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Delay-tolerant networking effectively extends the network connectivity in the time
domain, and endows communications devices with enhanced data transfer capabilities.
Network coding on the other hand enables us to approach the information capacity of net-
works by allowing intermediate nodes to process data en route. Both of these were major
breakthroughs in mobile and wireless communications in the past decade or so. As
reported in this article, we are interested in how network coding interacts with such a chal-
lenged networking paradigm as DTN from an experimental perspective. We conducted
tests with both real smart mobile devices and computer simulation and found conditions
where their results match. This would give us confidence of using computer simulation to
study larger delay-tolerant networks with and without network coding at a much manage-
able cost.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Data communication networks connect computing
devices with wired or wireless links to exchange informa-
tion. For such networks to scale as the number of devices in
it increases, we allow messages to traverse multiple com-
munication links from its source node to the destination.
Such a ‘‘store and forward’’ technique is the central idea
of how the Internet can support numerous computers.
This significantly extends the scope of communication net-
works spatially. Recently, research on Delay-Tolerant
Networking (DTN) [1,15,17,30] has been focusing on how
to extend communication networks temporally. As mobile
devices and networking technologies become more power-
ful and efficient, such mobile devices can be used to ‘‘store,
carry, and forward’’ data when users roam around. That is,
even without cellular or Wi-Fi infrastructure and only rely-
ing on short-range radios, e.g. Bluetooth and ZigBee, a
number of sparsely deployed mobile devices can be used
to transfer data automatically especially when the data
are not meant to be time-sensitive. The DTN technology
can be useful in many scenarios, such as mobile sensor net-
works, disaster recovery, and social networking.

The concept of network coding was formulated in the
seminal work by Ahlswede et al. [5] in 2000, and the past
decade has seen tremendous growth in this area [23]. Its
idea breaks away from the principal of traditional
multi-hop networking, where intermediate nodes only for-
ward packets but cannot modify their contents, much like
cars traveling on a highway. Since bits are not cars anyway,
network coding allows intermediate nodes to combine
packets mathematically from different input ports just
before forwarding them. When treating a packet as a
sequence of symbols, even linear network coding defined
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over small Galois fields can introduce a fairly significant
throughput gain. The readers are referred to an
easy-to-read and yet informative primer by Fragouli et al.
[12]. Other benefits of network coding include improved
robustness of network operations, higher energy efficiency
in wireless radios, and better security against eavesdrop-
pers. Network coding proves to be especially powerful
and flexible, and can be exercised along with other revolu-
tionary networking paradigms. For example, it was shown
that opportunistic data forwarding in multi-hop wireless
networks can further increase the capacity of these net-
works when intermediate nodes judiciously combine over-
heard packets and forward them [7,28]. As another
example, the resilience to lost or delayed information
brought about by network coding turns out particularly
effective in DTNs, as evidenced by computer-simulated
experiments in Widmer and Le Boudec [27] and Lin et al.
[19].

In this research, we evaluate how network coding
stacks against various conventional message passing tech-
niques in DTNs using both real Apple iOS devices and in the
ONE simulator in a university building. Our goal is to assess
to what extent the ONE as one of the best and most widely
used simulators for DTN research can mimic the real
world. On one hand, we used real mobile devices to mea-
sure how message propagate among roaming users over
the built-in Bluetooth radios. On the other hand, we
enhanced the ONE with a more realistic link layer by add-
ing a few parameters. We are able to claim that the simu-
lator can behave fairly closely to iOS devices with these
parameters tuned properly. As part of a bigger research
project, we can be confident that the simulator can work
in place of real devices for efficient studies of larger-scale
networks.

The rest of this article is organized as follows. Next sec-
tion, we review relevant experimental research on DTN
and network coding in this context, and provide back-
ground information about the device API and simulation
software used in this research. In Section 3, we describe
an array of techniques for message passing without net-
work coding. Next in Section 4, move to detail a
generation-based implementation of network coding in
DTN. We conducted experiments using both real devices
and computer simulation. The experimental settings and
results are reported in Section 5. Section 6 concludes this
article with discussion and future research issues.
2. Background

Here, we review the most relevant research in DTN and
network coding in DTN. We also provide a brief description
to the tools used in the experiments, a Bluetooth API to the
Apple iOS and a DTN simulation software suite in Java.
2.1. Related research

Research on DTN started from the Interplanetary
Networking project at JPL [3]. The networking problem in
such a scenario considers predictable mobility of space
probes and surface stations, where the feedback loop can
take a very long time to complete due to both signal prop-
agation delay and obstacles of other celestial bodies. In a
more general setting, because the mobility of communica-
tion devices can be unpredictable, scheduling networking
activities in a deterministic fashion is no longer feasible.
A great deal of research has been done on data transfer
in such a framework to fulfill the simple goal of moving
data from the source to its destination. A number of excel-
lent reviews and vision articles have been published on the
architecture and protocol aspects of delay-tolerant net-
works [15,17,29,30].

The two most important, and yet distinct operations at
the Network Layer (Layer III) are data forwarding and rout-
ing [18]. Forwarding regulates how packets are taken from
one link and put on another. Routing determines which
path a data packet should follow from the source node to
the destination. The latter essentially feeds control input
to the former. Here, we stick to the term of data forwarding
although it is also sometimes referred to as routing in
literature.

Data forwarding in unpredictable DTN is more or less
inspired by Epidemic Routing [26]. There, the authors are
interested in transferring messages to their destinations
as quickly as possible at the cost of using a considerable
amount of network resources consumed by making many
copies of the same message. Subsequent work on unicast
data, where a message has a sole destination, make more
careful tradeoffs between the data transfer performance,
in terms of latency and delivery ratio, and resource con-
sumption. For example, Spray and Wait [25] regulates
the number of copies a message using a single control
parameter.

When assuming that historical contact information
would suggest a similar pattern in future, nodes can utilize
such observation to construct some sort of utility function
to gauge which node in its proximity might help forward-
ing its messages more effectively. This approach was ini-
tially explored in PROPHET [20] and MaxProp [6] most
noticeably. When historical contact records are further dis-
tilled with social network analysis methods, nodes can
make more sophisticated forwarding decisions taking
more factors into consideration. This approach is exempli-
fied in BUBBLE-Rap [14], Delegation Fowarding [11],
SimBet [10], and CAR [24].

Data forwarding techniques aside, researchers in data
communications have also been on a quest for the killer
applications of this groundbreaking technology for years
[21]. Although such a quest is far from satisfactory, there
have been a number of interesting applications in infras-
tructureless computer networking, such as IPN [3],
Haggle [2], ZebraNet [16] and iSNAC [8], to name a few.
Among these, iSNAC is a mobile social networking iPad
application that focuses on broadcasting messages to help
conference attendees to share information effectively.

Subsequent to the seminal work of Ahlswede et al. [5],
another important discovery of network coding is its ran-
domized application. As we know, the linear independency
of the coefficients used to generate a set of coded packets is
a determinant for the receiver to successfully decode for
the native packets. This is especially crucial in wireless
and mobile networks, where coded packets are subject to
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erasure errors. Ho et al. [13] discuss the feasibility of
adopting random coefficients in encoding, and prove that
as long as the size of the finite field is not trivially small,
the set of randomly picked coefficients will be linearly
independent with a high probability. This significantly
relieves the network nodes from allocating coefficients
and only need to concentrate their power on encoding
and transmitting the packets.

Network coding is also shown in Widmer and Le
Boudec [27] and Lin et al. [19] to be very effective in
battling the intermitted connectivity in DTNs while
assuming neither do nodes have information about
future encounters nor are they able to derive this infor-
mation from past history. They use a custom computer
simulator to compare the packet delivery ratio and delay
between non-network-coding DTN forwarding and using
random network coding. Their simulation indicates that
network coding outperforms DTN forwarding for various
network density levels and mobility patterns even when
the latter is allowed to use very intelligent beaconing for
nodes to be selective in message advertising. In addition
to experimental results, the latter [19] also provides
some nice performance bounds analytically.

2.2. Multipeer connectivity API

In our real-device experiments, we used the Bluetooth
radios on Apple iOS devices to form a DTN. Apple provides
the Bluetooth communication capabilities through a set of
wrapping classes in the Multipeer Connectivity Framework
(formally GameKit). Although this framework was origi-
nally designed for infrastructureless peer-to-peer gaming
or media sharing, it is essentially an API (Application
Program Interface) for devices to send generic data among
themselves over the Bluetooth radios on board. The API
provides both reliable and unreliable link layer data ser-
vices between one-to-one and one-to-many devices. In
our experiments, we picked the unreliable, one-to-many
variant. Each invocation of data transmission is allowed
to send up to 90 kilobytes in the payload. If the upper layer
modules need to send more data, they must first be seg-
mented into smaller fragments. Since the API was not
known to handle rapid connections and disconnections
well, there can be a delay in one device detecting another
device coming into range, and links may break occasionally
when they are busy. Nevertheless, these characteristics of
the Multipeer Connectivity Framework provides us a per-
fect platform to study the effect of network coding in such
an extreme and yet practically common scenario.

2.3. The ONE simulator

The ONE (Opportunistic Network Environment) [4] is a
discrete-event computer simulator for DTN research. It
was written in Java and made open-source for the research
community. The ONE implements a fair number of well
known message passing methods in DTN, such as
Epidemic Routing [26], Spray and Wait [25], and
PROPHET [20]. It has a large number of hooks to customize
behaviors of these protocols and for us to add network cod-
ing to it. The simulator supports mobility in a map-based
structure in addition to conventional free-space 2D mobil-
ity. This allows us to specify easily how users move around
in an experiment area. The particular version of the simu-
lator used in this project is 1.4.1. The ONE uses a simple
link layer model with a binary circular transmission cover-
age area. Given a determined transmission radius, two
nodes have reliable communication if they are within
range; otherwise, they cannot hear from each other.
Apparently, such an idealized link layer model would be
unrealistic. In the second set of experiments
(Section 5.2), we modified the link layer by adding delays
in connection establishment and probabilistic link breaks
with parameters set similarly to what we saw in the
Multipeer Connectivity Framework so that the ONE could
faithfully simulate iOS devices. Below are three of the most
important components of the simulator that are often focal
points for customization.

� Movement Management Component: This component is
used for the simulator to move nodes in a given area.
It originally includes several well known movement
patterns, such as random waypoint, map-based move-
ment, cluster movement, and so on. By changing the
value of property ‘‘movementModel’’ in a ONE configu-
ration file, users can choose to use any movement pat-
tern.
Specifically, the map-based movement offers a very
flexible structure for users to dynamically import or
create their own maps. It uses a so called Well-Known
Text (.wkt) file to define a map with different paths. It
is defined by the Open Geospatial Consortium (OGC)
to render vector geometry objects. In ONE, it has
already included many wkt files for us to use, such as
roads, main roads, pedestrian paths, shops and so on,
of various cities in the world. In our experiments, we
mainly use the WKT Markup Language – ‘‘LineString’’
or ‘‘MultiLineString’’ to describe our own movement
paths based on the geometry of Engineering Building
of Memorial University in Fig. 9.
� Event Management Component: In order to handle a ser-

ies of events in the simulation, ONE offers an Event
Management Component. This component processes
an event by fetching it from an event queue. We can
schedule events, such as message generating, network
topology snapshotting, network messages statistics,
nodes insertion, and so on, to achieve global control in
a simulation. Also, we can dynamically change the
properties for each node in the component during the
simulation. The ONE simulator provides us various
types of events in order to customize events for our
own research needs.
� Node Information Management Component: This is a

rather complex component in ONE simulator. It is
responsible for the message exchange behaviors of each
node. Originally, it gives us two basic approaches to
manage messages – Active Router and Passive Router.
These two approaches only allow us to delivery and
exchange messages without much control. In order to
implement various features of routing protocols, we
need to inherit one of the two routers and implement
our own routing protocol.
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3. Message prioritization without network coding

In this section, we are interested in the problem of dis-
seminating messages from a particular source to all other
nodes in the network without using network coding. We
focus on a DTN, where a set of sparsely deployed nodes
roam about without assuming any predictability. Each
node periodically injects a message into the network
intended to all other nodes. The strategies that a node
employs depend on whether network coding is used.
Without network coding, two nodes transfer messages
via a handshake protocol. With network coding, a node
simply randomly mixes the packets it has received so far
and send these random combinations to an encountered
peer.

When not using network coding, we take a similar
approach to Epidemic Routing [26] in that, when two
nodes come into transmission range of each other, one
node can transfer a number of messages to the other via
a 3-way handshake sequence. However, the difference here
is that we must pick thoughtfully which messages to
include in a short advertisement packet such that the sys-
tem has a high overall throughput. Specifically, when node
A discovers node B in its transmission range, it sends a
summary vector SVA. In the original Epidemic Routing,
SVA contains the unique IDs of all the message that A stores
in its knowledge base. In our solution, it needs to be a small
subset of these messages because there can be simply too
many of them after the network has been up running for
some time. After receiving SVA, node B replies with
SVA �MB, where MB is the set of all messages stored at
node B. As such, node B essentially tells A which messages
from A would potentially enrich B’s knowledge of mes-
sages. Next, node A retrieves messages in SVA �MB from
its storage and sends them to B in a burst to complete
the handshake. If the two nodes are still within range s
seconds after the handshake, they will start another round
of handshake to transfer more messages. Generally, every
node would do the same to its neighbors periodically.

Given that nodes typically store more messages than
what can fit in a single handshake packet, the strategy
taken as of which messages should be in the advertisement
and in what order affects the network performance signif-
icantly. We call such a strategy message prioritization, and
some preliminary research on this scheme is reported in
our previous article [22]. To reiterate, we are interested
in a few simple, and yet very different such methods. In
all methods, we assume that node A fills the advertisement
packet with l digests (l ¼ 10 in our experiments) created
out of some of its stored messages.

(1) Round robin — Node A maintains a FIFO queue of the
messages that it has received and generated so far,
i.e. based on the time it is injected into the network.
It circulates through the queue to compile the mes-
sage digests using a pointer. When it is about to ini-
tiate a handshake, it processes l messages and
advance the pointer accordingly. Here, the node
maintains separate pointers for different encoun-
tered nodes. Note that as the network continues to
operate, the time it takes to finish a round becomes
longer, and when it does, it starts from the head of
the queue again.

(2) Tiered – Messages stored at a node are ranked
according to three quantities to favor new, short
messages, i.e. forward history, age, and length, in a
decreasing order of significance. The fewer times it
has been forwarded till reaching this node A, the
later it was created by its origin, and the shorter
its payload is, it is ranked higher in the storage
queue. These ranked messages are split into three
segments of roughly the same number of messages,
the upper, middle, and lower tiers. Three separate
round-robin schedules are executed on the tiers.
The upper tier has three opportunities to send an
advertisement containing l digests of its own, the
middle tier has two, and the lower tier has one.
Thus, the system helps newly injected message to
spread in the network more quickly.

(3) Oblivious – Node A maintains a FIFO queue of all
messages according to the time they are injected
into the network as in Round robin. When the node
needs to create an advertisement packet, it simply
takes the last l messages in the queue. In this
method, the node never looks back after it has past
a message in the queue, thus, always rigidly favoring
the latest messages in the network.

In addition to the three above, we also implemented a
random prioritization method as a comparison baseline,
where node A would randomly pick l messages and adver-
tise their digests. All four methods are essentially different
ways to allocate opportunities to messages to be adver-
tised in the network.

4. With network coding

In random network coding, when a set of packets are
combined and sent by an intermediate node, both the com-
bined message (i.e. the information vector) and how they
are combined (i.e. the encoding vector) are to be included
as being transmitted [12]. The dimensionality of the infor-
mation vector is simply the number of symbols in the mes-
sage content, say M, while the dimensionality of the
encoding vector, denoted m, is the maximum number of
original messages that can be combined. Apparently, when
a packet is sent, mþM symbols are transmitted. The
greater m is, a higher percentage of communication capac-
ity is consumed by such a coding overhead. When a packet
is received by a node, it is inserted in its decoding matrix.
Depending on whether the packet is innovative, the rank of
the decoding matrix may or may not increase by 1. In any
case, the rank of the matrix can be up to m, and is usually
in that neighborhood in a stable network. Because matrix
operations on general-purpose processors can be expen-
sive, a large value of m also implies a large computational
overhead. Thus, for practicality purposes, we divide pack-
ets into non-overlapping generations and only allow pack-
ets of the same generations to be combined as done in
Chou et al. [9]. By tuning the size of a generation, we can



Fig. 1. Engineering building.

Table 1
Simulation parameters.

Parameter Value

number of nodes in network n 10, 20 or 30
total simulation time T 20,000 s
node movement velocity v 0.5–1.5 m/s
message generate rate per device t Every 400 s
message length s 2000–5000 bytes
number of digests in advertisement packet l 10 messages
interval of digest advertisement s Every 150 s
transmission range r 10 m
maximum packet length S 90 kB
delivery deadline d 3000 s
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control the communication and computation overhead.
Widmer and Le Boudec [27] show that the generation size
is a crucial parameter for the performance in their simu-
lated studies of DTNs.

Here, we set the generation size G ¼ 50 globally in our
tests. Provided we have n ¼ 10 devices, every device con-
tributes 5 messages to each generation. Specifically at
any given time, for device i ði ¼ 1;2; . . . ;nÞ, its jth message
(j ¼ 1;2; . . . ; g for some latest generation g) belongs to gen-
eration dj=5e of the network. In addition, this message
takes dimension i� ðn� 1Þ þ ðj mod 5Þ in that generation.
During the operation of the network, a node would have
generated and received packets of various generations.
We use Pk to denote the set of packets of generation k,
sage delivery extent
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where k ¼ 1;2; . . . ; g. Thus, collectively, we use
P ¼ fP1; P2; P3; . . . ; Pgg to denote the generations of packets
stored at said node. When a node is within range of any
peer, it periodically (every s seconds) generates a set of
random combinations of the packets it has received so
far and broadcasts them to its neighbors. (In our
real-device experiments, we set s ¼ 15 to be able to accu-
mulate sufficient traffic in a relatively short experiment
time.) These packets are generated as follows. For genera-

tion k ðk ¼ 1;2;3; . . . ; gÞ, it creates max w� RPk

2g�k ;1
n o

ran-

dom combinations of all packets in this generation,
where w is a parameter to control the overall load on the
radio, and RPk

is the rank of the decoding matrix corre-
sponding to the kth-generation packets Pk. That is, each
generation contributes at least one random packet combi-
nation. In addition, when w ¼ 1, the latest generation g
contributes random combinations of at most its rank, the
second latest generation g � 1 contributes up to half of
its rank, generation g � 2 a quarter, and so on so forth.
Once created, these packets are broadcast in the neighbor-
hood with the latest generation first and earliest genera-
tion last. Apparently, the greater w is, the more packets
are broadcast periodically, the larger the communication
overhead of the protocol is, and the higher the network
throughput may be. Essentially, the purpose of such a
weight allocation among generations is to boost the late
generations with sufficient initial presence in the network
for them to spread.
5. Experiments

We conducted two sets of experiments to study the
interplay between DTN and network coding. The first set
was done using the vanilla ONE simulator. The second set
was a comparison between real devices and ONE modified
to mimic real devices.
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5.1. Simulated experiments on message prioritization

First, we used ONE [4] to evaluate how different mes-
sage prioritization methods affect the performance of the
system. Here, the simulator was used out-of-the-box with-
out any modification. We measured the latency in transfer-
ring messages to the destinations and a variant of message
delivery ratio. We observe that the Oblivious prioritization
method is significantly superior to the other approaches
despite its simple nature.

We used the map mobility management of the ONE
simulator, where a mapped structure of the simulation
area is used to specify how nodes can move. During the
simulation, a node can decide on a destination position,
such as an intersection or a specific point on an edge and
moves there via the shortest path at a certain velocity.
When two nodes are within transmission range (set to
10 m in simulation), they discover each other and start to
exchange messages. The map that we used in our tests is
part of the first and second floors of the Engineering
Building at Memorial University of Newfoundland (Fig. 1).

We assumed using the Bluetooth 4.0 radios on the iOS
devices to be comparable to real devices later on. As such,
the maximum size of a single packet in the handshake is
limited to 90 kB. Around every 400 s, a device injects a
message of size uniformly distributed in ½2000;5000� bytes
at random. Parameter settings in this part of the experi-
ments are summarized in Table 1.
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We are interested in how widely and quickly messages
are propagated in the network, measured in two quanti-
ties, i.e. extent and progression. After a message is gener-
ated, it is first stored at the originator, and as time goes
on, it reaches more and more nodes. We observe how
many other nodes a particular message has reached after
d seconds, where d is called delivery deadline (d ¼ 3000 in
simulation). For a given message m and delivery deadline
d, we denote the set of nodes in the network that m has
reached after d other than the message originator itself
by Om;d. Thus, the extent of message m is defined as jOm;dj,
i.e. how many other nodes the message has reached till
the deadline. We consider the messages injected during
the first 14,400 s of the entire 20,000 s of simulation so
that all messages would have sufficient time to be dissem-
inated. For a network of n nodes (n ¼ 10, 20 or 30), 360� n
messages are injected in total, collectively denoted by M.
As such, we plot a histogram of the extent over M, for
n ¼ 10, 20 or 30 respectively, in Figs. 2–4. In all three fig-
ures, we can see that there is a behavioral difference
between Oblivious and the other three. Specifically,
Oblivious is able to spread the majority of the messages
to most of the other nodes while the other three have
smaller extents. The reason is that Oblivious outperforms
the other three methods is that it persistently advertises
the newest messages to boost their initial presence in the
system. This is evidenced by Fig. 5, where we plot the num-
ber of times that a message is placed in an advertisement
packet in the simulation of a 10-node network. We can
observe that compared to the other methods, Oblivious is
able to distribute the opportunities for messages to be
advertised most equally, while the others are more or less
skewed towards older messages.

Next, we turn our attention to how fast messages can be
broadcast in the network using a generalized notion of
latency, called progression. For a given message m in an
n-node network, we use the vector hm1;m2; . . . ;mn�1i to
denote the time it took to reach the ith other node
ði ¼ 1;2; . . . ;n� 1Þ. For the simulation of each of the mes-
sage prioritization methods in a 10-node network, we
summarize the message progression in a separate plot in
the top half of Fig. 6. Statistics shown in these plots include
median, 25/75-quantile, 95% confidence, and outliers. In
the bottom plot of the figure, we have the medians of the
four methods together. Figs. 7 and 8 present the same
information for simulation in 20 and 30-node networks.
We observe that the message progression rate of
Oblivious is about an order of magnitude faster than the
other methods, indicating that it is very effective directing
messages.

5.2. Comparative studies on network coding

We also conducted experiments both on a set of 10
Apple iOS devices and then in the ONE simulator. These
experiments were designed for the same scenario in part
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of the Engineering Building on the university campus. We
chose a greater scope of the building than in the previous
set of tests for the roaming devices to see more interesting
contacting scenarios. Specifically, the 10 mobile users fol-
low some prescribed paths in the building in a 30-min iter-
ation. The users are divided into three groups of 3, 3, and 4
devices, respectively. Each group has a ‘‘base’’ in the build-
ing, as numbered in Fig. 9. During the test, a user from a
group leaves his/her base, walks along the path, for exam-
ple as depicted in the figure, makes a stop at the other two
bases for about a minute each, and returns to the base.
Subsequently, the next user in the group would repeat
the same routine. Users of different groups follow slightly
different paths, especially in opposite directions in certain
segments, so that they can meet users of other groups en
route. These routines were intended to mimic both
grouped and individual mobility patterns in an academic
setting, and were used both in real-device and simulated
tests. The simulator was programmed to have the same
mobile groups and mobility patterns.

5.2.1. Real-device
To have a heterogeneous network, we used a set of dif-

ferent iOS devices because there is no interoperability
between iOS and Android OS over Bluetooth with
Multipeer Connectivity. Their model, processor clock,
Bluetooth version, and quantity are listed in Table 2.
We tested the network-coding-based broadcast against
the other four forwarding-based approaches, each in a sep-
arate iteration. During an iteration, a devices generates a
message every 90 s. The messages are randomly coded
and sent every 15 s (Section 4) or selectively advertised
as digests every 15 s (Section 3). For the case of network
coding, we set the generation size to 50 messages, i.e. 5
messages per device per generation. To have approxi-
mately the same link layer data load across these five dif-
ferent methods, we are particularly interested in setting
the generation allocation weight w to 0.5. When w ¼ 0:5,
we were able to keep the data sending rate at about
25 kbps and receiving rate at about 50 kbps across the
board. (Note that we are using a broadcast service from
the API, so there is no conservation of data flow.)
Relevant parameters are summarized in Table 3. We
recorded when messages were decoded (for network cod-
ing) and received (for non-network coding) on each device.
At the end of the test, these logs were uploaded to a server
for centralized synthesis and post-processing.

We are interested in how widely messages are dissem-
inated in the network measured in extent as defined previ-
ously (Section 5.1), which is somewhat similar to the
packet delivery ratio in unicast. Among our 10 devices,
200 messages are injected in total, collectively denoted
by M. As such, we plot a histogram of the extent over M
for network coding with w ¼ 0:5, 1, and 2, and for the
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non-coding approaches in Fig. 10. Note that w ¼ 0:5 is the
case when network coding has a comparable communica-
tion overhead as the non-coding approaches.

In the figure, we can see that the non-coding
approaches all end up with many messages not being
delivered to any other node, i.e. the case of extent 0,
because of the very sporadic connections among devices.
Among these methods, when there is more equal opportu-
nities of messages being advertised, as with the cases of
Random and Round robin, the extent is slightly better.
The other two approaches, Oblivious and Tiered, would
favor newly injected messages but, unfortunately, they
can be relentless moving on with new messages and per-
manently leave certain old messages behind if they miss
the window. This would be fine in the computer simulation
using the original ONE simulator (Section 5.1) because
links are prefect when two nodes are near each other.
However, this turned out problematic for real-devices
experiments, where links can break or their establishments
can be delayed. If either happens, an old message may miss
its opportunity of transmission once and for all. In stark
contrast, the three network coding variants are able to
send nearly half of the messages to all 9 other devices.
Although for w ¼ 2 the number of messages reaching all
devices is slightly higher than when w ¼ 0:5 or 1, they
are fairly comparable, showing that w ¼ 0:5 being very
effective and efficient. Table 4 is a consolidation of the his-
togram into two cases, messages reaching only the
minority in the network (0–4 other devices) and those
reaching the majority (5–9 other devices). We can see that
network coding was able to utilize the transient links very
well while the non-coding forwarding could hardly make
any progress. Note that for the messages generated near
the end of the experiments, they barely had any chance
to propagate very far, and all these approaches would have
better extent metrics if we gave them more time by allow-
ing a ‘‘damping’’ period at the and of the test.

5.2.2. Simulated
Although The ONE supports an arbitrary data rate at the

Link Layer for nodes within a given range, our preliminary
tests show that it could not closely simulate the iOS
Bluetooth radios as is. Apparently, we needed the ability
to customize other aspects of the link layer. Thus, we mod-
ified the simulator by adding two parameters to control its
behavior. First, we added a connection delay d for the time
that it takes the Multipeer Connectivity Framework to
negotiate and connect two devices when they come in
range. Second, we also gave a link a failure probability p
to accommodate the fact that some transmission may fail
when the radio is busy. (Note that these changes are by
no means to catch how exactly the Bluetooth radios nego-
tiate between each other, how they create and maintain
synchronous or asynchronous links, or how they resolve
collisions and provide reliability as it would in ns-2. They
are simply to parameterize their synthesized effects at



Fig. 9. Path of a mobile user.

Table 2
iOS devices used in experiments.

Model SoC and CPU
cores (GHz)

Bluetooth
version

Quantity

iPod touch 4 A4, 1@0.8 2.1 1
iPhone 4 A4, 1@1.0 2.1 1
iPad 2 A5, 2@1.0 2.1 2
iPod touch 5 A5, 2@1.0 4.0 2
iPad mini A5, 2@1.0 4.0 3
iPad 4 A6X, 2@1.4 4.0 1

Table 3
Parameters of device tests.

Parameter Value

Number of nodes in network n 10
Total simulation time T 1800 s
Node mobility model Walk along prescribed

paths
Message generate rate per device t Every 90 s
Message length s 4000 bytes
Number of digests advertised l 10 messages
Size of network coding generation G 50 messages
Interval of digest advertisement s Every 15 s
Interval of coded packets broadcast s Every 15 s
Generation allocation weight w 0.5, 1, 2
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the higher layers.) We then simulated a 10-node network,
where all nodes are identical hardware-wise and the data
rate was 2 Mbps for Bluetooth EDR. After testing various
combinations of d and p and measuring the message deli-
ver extent, we found that when we gave the connection
delay d a uniform value between 0 and 10 s in the experi-
ment and set the link failure probability p ¼ 50%, the ONE
has a very close behavior as using actual iOS devices. Due
to limit of space, we only report results for these particular
values in Fig. 11. Furthermore, we consolidated the data
the same way as with real devices and summarize it in
Table 5. We can see that the simulator yields very similar
relative performance between network-coding and
non-coding based approaches in this case.



Histogram of message delivery extent

extent

nu
m

be
r o

f m
es

sa
ge

s

0
50

10
0

15
0

20
0

0 1 2 3 4 5 6 7 8 9

Network coding (w=0.5)
Network coding (w=1)
Network coding (w=2)
Random
Round robin
Tiered
Oblivious

Fig. 10. Broadcast extent for real devices.

Table 4
Number of messages reaching 1–4 and 5–9 devices.

Method 1–4 (%) 5–9 (%)

Network coding (w ¼ 2) 45.0 55.0
Network coding (w ¼ 1) 31.5 68.5
Network coding (w ¼ 0:5) 34.5 65.5
Oblivious 96.0 4.0
Tiered 100.0 0.0
Random 100.0 0.0
Round robin 100.0 0.0
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6. Concluding remarks

We started out with a goal of experimental studies of
DTNs of medium-to-large sizes to assess their performance
with and with out using network coding. Due to the pro-
hibitive cost of using real devices, both in terms of
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monetary and time, the process of directly working with
mobile devices can be very laborious and error-prone.
We then decided to find out how a simulator widely-
used in DTN research, the ONE, would mimic real devices
by a side-by-side comparison between the exactly same,
real and simulated, scenario of 10 devices. Our first set of
simulated experiments focused on an array of message pri-
oritization techniques without network coding. We then
compared network coding with these non-coding approaches
through real-device experiments. There we observed that
the performance gain of network coding over conventional
data forwarding was evident. More importantly, we found
that, after enhancing the link layer with a few necessary
parameters to simulate the iOS Multipeer Connectivity
Framework, tests using the ONE simulator would produce
very similar performance to using the Apple iOS devices.
e delivery extent

t
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nt in simulation.



Table 5
Number of messages reaching 1–4 and 5–9 nodes in simulation.

Method 1–4 (%) 5–9 (%)

Network coding ðw ¼ 2Þ 40.5 59.5
Network coding ðw ¼ 1Þ 29.0 71.0
Network coding ðw ¼ 0:5Þ 29.5 70.5
Oblivious 54.0 46.0
Tiered 62.0 38.0
Random 54.0 46.0
Round robin 43.0 57.0
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We now have more confidence that ONE would yield more
reliable results in larger networks with such enhancement.

In future research, we would like to use the enhanced
ONE simulator to study larger DTNs. For example, we know
that the generation size G is an effective parameter to con-
trol network coding. If the number of nodes in the network
is known a priori, setting this parameter to a fixed value
may serve this purpose. However, a more flexible and scal-
able approach would be to obtain a good value of it as the
network operates and to allow it to adjust to the network
conditions dynamically. This issue was studied in the sim-
ulated tests of Widmer and Le Boudec [27], and we intend
to further investigate it using real devices. We also plan to
test ONE against Android OS devices to find the best
parameters in order to bridge the gap between these two
as well. Knowing the much higher heterogeneity among
devices on this platform, we expect more combination
tests to achieve this goal. The benefit would be producing
an even more trust-worthy simulator for future experi-
mental research on DTN and network coding.
Acknowledgements

This work was supported by Natural Sciences and
Engineering Research Council (NSERC, Canada) Discovery
Grant 327667-2010, by National Institutes of Health
(USA) Grants R01-LM009012, R01-LM010098, and
R01-AI59694, and by National Natural Science
Foundation of China Grants 91218301 and 60903201.
References

[1] Delay tolerant networking research group. <http://www.dtnrg.org/
wiki/Home>.

[2] Haggle project. <http://code.google.com/p/haggle/>.
[3] The interplanetary network (IPN). <http://tmo.jpl.nasa.gov/>.
[4] The opportunistic network environment (ONE) simulator. <http://

www.netlab.tkk.fi/tutkimus/dtn/theone/>.
[5] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, Raymond W. Yeung,

Network information flow, IEEE Trans. Inform. Theory 46 (4) (2000)
1204–1216.

[6] John Burgess, Brian Gallagher, David Jensen, Brian Neil Levine,
MaxProp: routing for vehicle-based disruption-tolerant networks,
in: Proceedings of the 25th IEEE International Conference on
Computer Communications (INFOCOM), 2006, pp. 1–11.

[7] Szymon Chachulski, Michael Jennings, Sachin Katti, Dina Katabi,
Trading structure for randomness in wireless trading structure for
randomness in wireless trading structure for randomness in
wireless opportunistic routing, in: Proceedings of the ACM
SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2007,
pp. 169–180.

[8] Yuanchu Chen, Walter Taylor, Sam Coxon, Jason H. Moore, isnac:
Infrastructureless social networking at academic conferences, in:
Demo at the 31st IEEE International Conference on Computer
Communications (INFOCOM), IEEE, 2012.

[9] Philip A. Chou, Yunnan Wu, Kamal Jain, Practical network coding, in:
Proceedings of Allerton Conference on Communication, Control, and
Computing, 2003.

[10] Elizabeth M. Daly, Mads Haahr, Social network analysis for routing
in disconnected delay-tolerant manets, in: Proceedings of the 8th
ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), ACM, 2007, pp. 32–40.

[11] Vijay Erramilli, Mark Corvella, Augustin Chaintreau, Christophe Diot,
Delegation forwarding, in: Proceedings of the 9th ACM International
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), ACM, 2008, pp. 251–260.

[12] Christina Fragouli, Jean-Yves Le Boudec, Jorg Widmer, Network
coding: an instant primer, SIGCOMM Comput. Commun. Rev. 36 (1)
(2006) 63–68.

[13] Tracey Ho, Ralf Koetter, Muriel Medard, David R. Karger, Michelle
Effros, The benefits of coding over routing in a randomized setting,
in: Proceedings of IEEE International Symposium on Information
Theory, IEEE, 2003.

[14] Pan Hui, Jon Crowcroft, Eiko Yoneki, BUBBLE Rap: social-based
forwarding in delay tolerant networks, in: Proceedings of the 9th
ACM International Symposium on Mobile Ad Hoc Networking and
Computing, ACM, 2008, pp. 241–250.

[15] Sushant Jain, Kevin Fall, Rabin Patra, Routing in a delay tolerant
network, in: Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, ACM, 2004, pp. 145–158.

[16] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li
Shiuan Peh, Daniel Rubenstein, Energy-efficient computing for
wildlife tracking: design tradeoffs and early experiences with
ZebraNet, in: Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS X), 2002, pp. 96–107.

[17] Maurice J. Khabbaz, Chadi M. Assi, Wissam F. Fawaz, Disruption-
tolerant networking: a comprehensive survey on recent
developments and persisting challenges, IEEE Commun. Surv.
Tutorials 14 (2) (2012) 607–640.

[18] James F. Kurose, Keith W. Ross, Computer Networking: A Top-
Down Approach, sixth ed., Pearson, Upper Saddle River, NJ, USA,
2012.

[19] Yunfeng Lin, Baochun Li, Ben Liang, Efficient network coded data
transmissions efficient network coded data transmissions in
disruption tolerant networks, in: Proceedings of the 27th IEEE
International Conference on Computer Communications (INFOCOM),
2008.

[20] Anders Lindgren, Avri Doria, Olov Schelén, Probabilistic routing in
intermittently connected networks, SIGMOBILE Mob. Comput.
Commun. Rev. 7 (3) (2003) 19–20.

[21] Anders Lindgren, Pan Hui, The quest for a killer app for opportunistic
and delay tolerant networks, in: Proceedings of the 4th ACM
Workshop on Challenged Networks (CHANTS), ACM, 2009, pp. 59–66.

[22] Xu Liu, Yuanzhu Chen, Cheng Li, Walter Taylor, Jason H. Moore,
Message prioritization of epidemic forwarding in delay-tolerant
networks, in: Proceedings of International Conference on Computer
Networking & Communications (ICNC), 2014.

[23] Muriel Medard, Alex Sprintson, Network Coding: Fundamentals and
Applications, first ed., Academic Press, 2011.

[24] Mirco Musolesi, Cecillia Mascolo, CAR: context-aware adaptive
routing for delay-tolerant mobile networks, IEEE Trans. Mob.
Comput. 8 (2) (2009) 246–260.

[25] Thrasyvoulos Spyropoulos, Konstantinos Psounis, Cauligi S.
Raghavendra, Spray and wait: an efficient routing scheme for
intermittently connected mobile networks, in: Proceedings of the
ACM SIGCOMM Workshop on Delay-Tolerant Networking, ACM,
2005, pp. 252–259.

[26] Amin Vahdat, David Becker, Epidemic Routing for Partially-
Connected Ad hoc Networks. Technical report CS-200006, Duke
University, 2000.

[27] Jorg Widmer, Jean-Yves Le Boudec, Network coding for efficient
communication in extreme networks, in: Proceedings of the 2005
ACM SIGCOMM Workshop on Delay-Tolerant Networking, 2005, pp.
284–291.

[28] Jian Zhang, Yuanzhu Chen, Ivan Marsic, MAC-layer proactive mixing
for network coding in multi-hop wireless networks, Comput.
Networks 54 (2) (2010) 196–207.

[29] Zhensheng Zhang, Routing in intermittently connected mobile ad
hoc networks and delay tolerant networks: overview and challenges,
IEEE Commun. Surv. Tutorials 8 (1) (2006) 24–37.

http://www.dtnrg.org/wiki/Home
http://www.dtnrg.org/wiki/Home
http://code.google.com/p/haggle/
http://tmo.jpl.nasa.gov/
http://www.netlab.tkk.fi/tutkimus/dtn/theone/
http://www.netlab.tkk.fi/tutkimus/dtn/theone/
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0025
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0025
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0025
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0040
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0040
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0040
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0040
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0040
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0050
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0050
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0050
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0050
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0050
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0055
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0055
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0055
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0055
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0055
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0060
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0060
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0060
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0065
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0065
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0065
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0065
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0065
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0070
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0070
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0070
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0070
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0070
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0075
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0075
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0075
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0075
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0075
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0085
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0085
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0085
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0085
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0090
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0090
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0090
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0090
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0100
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0100
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0100
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0105
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0105
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0105
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0105
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0115
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0115
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0115
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0120
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0120
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0120
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0125
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0125
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0125
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0125
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0125
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0125
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0140
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0140
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0140
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0145
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0145
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0145


362 Y. Chen et al. / Computer Networks 83 (2015) 349–362
[30] Zhensheng Zhang, Qian Zhang, Delay/disruption tolerant mobile ad
hoc networks: latest developments, Wireless Commun. Mob.
Comput. 7 (10) (2007) 1219–1232.

Yuanzhu Chen is an Associate Professor and
Deputy Head in the Department of Computer
Science at Memorial University of
Newfoundland, St. John’s, Newfoundland. He
received his Ph.D. from Simon Fraser
University in 2004 and B.Sc. from Peking
University in 1999. Between 2004 and 2005
he was a post-doctoral researcher at Simon
Fraser University. He was also a Visiting
Professor at Dartmouth College in 2011–2012.
His research interests include computer net-
working, mobile computing, graph theory,

Web information retrieval, evolutionary computation, and bioinformatics.
Xu Liu received the B.Eng. degree from
Chengdu University of Information
Technology, Sichuan, China, in 2010 and the
M.Sc. degree from the Memorial University of
Newfoundland, St John’s, NL, Canada, in 2014.
He is currently an iOS Lead Developer of
GreenOwl Mobile in Toronto, Canada.
Jiafen Liu graduated from Department of
Computer Science, University of Electronic
Science and Technology of China, and was
awarded Doctor’s degree in 2008. She now
works as associate professor in School of
Economic Information Engineering,
Southwestern University of Finance and
Economics (SWUFE), Chengdu, China. Her
research interests includes information secu-
rity, wireless network and mobile commerce.
Walter Taylor holds a BA degree from
Washington University, St. Louis, MO, and
Ph.D. degree from the University of Michigan,
Ann Arbor Michigan. He has held a number of
research positions from 1979 through 1997
that focused on the molecular mechanism of
circadian rhythms. During that time, devel-
oped a strong interest in software develop-
ment for controlling various types of
biological instrumentation, which eventually
led to stints as a software engineer at 3
companies well-known for their advances in

DNA sequencing technology, including Applied Biosystems, 454 Life
Sciences, and Helicose. From 2009 through the present, he has focused on
bioinformatics support for the sequencing core facility at the Dartmouth

Medical School.

Jason Moore is the Edward Rose Professor of
Informatics and Director of the Institute for
Biomedical Informatics at the Perelman
School of Medicine at the University of
Pennsylvania. His research interests include
artificial intelligence, bioinformatics, complex
adaptive systems, machine learning, and net-
work science. He serves as Editor-in-Chief of
the journal BioData Mining. He is an elected
Fellow of the American Association for the
Advancement of Science and a Kavli Fellow of
the National Academy of Sciences.

http://refhub.elsevier.com/S1389-1286(15)00115-2/h0150
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0150
http://refhub.elsevier.com/S1389-1286(15)00115-2/h0150

	Delay-tolerant networks and network coding: Comparative studies on simulated and real-device experiments
	1 Introduction
	2 Background
	2.1 Related research
	2.2 Multipeer connectivity API
	2.3 The ONE simulator

	3 Message prioritization without network coding
	4 With network coding
	5 Experiments
	5.1 Simulated experiments on message prioritization
	5.2 Comparative studies on network coding
	5.2.1 Real-device
	5.2.2 Simulated


	6 Concluding remarks
	Acknowledgements
	References


