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Abstract

An ad hoc network is a multihop wireless communication network supporting mobile users. Network performance
degradation is a major problem as the network becomes larger. Clustering is an approach to simplify the network struc-
ture and thus alleviate the scalability problem. One method that has been proposed to form clusters is to use weakly-
connected dominating sets [Y.P. Chen, A.L. Liestman, Approximating minimum size weakly-connected dominating
sets for clustering mobile ad hoc networks, in: The Third ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing (MobiHoc�02), 2002, pp. 165–172; Y.P. Chen, A.L. Liestman, A zonal algorithm for clustering
ad hoc networks, International Journal of Foundations of Computer Science 14(2) (2003) 305–322]. Here, we present
a zonal distributed algorithm to maintain weakly-connected dominating sets as the network structure changes. When
the zones are small, the algorithm is essentially localized; when the zones are large, it behaves more globally. The size of
the weakly-connected dominating set obtained also varies depending on the choice of zone size, with larger zones gen-
erally resulting in smaller weakly-connected dominating sets. Experiments provide evidence that this maintenance algo-
rithm keeps the size of the weakly-connected dominating set approximately the same as its initial size and does not
compromise the network connectivity.
� 2004 Published by Elsevier B.V.
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1. Introduction

An ad hoc network is a type of wireless commu-
nication network that does not rely on any existing
1570-8705/$ - see front matter � 2004 Published by Elsevier B.V.
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infrastructure, is multihop, and supports mobile
vertices. As a local region of an ad hoc network
may have relatively stable internal structure, one
can abstract the network to obtain a simpler topo-
logy. In this abstraction, local portions of the
network are represented by super-vertices in the
abstracted topology and connections between
these local portions are super-edges. The process
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Fig. 1. Weakly induced subgraph.

630 Y.P. Chen, A.L. Liestman / Ad Hoc Networks 3 (2005) 629–642
of defining such an abstracted structure of a net-
work is referred to as clustering.

A natural way to cluster an ad hoc network is to
use the notion of graph domination or one of its var-
iants (see Section 1.1 for formal definitions). A dom-
inating set is chosen and the neighborhood of each
vertex of the set comprises a cluster. The network
may be viewed as a simpler network of these clusters
and routing can be done more efficiently. In this
work, we focus on weakly-connected dominating
sets, which models the scatternet configuration of
Bluetooth [1]. The zonal method of maintaining a
weakly-connected dominating set can be easily
adapted to other graph domination variants, such as
connected dominating sets. Further, this zonal cluster-
ing algorithm can be combined with the Zone Rout-
ing Protocol (ZRP) [2] to improve routing efficiency.

In the Bluetooth specification, devices can form
two types of master–slave structures: piconet and
scatternet. A piconet has a star topology with a
master device at the center and a set of slave devices
around. Several piconets can be joined in certain
ways to form a scatternet. To do that, a slave device
can have multiple masters and a master device can
be a slave of another master. As we will see, the
weakly-connected dominating set of a graph faith-
fully captures the scatternet topology with the ver-
tices in the dominating set being the master devices.

The maintenance algorithm proposed here is
zonal with a tunable zone size control parameter x.
When x is small, the algorithm is localized and suit-
able for fast moving devices and rapidly changing
network topologies. When x is large, the algorithm
behaves more like a centralized greedy algorithm
and generally maintains a small weakly-connected
dominating set. Thus, large values for x are suitable
for networks with almost static topology such as
wireless sensor networks. The parameter allows
variation over the full spectrum from local to glo-
bal and, therefore, it enables a trade-off between
localized and centralized computations. The value
of the zone size control parameter can be fine-tuned
given specific network characteristics.

1.1. Preliminaries—graph domination

We represent an ad hoc network by a graph
G = (V,E) where the vertices represent the individ-
ual subscriber units and an edge connects two ver-
tices if the corresponding subscriber units are
within transmission range of each other. The
closed neighborhood NG[v] of a vertex v in graph
G consists of the vertices adjacent to v plus vertex
v itself. The closed neighborhood NG[S] of the set S
is the union

Sk
v2SNG½v�. The subscript G can be

omitted if the meaning is clear from the context.
A dominating set of a graph G = (V,E) is a ver-

tex subset S � V, such that every vertex v 2 V is
either in S or adjacent to a vertex of S. A vertex
of S is said to dominate itself and all adjacent ver-
tices. We say that an edge is dominated if either of
its endpoints is in S and refer to other edges as
free. A dominating set is an independent dominat-

ing set, if no two vertices in the set are adjacent.
A connected dominating set S of a given graph G

is a dominating set whose induced subgraph, de-
noted hSi, is connected.

Of primary interest here is the weakly-con-
nected dominating set. For any subset S � V, the
subgraph weakly induced by S is the graph (N[S],
E \ (N[S] · S)), which we denote by hSiw. That
is, the weakly induced subgraph hSiw contains
the vertices of S, their neighbors, and all edges
with at least one endpoint in S. Fig. 1 shows a sub-
set S of vertices in black with the edges of hSiw
indicated by black lines. Note that in this example,
hSiw is not a spanning subgraph. A vertex subset S
is a weakly-connected dominating set, if S is domi-
nating and hSiw is connected. The black vertices in
Fig. 2 are a weakly-connected dominating set S for
the graph G.



Fig. 2. A weakly-connected dominating set.
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In the network context, the vertices of the dom-
inating set are called clusterheads. And their neigh-
borhoods are the clusters. These clusters can be
viewed as super-vertices in an abstracted network,
and the connections between them are super-edges.
In general, one wishes to find the smallest possible
set of clusterheads for the network. Unfortunately,
the related decision problems on dominating set
variants for general graphs are all NP-complete.
See Haynes, Hedetniemi and Slater�s comprehen-
sive monograph on graph domination [3] for more
on this topic.

1.2. Related work

One class of existing clustering algorithms is
based on independent dominating sets of graphs.
Gerla and Tsai [4] proposed two weight-based
clustering algorithms, using vertex ID and vertex
degree for weights, respectively. Chen and Stojme-
novic [5] proposed a clustering algorithm using
both vertex ID and vertex degree combined. Basa-
gni [6] showed that any meaningful parameter can
be used as the weight in order to best exploit the
network properties.

Connected dominating sets may be used as
clusterheads in ad hoc networks. Guha and Khul-
ler [7] proposed centralized approximation algo-
rithms for finding small connected dominating
sets in arbitrary connected graphs, which have
asymptotically optimal approximation ratios of
O(lgD), where D is the maximum vertex degree
of the input graph. Das and Bharghavan [8] pro-
vided distributed implementations of these algo-
rithms for ad hoc networks. These distributed
algorithms have the same approximation ratios
as their centralized counterparts, as they utilize
central coordinators to oversee the entire execu-
tion. Wu and Li presented a localized distributed
algorithm [9] for finding small connected dominat-
ing sets in which each vertex only needs to know
the information of vertices within a two-hop
distance.

In an earlier paper [10], we proposed the
use of weakly-connected dominating sets for
clustering ad hoc networks as an alternative to con-
nected dominating sets. By comparison, weakly-
connected dominating sets will, in general, be
smaller than connected dominating sets and the
resulting induced graph will have fewer edges.
This corresponds to fewer clusters and a sparser
abstracted network. To decentralize the algo-
rithms in [10], we presented a zonal distributed
algorithm to find a small weakly-connected dom-
inating set [11]. The zonal idea can be easily
adapted to the connected dominating set-based
approaches.

Randomized algorithms were also introduced
to cluster ad hoc networks using graph domina-
tion. Jia et al. [12] proposed a randomized dis-
tributed algorithm for constructing dominating
sets in polylogarithmic time with high probabil-
ity. Dubhashi et al. [13] showed how to use the
algorithm of Jia et al. to build connected domi-
nating sets and weakly-connected dominating
sets.

1.3. Our work

The zonal algorithm for constructing weakly-
connected dominating sets [11] is good for static
ad hoc networks, such as sensor networks. In this
work, we present an algorithm that updates the
weakly-connected dominating set when the topol-
ogy changes. Here, cluster maintenance is logically
divided into two layers—intrazonal (within zones)
and inter-zonal (along zone borders).

The size of a zone is controlled by a single glo-
bal parameter x, so that the size of a zone does not
exceed 2x. Using such a parameter to control the
zone granularity, we obtain a trade-off between
the extent of network structure simplification and
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the locality of algorithm execution. When x is
large, the algorithm maintains a small weakly-
connected dominating set and behaves like a glo-
bal greedy algorithm [10]; when x is small, the
algorithm behaves more like the localized algo-
rithm of Wu and Li [9].

For simplicity, we assume that all of the
changes occur sequentially and that we have suffi-
cient time to restructure the network before the
next topology change occurs. Further, we assume
that the underlying graph always remains con-
nected despite the topology changes. In an actual
implementation of the protocol, various timeout
mechanisms are used to avoid ‘‘infinite’’ waiting
from simultaneous topology changes (see Section
4.1 for an example).

For our algorithms below, we are given the net-
work as a graph G = (V,E) and a subset S � V

that is the weakly-connected dominating set to
be maintained. In the figures, solid black vertices
represent vertices of the dominating set and white
vertices represent dominated vertices. We assume
that each vertex has a unique ID, such as the hard-
ware address of the device.

In Section 2, we review the basic ideas of the
zonal construction algorithm for weakly-connected
dominating sets [11], since these ideas will be used
in later sections. In Section 3, we present a non-
zonal update algorithm that can be used to maintain
the weakly-connected dominating set structure
resulting from the static algorithms in [10]. In Sec-
tion 4, we describe a zonal maintenance algorithm
utilizing the algorithm of Section 3. Here, we re-
strict the execution of the earlier algorithm to
zones to accomplish intrazonal maintenance and
add inter-zonal maintenance procedures to main-
tain the weakly-connected dominating set of the
entire network. We present our experimental set-
tings and results to test the performance and effi-
ciency of the maintenance algorithm in Section 5.
The results show that both the size of the
weakly-connected dominating set maintained and
the connectivity of the abstracted network stabilize
after a short simulation time and these values re-
main approximately the same as initially. Further-
more, the different zone sizes also show different
emphases between algorithm locality and dominat-
ing set size.
2. Zonal weakly-connected dominating set

construction

In this section, we review the zonal weakly-con-
nected dominating set construction algorithm [11],
which is to be extended in this work.

In the zonal clustering algorithm, a zone is a
connected subgraph of the input network that
has no more than 2x vertices, where x is a preset
parameter. A zone has a dedicated vertex known
by all zone members as root. The zonal construc-
tion algorithm has two levels:

• Intrazonal—a weakly-connected dominating set
is independently constructed for each zone.

• Inter-zonal—the root of a zone determines an
additional set to its weakly-connected dominat-
ing set to guarantee that the unioned dominat-
ing set is a weakly-connected dominating set
for the entire network.

The zonal construction algorithm consists of
three phases. In the first phase, the graph is parti-
tioned into non-overlapping zones by constructing
a spanning forest. At the end of this phase, the
root of each tree in the spanning forest is the zone
root and its ID is known by all vertices of the zone
as the zone ID.

In the second phase, the greedy weakly-con-
nected dominating set algorithm [10] is independ-
ently executed in each zone to find a small
weakly-connected dominating set within the zone.
The zone root coordinates this process by collect-
ing zonal progress information and then making
and disseminating decisions throughout the zone.
Specifically, we associate a color (white, gray, or
black) with each vertex. All vertices are initially
white and change color as the algorithm pro-
gresses. The algorithm is essentially an iteration
of the greedy process of choosing a white or gray
vertex to dye black. When any vertex is dyed
black, the neighboring white vertices in the zone
are changed to gray. A piece in a zone is either a
maximal set of black vertices whose weakly in-
duced subgraph is connected plus any gray vertices
that are adjacent to at least one of the black verti-
ces of the piece or a white vertex by itself. The
improvement of a (non-black) vertex is the number
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of distinct pieces within its closed neighborhood. A
vertex with the maximum improvement value is
chosen to be colored black in each iteration. At
the end of the algorithm, the black vertices consti-
tute a weakly-connected dominating set and the
zone contains a single piece.

In the third phase, a weakly-connected domi-
nating set of the entire graph is formed by adding
more vertices (if required) to the union of the
weakly-connected dominating sets of all the zones.
In particular, when two zones are adjacent but not
connected by a dominated edge, a dominated ver-
tex is added to the dominating set. To describe this
process, we first define some terms. A problem zone

with regard to zone Z is any zone Z 0 that is adja-
cent to zone Z, does not share dominated edges
with Z, and has a higher zone ID than Z. A border

vertex of a zone is a vertex that is adjacent to ver-
tices of other zones. Zone Z is responsible for ‘‘fix-
ing’’ its border to each problem zone. The root of
Z maintains a list of its border vertices that are
adjacent to problem zone. Thus, a small number
of additional vertices can be chosen by the root
to fix the borders with the problem zones. Specifi-
cally, the root constructs a bipartite graph
B(X,Y,F) representing this information. Vertex
set X contains a vertex for each problem zone with
regard to Z and vertex set Y contains a vertex for
every border vertex in Z. There is an edge in F be-
tween vertices yi 2 Y and xj 2 X iff border vertex yi
is adjacent to a vertex in problem zone xi.

Fig. 3 depicts an example of the zonal clustering
scheme. It is a snapshot when the clustering is ini-
tially completed in the given network. The net-
2Z

3Z

1Z

Fig. 3. Zonal clustering scheme.
work is partitioned into three zones, Z1, Z2, and
Z3, as indicated by the dashed contours. The solid
black vertices belong to each zone�s weakly-con-
nected dominating set after the intrazonal phase.
The hollow black vertex can be added to the
weakly-connected dominating set of zone Z1 to
‘‘fix’’ the border to Z3. Note that the border be-
tween zones Z1 and Z2 and that between zones
Z2 and Z3 need not be fixed because these borders
contain dominated edges.

As shown in [11], this algorithm has a good
approximation ratio due to the asymptotically
optimal computation of weakly-connected domi-
nating sets in each zone. The choice of the para-
meter x provides a controllable granularity of
local execution. Thus, we choose this construction
algorithm as a basis to solve the cluster mainte-
nance problem.
3. Non-zonal maintenance

In this section, we present a non-zonal algo-
rithm to maintain existing weakly-connected dom-
inating sets in arbitrary graphs. The algorithm can
easily be adapted to a zonal algorithm for intra-
zonal maintenance by restricting the execution to
a single zone. The algorithm uses message flooding
along dominated edges to propagate the control
messages. We classify the possible topological
changes into four primitives: edge-down (the loss
of an edge), vertex-down (the loss of a vertex),
edge-up (the addition of an edge), and vertex-up
(the addition of a vertex).

3.1. Edge-down

We first deal with the loss of an edge. We have
assumed that the root is known to every other ver-
tex. The root is responsible for fixing the weakly-
connected dominating set if the loss of an edge
breaks the piece into fragments. Before an edge-
down event, the graph contains a single black piece
because it has a weakly-connected dominating set.
The loss of a free edge (such as edge (w,v) in Fig. 5)
does not change the subgraph weakly induced by
the dominating set and the maintenance procedure
need not be triggered. The loss of a dominated
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edge, however, must be reported by the vertices
incident upon it, because the piece may have been
broken into two fragments. In particular, when a
vertex loses an incident dominated edge, the root
vertex will be notified and will coordinate the pro-
cedure to add a dominated vertex to the dominat-
ing set if necessary. The response to an edge-down
event consists of two logical parts. In the first part,
piece integrity test, the two vertices that have de-
tected the edge-down event each broadcast an
edge_loss message to determine if the piece is
broken. If so, the root initiates breach suturing to
add a dominated vertex to the dominating set of
the zone (Fig. 4).

To determine if the piece has been broken, both
endpoints broadcast an edge_loss message
along the dominated edges. The edge_loss mes-
sage must be acknowledged by all vertices that re-
ceive it. If the piece is not broken, each of the
endpoints is able to detect the existence of the
other. In this case, the endpoint with lower vertex
ID sends a message to the root to indicate that the
piece is still intact. If the endpoints do not detect
the existence of the other, one of them is in the
same fragment as the root and can notify the root
that fixing is needed.

After the root decides that the piece needs to be
fixed, it broadcasts an improvement_inquiry
message along the dominated edges to find a vertex
that has the greatest improvement value. (Here,
each vertex knows its improvement value, that is,
the number of distinct fragments within its closed
neighborhood.) Fragments are identified by the
different origins of the edge_loss message that
a vertex has received for the corresponding event.
For an edge-down event, the maximum improve-
u

v

r r

u

v

Fig. 4. Edge-down.
ment value will be two. When such a vertex is lo-
cated, the root instructs it to change to black.
This results in a new weakly-connected dominat-
ing set for the entire graph.

3.2. Vertex-down

The vertex-down event handling can be re-
garded as a generalized edge-down event. In the
implementation of the distributed algorithm, they
are treated identically since a detecting vertex can-
not really distinguish the loss of an edge and the
loss of a neighboring vertex. The vertex-down
event triggers a response consisting of a piece
integrity test and breach suturing, if needed.

We define the clustered degree of a vertex v, de-
noted cv,S, to be the number of neighbors of v in
the subgraph weakly induced by a dominating
set S. In essence, this is the number of incident
dominated edges of a vertex. If v 2 S, cv,S is simply
v�s degree in the original graph. When S is under-
stood from context, we write cv without confusion.
For example, in Fig. 5, cv = 4. As a contrast to the
edge-down event, the loss of vertex v can break the
piece as many as cv,S fragments. When detecting
the loss of a neighbor v, each detecting vertex
broadcasts an edge_loss message along the
dominated edges. Again, each vertex receiving this
message sends an acknowledgment. The way that a
detecting vertex decides if the original piece has
been broken or not is slightly different here. Each
detecting vertex checks to see if there are cv,S
detecting vertices in the fragments from the
acknowledgments (rather than two as in the
edge-down event). If so, the piece has not been
broken and the detecting vertex with the lowest
v

4u

u

u

r

2

3

u1

w

Fig. 5. Vertex-down.
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ID sends a message to the root vertex that the
piece is still intact. Otherwise, the detecting vertex
with the lowest ID that has been acknowledged by
the root vertex sends a message to the root along
the dominated edges that fixing is needed.

If the piece has been broken into two or more
fragments due to the loss of vertex v, the root de-
cides that more dominated vertices will be added
to the dominating set. Unlike the case of the
edge-down event, the root may need multiple iter-
ations to locate these vertices. In each iteration,
the root broadcasts an improvement_inquiry
message along the dominated edges to find a vertex
that has the greatest improvement value. This
process stops when the maximum vertex improve-
ment value is one, and the dominating set is
weakly-connected.

The above assumes that the lost vertex is not the
root. For the special case that the root is down, an-
other vertex takes on the role of the root. To
achieve that, every root has a neighbor as a back-
up. If the loss is discovered by the backup, the
backup assumes the role of the root. If the root
was not lost but just the edge between the root
and its backup is lost, both ‘‘roots’’ will try to
add a vertex to the dominating set. For example,
the graphs in Fig. 6 illustrate these situations,
where vertex r is the root and u is its backup in
each graph. If the root and its backup are in the
same fragment, as in the left graph of Fig. 6, vertex
u will learn that the original root r is still alive dur-
ing the piece integrity test, and thus, will stop act-
ing as a root. If the two vertices in different
fragments, as in the right graph of Fig. 6, either
of vertices u and r will broadcast the improve-

ment_inquiry message in its fragment. How-
ever, when a vertex x in u�s fragment that is also
u

r
r

u

y

x

Fig. 6. Possible scenarios for the presumed loss of the root.
adjacent to a vertex y in r�s fragment detects
that r�s ID is used as fragment ID of y, then x

learns that the old root r is still alive. Vertex x will
then inform u using the returning improve-

ment_inquiry message so that u will stop acting
as a root. Root r will continue to join these two
fragments.

3.3. Edge-up

When a new edge is inserted due to, for exam-
ple, the endpoints moving closer, the weak connec-
tivity of the dominating set will not be affected.
However, adding an edge may cause some vertices
in the dominating set to be redundant. That is, we
can remove these vertices from the dominating set
and still have a weakly-connected dominating set.
Thus, we focus on localized procedures for elimi-
nating redundancies caused by the edge-up event.

In event of edge-up, we only consider the case
of adding a dominated edge. The addition of a free
edge does not change the neighborhood of any
dominating vertex and thus does not cause any
redundancy. For example, in both graphs of Fig.
7, when a dominated edge (indicated as dashed
lines) is added, vertex 1 becomes redundant be-
cause its closed neighborhood is a subset of that
of the neighboring dominating vertex 2. Thus, ver-
tex 1 can be removed from the dominating set. A
vertex v in the dominating set may also become
redundant if its closed neighborhood is a subset
of the union of the closed neighborhoods of v�s
dominating neighbors. The addition of an edge
can also cause this to occur. For example, in each
of the two graphs in Fig. 8, vertex 1 becomes
redundant when the respective indicated edge is
added.

We say that a dominating vertex v is redundant
if it has a set T of dominating neighbors, such that:
1

2

1

2

Fig. 7. Edge-up—single coverage.
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Fig. 8. Edge-up—combined coverage.
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1. N[v] � N[T], and
2. id(v) < id(u) "u 2 T.

Note that the weak connectivity of the dominat-
ing set is not violated with the removal of redun-
dant vertices. The second requirement is used to
avoid simultaneous abdications of multiple domi-
nating vertices when they have identical
neighborhoods.

The edge-up message is sent to ‘‘nearby’’ dom-
inating vertices to determine if there is redun-
dancy. Only the endpoints of the new edge and
their immediate neighbors need to consider redun-
dancy. The necessity can be observed from the pre-
vious examples. For sufficiency, we see that a
vertex at distance two or more from the new edge
does not have any neighbor whose neighborhood
is changed and thus there is no need to calculate
redundancies. Therefore, when a vertex has ob-
served an edge-up event, it only needs to notify
its immediate neighbors. Assuming that every ver-
tex knows the members of its neighborhood, a sin-
gle round of information exchange among
neighbors will suffice to determine redundancy.
3.4. Vertex-up

The handling of the vertex-up event is very sim-
ple. When a new vertex is added, if it has a neigh-
bor in the dominating set, it is dominated;
otherwise, it changes its status to be dominating.
Note that no dominating vertices will become
redundant in the latter case as the newly added
dominating vertex is at least two hops away from
any other dominating vertex. Therefore, no redun-
dancy calculation is needed in handling the vertex-
up event.
4. Zonal maintenance

In order to maintain the weakly-connected
dominating set structure in a more localized fash-
ion, we divide the maintenance process into two
levels, i.e. intra-zonal and inter-zonal. Intra-zonal
maintenance can be accomplished by restricting
the execution of the above algorithm within each
zone, assuming that each zone�s algorithm only
takes care of vertices within the zone.

4.1. Intra-zonal maintenance

Occasionally, vertices with the same zone ID
may form a disconnected induced subgraph even
though the whole network is connected. Thus, we
modify the non-zonal maintenance process so that
connected components of the induced subgraph
that do not contain the zone root can automati-
cally generate a root and form a new zone. To
do that, the detecting vertex with the lowest ID
of each fragment waits to be annexed after deter-
mining that a breach suturing is needed. If nothing
happens within a time-out interval chosen to be
proportional to the zone granularity threshold x,
these timed-out vertices of the connected compo-
nent elect a root simply by broadcasting their
ID�s within the connected component. On the
other hand, when two neighboring zones are both
smaller than the threshold size, they merge with
each other to maintain relatively stable zone sizes.

4.2. Inter-zonal maintenance

Recall that in the zonal construction algorithm
a zone deals only with some neighboring zones,
called problem zones, and this suffices to generate
a weakly-connected dominating set of the entire
network. As in the non-zonal scenario, when a
border vertex (a vertex adjacent to vertices of other
zones) v loses an edge to a foreign vertex (a vertex
of other zones) u, it cannot distinguish whether it
was an edge-down event or vertex-down event.
Thus, we treat them identically.

From v�s perspective, if it has a zone ID higher
than u does, it does nothing. Otherwise, v will
first check to see if it still has another dominated
edge incident to u�s zone. If so, it does nothing.
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Otherwise, it sends a zone_loss message to its
zone root r. Upon receiving this message, r will
modify its bipartite graph for the border fix proce-
dure and will add a dominated vertex to the dom-
inating set of the zone if needed.

Note that if a border vertex is lost, its zone
root r must take special care in addition to the
usual intrazonal maintenance. In particular, if
the lost border vertex was in the bipartite graph
for border fix maintained by r, then it is removed
from the bipartite graph. As a consequence, some
other vertices may be added to the dominating set
by r to fix the broken border. See Fig. 9 for an
example of updating the bipartite graph for a
zone rooted at r. Before vertex y is lost, y and v

were added to fix the borders with zones Z1 and
Z2. After y is removed, u is added to the dominat-
ing set.

In the edge-up or vertex-up event, when a vertex
v detects a new edge to a problem zone, v does
nothing except to notify its zone root so that it
can update the bipartite graph for future border
maintenance.

4.3. Complexity analysis

We assume that zone Z has O(x) vertices and
maintains a weakly-connected dominating set SZ.
Also, we assume that the maximum vertex degree
(number of neighbors a vertex has) is D. We use
the classic multi-port distributed computing model
for the analysis. In particular, in each step, a vertex
receives one or zero message from each incident
link, carries out internal computation based on
its current state and input messages, and sends
out one or zero message to each incident link.
All complexity analysis is done from the perspec-
tive of zone Z.
Z

yu

1 Z

v

2 Z

u

1 Z

v

2

Fig. 9. Updating the bipartite graph.
We first analyze the time and communication
complexities of handling the edge-down event. In
either part of the process, each broadcast message
takes O(jSZj) time and O(jSZjD) messages to finish,
since it always propagates through dominated
edges. As there are only constant number of such
broadcasts involved, the time complexity of this
process is O(jSZj) and the communication com-
plexity is O(jSZjD). To handle the vertex-down
event, both parts can be more complicated than
the edge-down event. In the piece integrity test,
there can be as many as D detecting vertices, while
breach suturing may take D � 1 iterations in the
worst case. Therefore, the process can take up to
O(jSZjD) time and use O(jSZjD2) messages to
complete.

The most costly operation in the edge-up event
handling is the redundancy calculation that is done
when a dominated edge is inserted. In this case, at
most 2D vertices need to calculate redundancies,
each of which exchanges the neighbor list with
all its neighbors using at most 2D messages in con-
stant time. Thus, the total communication cost for
each (dominated) edge-up event is bounded above
by 4D2 and it can be done in O(1) time. The vertex-
up event involves only incurs O(D) messages and
constant time.

The most costly event at the inter-zonal level
occurs if a border vertex in a problem zone of zone
Z is down. In that case, at most D � 1 vertices in Z

may send the zone_loss message to the root of
Z. Thus, the communication cost is O(xD) and
time cost is O(x).

Note that jSZj = O(x), so these costs indeed in-
crease as x does. However, when x is small, the
algorithm is essentially localized. If, on the other
hand, the network topology is expected to be less
dynamic, larger x can be used to obtain smaller
weakly-connected dominating sets.
5. Simulation

The goals of simulating the proposed mainte-
nance algorithm are to verify its stability and to
determine how the zone size control parameter x

affects the size of the abstracted network and the
locality of the algorithm execution. Super-vertices
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of the abstracted graph represent the neighbor-
hoods of the vertices in the weakly-connected
dominating set. Dominated edges of the graph cor-
respond to virtual edges between the super-verti-
ces. The abstracted graph may have lower
connectivity than the original network. Thus, we
design simulations to show that, under some typi-
cal mobility assumptions, the algorithm keeps the
size of the weakly-connected dominating set
approximately the same as the beginning, does
not reduce the network connectivity, and does
not cause frequent cluster changes. (Note that
the tests and results for static weakly-connected
dominating sets and other domination variants
can be found in earlier papers [10,11].)

5.1. Settings

Our simulation is done in an 800m · 600m rec-
tangular area. The simulated network initially has
200 vertices with average transmission ranges of
100m and 200m to represent two network density
levels. There is an edge between two vertices if and
only if their distance is no more than the smaller of
the transmission ranges. We set the zone size
threshold x (see Section 2) to be 10, 20 and 40
for different zone localities.

Vertices move according to certain mobility
models. (Readers are referred to Camp et al. [14]
for a survey on mobility models used for ad hoc
networking research.) In an entity mobility model,
mobile vertices move independently from each
other. One entity mobility model is the Random
Waypoint model. In this model, each vertex
chooses a random destination, moves there at a
randomly chosen speed, and then pauses for a ran-
dom length of time before choosing the next desti-
nation. By contrast, in a group mobility model,
vertices are divided into groups, the vertices within
a group remain close to each other, but the groups
move independently. One group mobility model is
the Reference Point Group model. Each group has
a moving logical center, called the reference point.
Each vertex within the group may wander within a
certain range of its reference point.

We use the Random Waypoint and the Refer-
ence Point Group mobility models, as repre-
sentative entity and group mobility models,
respectively. We add random vertex-down and
vertex-up events to these mobility models in order
to generate the four event primitives. To do that,
we independently delete and/or insert a vertex at
an expected period of 6s. Thus, the expected vertex
life span is 20min and the network size remains at
approximately 200 despite the dynamic nature of
the network.

In our experiments, we set the pause time of the
Random Waypoint model to zero. When the Ref-
erence Point Group model is used, mobile vertices
are initially divided into groups of five. Group ref-
erence points move within the rectangular simula-
tion area as entities in the Random Waypoint
model. The vertices of a group are confined within
a circular region of radius 100m centered at the
group reference point. Their movements also fol-
low the Random Waypoint model relative to the
group reference point.

In our first experiments, we fixed the average
vertex speed at 5m/s. With this setting, we deter-
mine how several measures (weakly-connected
dominating set size, pairwise average vertex dis-
tance, and pairwise number of edge-disjoint paths)
vary over time. We observed that these values sta-
bilize after about 50s of simulated time. In our sec-
ond experiments, we considered the same measures
under speed settings 1m/s, 5m/s, 10m/s, and 20m/
s, and let each simulation run until the measured
value stabilized. In addition, when the variable
speed settings were considered, we noted the rates
at which vertices change their roles as clusterheads
and their cluster membership.

5.2. Results

We first consider the stability of the mainte-
nance algorithm, that is, whether the weakly-con-
nected dominating set remains roughly the same
size over time. We record the set size under both
mobility models, setting the average vertex speed
and reference point speed to 5m/s, for the first
200s of the simulation. The test is done with
graphs of initial size of 200 vertices and average
device transmission ranges of 100 and 200, respec-
tively (Figs. 10 and 11). Three different zone
size control parameters, x = 10, 20 and 40, are
considered. As shown in the figures, during
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approximately the first 50s of the simulation, the
size of the weakly-connected dominating set
slightly increases. Then the size of the dominating
set stabilizes for the rest of the time. Note that the
smaller the zone size control parameter x is, the
larger the dominating set. This shows a trade-off
between locality of the algorithm execution and
succinctness of the abstracted network. The idea
of controllable zone sizes is a generalization of
pure centralized greedy algorithms and pure local-
ized algorithms. When larger zones and less local-
ity are affordable, smaller abstracted networks can
be generated. It is known that the network density
increases to a higher level when vertices are mov-
ing than in the initial distribution [14]. We have
observed this in our data. But the maintenance
algorithm pays the price of larger dominating sets
to avoid constructing a weakly-connected domi-
nating set from scratch. The benefit of having a
larger dominating set, though, is to have better
connectivity properties as we will see. One other
observation is that the maintenance algorithm be-
haves similarly under both mobility models.
Therefore, from this point on, we only show the
data generated by the Random Waypoint mobility
model.

We also consider how the network connectivity
of the abstracted graph (using only dominated
edges) changes over time. We test this by measur-
ing the average distance and average number of
edge-disjoint paths between all pairs of vertices
in the network under both network density levels
(transmission ranges of 100 and 200). In order to
have better network connectivity, it is desirable
to have small average distances and large numbers
of edge-disjoint paths. We compare these values to
the same values for the original network. Figs. 12
and 13 show that, for both network density levels
and all zone size control parameters, the average
pairwise vertex distance decreases first and then
stabilizes as the network density does. The spikes
on the curves in Figs. 12 and 13 are due to the de-
lay of the algorithm in rejoining the weakly-con-
nected components after the abstracted graph
has become disconnected. Because our algorithm
reacts to topology changes in the network, these
rare disconnections are inevitable. Figs. 14 and
15 show that the average number of edge-disjoint
paths increases slightly at the beginning and then
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remains roughly stable as the network density
stabilizes.

To determine how the average vertex speed af-
fects the weakly-connected dominating set size
and the connectivity of the abstracted network,
we record the same measures after the network sta-
bilizes, for both network density levels with aver-
age vertex moving speeds of 1, 5, 10, and 20m/s.
From Figs. 16–18, we can see that the weakly-
connected dominating set size increases slightly
and the network connectivity decreases slightly as
the average vertex speed increases as was expected.

As the network topology changes, some vertices
change status from dominating to dominated, or
vice versa (clusterhead changes). Other vertices
may move from one cluster to another (cluster
membership changes). These changes affect rout-
ing and addressing in a hierarchical routing
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scheme. We consider the rates of these changes in
the weakly-connected dominating set as the vertex
speed varies. We record all the above changes
occurring in each second with different average
vertex speeds of 1, 5, 10, and 20m/s. The results
are shown in Figs. 19 and 20. We find that the
change rates increase when vertices move faster
as might be expected and that denser networks
generate more such changes than sparser
networks.

In summary, clustering ad hoc networks by
using weakly-connected dominating sets helps to
simplify the network structure and, thus, alleviates
the scalability problem. The algorithm presented
in this work maintains a weakly-connected domi-
nating set. We have shown that the weakly-
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Fig. 19. Rate of clusterhead change.
connected dominating set size remains approxi-
mately the same as its initial size. Further, the
abstracted network connectivity does not vary
significantly. Most importantly, the zone size con-
trol parameter provides a simple mechanism to
control the locality of the algorithm execution
and the size of the abstracted network. By varying
this parameter we obtain a trade-off between a
purely localized approach and a purely centralized
approach.
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