
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schedule reduces the possibilities of spatial reuse so that nodes
can not forward packets at the same time even though the
wireless medium is available. Therefore, the channel capacity
will be under-utilized.

MORE [10] propose a solution to the above problem by
incorporating random network coding into opportunistic data
forwarding. Based on a credit mechanism using link loss,
it restricts the redundancy for each received packet. MORE
divides data packets from upper layer into several batches and
generates coded packets with a random linear combination
of each batch. A receiver can decode original packets after
it receives enough independent coded packets. However, the
problem with MORE is that it would introduce a long decoding
delay which may increase the possibilities of timeout in TCP,
which will have a negative impact on TCP performance.

Furthermore, in mesh networks, the principal problem of
TCP lies in performing congestion control in case of losses
that are not induced by network congestion [12] [13]. Wireless
networks suffer from several types of losses which are not
related to congestion, for example, physical layer link loss.
TCP is unable to distinguish losses caused by link quality
variation or network congestion. When a packet is detected
to be lost, TCP slows down the sending rate by adjusting its
congestion window, it greatly reduces the TCP throughput.

In [14], Sundararajan et al proposes a new protocol called
TCP/NC, it uses a sliding window approach for coding op-
erations and modifies the TCP acknowledgment schemes by
acknowledging the degrees of freedom, this scheme is defined
as Seen concept. When a coded packet has been seen instead
of a original packet been received, the receiver would generate
an acknowledgment. Such ACKs enable a TCP-compatible
sliding-window approach to network coding. However, oppor-
tunistic forwarding is not considered in their work, and the link
quality variation is not explored to support network coding and
improve the network performance. To address this problem,
in this paper, we will propose an adaption module at both
TCP sender and receiver sides to support TCP in a wireless
mesh network where the network layer uses opportunistic data
forwarding and network coding.

III. DESIGN OF TCPFENDER

A. TCPFender Overview

The objective of TCPFender is to allow TCP to function in
a wireless mesh network that uses opportunistic data forward-
ing and network coding at its network layer. The essence is for
the TCP sender to maintain a large congestion window even
when there are a large number of dropped packets or out-of-
order delivery. We intend to keep TCP intact for the principle
of software modularization. Furthermore, the underlying link
layer should be the stock IEEE 802.11, which only provides
standard unreliable broadcast or reliable unitcast (best effort
with a limited number of retransmits).

The task is challenging because TCP has its own interpreta-
tion of the arrival (or absence) of the ACK segments and their
timing. For the sender to be able to open up its congestion
window, it needs to continue to see ACK coming in from the
network. The dilemma is that when packets are dropped or
arrive out of order, the TCP receiver cannot signal the sender
to proceed with the expected ACK segment.

TCPFender addresses this issue by allowing the receiving
side to provide positive feedback early on when innovative
coded packets are received, i.e. suggesting that more infor-
mation has come through the network although it cannot be
decoded yet for the time being. Furthermore, it triggers fast
recovery when the receiving side acknowledges the arrival
of packets belonging to a later batch, in which case the
sending side will resend dropped packets of the previous batch.
On the other hand, it is able to differentiate duplicate ACK
segments caused by network congestion from those caused by
opportunistic data forwarding.

B. Design Detail

TCPFender is inspired by MORE to utilize the oppor-
tunistic forwarding and network coding to better support TCP.
The way we designed it is based on a batch-oriented wireless
network coding operation similar to MORE. TCPFender has
adaption modules under both the TCP sender and receiver.
These modules are used to interpret observation of the network
layer phenomena the way that is understandable by TCP. It
forwards data in a similar batch-operated fashion as MORE.
On the sender side, after receiving packets from the transport
layer, packets are grouped into batches, where all packets in
the same batch carry encoding vectors of the same basis. After
the receiver decodes all packets of a given batch, the decoded
(original) packets are delivered to up to the TCP receiver.
These are done by the sending module and receiving module
at the source and destination nodes. Both modules are part
of the network layer that sits between TCP and the packet
forwarding functions. Both end nodes and intermediate nodes
run an enhanced version of MORE.

1) Modifications to MORE: The opportunistic data for-
warding and network coding here is implemented based on
MORE. As we recall, MORE is a batch-oriented operation,
where all data pushed down by the transport layer sender
are grouped into batches. Each batch has a fixed number β
(β = 50 in our implementation) of segments of equal length
(with possible padding). When the source has accumulated a
batch worth data, they are coded with random linear network
coding, tagged with the encoding vectors used, and transmitted
to downstream nodes. Here, a downstream node is any node
in the network closer to the destination. Any downstream
node can recode and forward packets when receives sufficient
number of them. MORE uses a transmission credit to balance
the number of packets that a node receives and forwards. When
the batch has been received and decoded by the destination,
a batch acknowledgement is sent back to the source for it to
start the next batch.

We have two important revisions to MORE. First, when
processing a given batch, the source does not need to wait till
the last packet from the TCP sender before transmitting coded
packets. That is, if k packets (k < 50) have been sent down by
TCP at a point of time, a random linear combination of these k
packets is created and transmitted. Initially, the coded packets
only include information of the first few TCP segments of the
batch, but will include more towards the end of the batch. The
reason for this “early release” behavior is for the TCP receiving
side to be able to provide feedback for the sender to open up
the congestion window. Second, we use a deeper pipelining
than MORE, where we allow multiple batches to flow in the
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Fig. 1: Topology of simulation with physical layer link loss rates indicated.

network at the same time. To do that, the sending side does not
need to wait for the batch acknowledgement before proceeding
with the next batch. In this case, packets of a batch is labeled
with a batch index for differentiation. The purpose of this is
for TCP to have a stable, large congestion window size rather
than having to reset it to 1 for each new batch. The cost of
such pipelining is that all nodes must now maintain packets
for multiple batches.

2) Receiver module: The receiver module is deployed at
network layer on the receiver side. Its basic function is to
generate ACKs and detect congestion in the network. It expects
packets in the order of increasing batch index. For example,
when it is expecting the bth batch, it implies that it has
successfully received packets of the previous b − 1 batches
and delivered them up to the TCP receiver. In this case, it is
only interested in and buffers packets of the bth batch or later.

Due to the network layer’s characteristics, the destination
node may receive packets of any batch. Suppose that the
receiver is expecting the bth batch, and that the rank of the
decoding matrix of this batch is r. In this case, the receiver
has “almost” received β× (b−1)+r packets of the TCP flow,
where β×(b−1) packets have been decoded and pushed up the
TCP receiver, and r packets are still in the decoding matrix.
When it receives a coded packet of the b′th batch, if b′ < b the
packet is discarded. Otherwise, this packet is inserted to the
corresponding decoding matrix. Such an insertion can increase
r by 1 if b′ = b and the received packet is innovative. In either
case, it generates an ACK of sequence number β× (b−1)+r,
which is sent over IP back to the source node. One exception
is that, if r = β (i.e. decoding matrix become full rank), the
ACK sequence number is β× (b̂− 1)+ r̂, where b̂ is the next
batch that is not full and r̂ is its rank. At this point, the receiver
moves on to the b̂th batch. This mechanism ensures that the
receiver can send multiple duplicate ACKs for the sender to
detect congestion and start fast recovery. It also guarantees the
reliable transmission at the end of the transmission of each
batch.

3) Sender module: The sender’s has two responsibilities.
First, it buffers original uncoded packets in batches that have
not been acknowledged. This purpose is that, when TCP
pushes down a previously sent packet due to a loss event, it
can still mix it with other packets of the same batch. Second,
it needs to discern a case of seemingly duplicate ACKs that is

not in fact caused by network congestion.

This latter point is a phenomenon caused by opportunistic
forwarding. Specifically, when the network links are of high
quality at a certain point, many extra coded packets may
arrive at the destination, causing the receiving module to send
multiple ACKs of the same sequence number. In this case, such
duplicate ACKs are not a signal for network congestion, and
should be treated differently by the sending module. These
two cases of duplicate ACKs can actually be differentiated
by tagging the ACKs with the sequence numbers of the data
segments triggering them. Note that these ACKs are for the
functioning of the sending and receiving modules, and need to
be processed before handing up to the TCP sender.

IV. PERFORMANCE EVALUATION

In this section, we investigate the performance of
TCPFender by running computer simulation using Network
Simulator ns-2 (version 2-25). The topology of the simulation
is depicted in Fig. 1, where the Physical Layer link loss rates
are also indicated. The source and destination nodes are at the
opposite ends of the network, one FTP application delivers
long files from the source to the destination. Source node
emits packets continuously till the end of simulation, and the
simulation last for 100 seconds. All the wireless links have a
bandwidth of 1Mbps and the buffer size on the interfaces is
set to 100 packets. To compensate for the link loss, we use the
hop-to-hop redundancy factor for each packet in a loss link.
The redundancy factor is calculated based on loss rate and
proposed by MORE [10]. However, if we directly use the loss
rate of link at the Physical Layer, it will not include the effect
of packet collisions. Instead, we conducted some preliminary
tests to measure link loss rate of both the Physical and Link
layers, which is naturally higher but closer to the real rate.
The redundancy factors of the links are thus set according to
these revised rates. We compare our protocol against TCP/IP
in such a lossy wireless mesh network.

5297



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  20  40  60  80  100

T
o

ta
l 
n

u
m

b
e

r 
o

f 
p

a
c
k
e

ts
 r

e
c
e

iv
e

d

Simulation time(s)

TCPFender vs TCP/IP

TCPFender
TCP/IP

Fig. 2: Throughput of TCPFender vs. TCP/IP
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Fig. 3: Congestion window size for TCPFender and TCP/IP

We first examine whether TCPFender can effectively help
opportunistic forwarding and network coding to transport data
reliably in the mesh network. We repeated the same scenario
for 10 times with different random seeds for TCPFender
and TCP over IP, respectively. The source node S and the
destination node D are at the opposite ends of topology. In
TCPFender, every other node has the opportunity to forward
coded packets as they are all somewhere between the source
and destination. All nodes operated in the 802.11 broadcast
mode. In contrast for TCP/IP, we adopted the short-path
routing to forward packets. Here, we used the standard ARQ
mechanism of 802.11 to offset the effect of link loss.

We plotted the throughput of both approaches in Fig. 2,
which shows, for each simulation run, how many packets have
been received by the destination node’s TCP module at a given
point of the test. We can observe that there is a clear advantage
of TCPFender over TCP/IP, and our data show that the gain is
about 80%. Note that for the case of TCPFender, the number of
packets received by the destination always increase by 50. This
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Fig. 5: End to end delay of TCP/IP

is when a batch is successfully received and decoded, at which
point they are delivered up by the receiving module to TCP all
at once. The performance difference shows the effectiveness of
TCPFender in keeping the sender’s congestion window open
by the receiving module providing positive feedback whenever
the rank of its decoding matrix increases.

To further verify this, we plotted the evolution of the
congestion window size on the source node for one TCPFender
and TCP/IP pair in Fig. 3. For TCP/IP, the packet loss keeps the
congestion window is closed to approximately 2 even though
the link layer ARQ attempts to transmit a packet up to 7
times. For TCPFender, because the receiver module would
acknowledge the increase of the degree of freedom in the
decoding matrix, the TCP sender is able to keep the window
at around 4, effectively doubling the throughput.

Now that TCP can be supported by network coding and
opportunistic data forwarding, we are also interested in the
end to end packet delivery delay for both approaches, which
are plotted in Fig. 4 and Fig. 5. In the figures, the x-axis is the
TCP sequence number, and the y-axis is the delay in seconds.
Notice that the delay for TCP/IP is a fraction of TCPFender
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because the latter must wait till all packets can be decoded
before handing them over to TCP. This is an inherent feature
of batch-based network coding rather than that of TCPFender.
In Fig. 4, the delay is in a saw-tooth form because packets at
the beginning a batch always have longer delays than packets
later in the batch.

V. CONCLUDING REMARKS

This work was motivated by the need of supporting TCP
in a wireless mesh network where the network layer uses
opportunistic data forwarding and network coding. For this to
work, we designed an adaption module at the TCP sender and
receiver sides, respectively. In order for the TCP sender to keep
its congestion window open, the modules completes the control
feedback loop of TCP in two ways. First, it releases ACK
segments early when the receiver module sees an innovative
packet. Second, it differentiates duplicate ACKs caused by
network congestion from those caused by opportunistic data
forwarding. From the simulation results, TCPFender has an
approximately 80% throughput gain over TCP/IP even though
it has additional overhead for TCPFender header.

In fact, our adaptive modules are designed generally
enough to not just support network coding and opportunistic
data forwarding, but any packet forwarding technique that
can cause many dropped packets or out-of-order arrivals. One
example would be multi-path routing, where IP packets of the
same data flow can follow different paths from the source to
the destination [15]. By emulating how TCP receiver would
signal the TCP sender, we are able to adapt TCP to function
over such a network layer with unstable packet forwarding
capacity without having to modify TCP itself.

TCPFender can be extended and further investigated in
the following interesting ways. For example, to verify how
multiple TCP flows interact with each other over a network
coded, opportunistic forwarding network layer, or more gen-
erally any error-prone network layer. Alternatively if we look
at the network layer, how we can code the duplex data of the
same TCP flow, or how TCP flows with partially overlapped
routes can be coded and forwarded opportunistically.
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