Is the Dust-to-Gas ratio constant in molecular clouds?

Terrence Tricco Canadian Institute for Theoretical Astrophysics

ttricco@cita.utoronto.ca http://cita.utoronto.ca/~ttricco

Daniel Price, Monash (Australia) Guillaume Laibe, Lyon (France)

Dust as a Measure of Gas Mass

- H₂ effectively invisible
- Dust distribution correlates well with molecules
- Use dust or molecular tracers to infer cloud mass
- Requires understanding of the dust properties to have accurate mass measurements

Dust in Molecular Clouds

Anomalous extinction laws:

- Rv = Av / (Ab Av) = 3.1 in diffuse clouds (fairly "universal"), but Rv ~ 5 in molecular clouds (Cardelli+ 1989; Weingartner & Draine 2001)
- Implies molecular clouds have a different grain size distribution
- Coreshine phenomenon:
 - higher abundance of large grains (>1 micron) in dense filaments (Pagani+ 2010; Steinacker+ 2010; Lefevre+ 2014)
- e.g., Evans et al 2009 dust re-calibration of c2d data resulted in 40% change of cloud mass

Dust is not gas!

- Dust behaves dynamically different than gas
- But would it have a noticeable effect?
- Let's do some simple napkin math
 - $ho \sim 10^{-20} \, {
 m g/cm^3}$ (gas density)
 - $c_s \sim 0.2$ km/s, (sound speed)
 - $s_{\text{grain}} \sim 0.1 \text{ micron (grain size)}$
 - $ho_{\rm grain} \sim 3 {\rm g/cm^3}$ (intrinsic grain density)
 - > Drag stopping timescale, $t_{\rm s} \sim \rho_{\rm grain} s_{\rm grain}$ / $\rho \sim 10^3$ yrs
 - Expect well-mixed and coupled mixture of dust and gas (High drag regime.)
- But this assumes cloud is homogenous and *ignores turbulence*!
- Could supersonic turbulence cause dynamical variations in the dust-to-gas ratio?

Dusty Turbulence with Gizmo

Terrence Tricco 🍎 CITA

Dust & Gas Mixtures in High Drag

- Timestep criterion: drag stopping timescale, t_s
- Spatial criterion: resolve 'stopping length' of dust grains to be in the gas, $l_s \sim c_s * t_s$ (Price & Laibe 2012)
 - For ~ 0.1 micron dust grains in cold, dense molecular clouds, require ~ 1600³ gas elements (even stricter in dense filaments!)

 Tracer particles in compressible turbulence are known to suffer from numerical artefacts (Price & Federrath 2010; Genel et al 2013)

"it is notable that a **dense shock structure appears** in the [tracer particles] **that is completely absent** from both SPH and grid density fields"

"the resulting [density] PDFs show a strong deviation from a lognormal distribution, particularly in the high density tail"

"the velocity field tracers **display structures that do not** exist in the gas distribution"

Dust/Gas: Barycentric Point of View

One fluid approach (Laibe & Price 2014a,b; Price & Laibe 2015)

Change of variables; each element is mixture of dust and gas

- Ideal when dust and gas well coupled
- No spatial resolution criterion since gas/dust are combined
- Accurate for stopping time short when gas/dust move together

Dust/Gas: Barycentric Point of View

One fluid approach (Laibe & Price 2014a,b; Price & Laibe 2015)

• Change of variables; each element is mixture of dust and gas

Differential velocity

- Ideal when dust and gas well coupled
- No spatial resolution criterion since gas/dust are combined
- Accurate for stopping time short when gas/dust move together

Supersonic Dusty Turbulence

Modelled turbulent dynamics of dusty molecular clouds using the Phantom SPH code (Price et al, 2017; phantomsph.bitbucket.io)

- Not concerned with grain growth or destruction
- No self-gravity (not trying to make stars) or magnetic fields

Initial Conditions:

- L = 3 parsec, ho = 10⁻²⁰ g/cm³ (peak ho ~ 10⁻¹⁷ g/cm³)
- Isothermal gas with T= 11.5 K, $c_s = 0.2$ km/s
- Mach 10 turbulence driven on large scales for \sim 14 Myr

Dust:

- 0.1, 1 and 10 micron dust grains (3 separate simulations)
- Initially uniform 1% dust-to-gas mass ratio
- Includes back-reaction of dust on gas

http://phantomsph.bitbucket.io

Column Densities

- Large-scale column dust density traces gas column density for all grain sizes
- For 10 micron, local variations in dust column density relative to gas column density

Column Dust-to-Gas Ratio

- Almost no variation in dust-to-gas ratio for 0.1 micron grains
- Large, 10 micron grains typical variations of ~2-3x (max ~10x)

Slices through midplane of cloud

Dust/Gas Ratio Distribution

- ~0.1 micron grains:
 - Sharply peaked PDF of dust-to-gas ratios at 1%
 - Dust density distribution matches gas (well-coupled throughout cloud)
- 1-10 micron grains:
 - PDFs broaden with increasing grain size due to 'size-sorting'
 - Turbulence causes dynamical transfer of dust mass into high density filaments

Gas and Dust Density Distributions

- ~0.1 micron grains:
 - Sharply peaked PDF of dust-to-gas ratios at 1%
 - Dust density distribution matches gas (well-coupled throughout cloud)
- 1-10 micron grains:
 - PDFs broaden with increasing grain size due to 'size-sorting'
 - Turbulence causes dynamical transfer of dust mass into high density filaments

Is the Dust-to-Gas Ratio Constant?

 Yes! For ~0.1 micron grains, turbulence almost no effect since dust is well-coupled to gas throughout the cloud

 No! For ≥ 1 micron grains, turbulence causes typical variations ~2-3x

Summary

- We find that 0.1 micron dust grains remain well-coupled to the gas throughout a molecular cloud
- We do not find orders of magnitude fluctuations for ~0.1 micron dust grains, contrary to Hopkins & Lee (2016)
- Local, small-scale variations of dust-to-gas ratio for large grains (>1 micron) can occur, with typical increases of ~40% up to 2-3x
- A maximum of 10x increase for 10 micron dust grains (max dust-to-gas ratio of 1:10)
- 'size-sorting': preferential concentration of large grains into filaments due to changes in dust-stopping times between filaments and lower density gas

> May be relevant for coreshine

• These are dynamical effects – not grain growth!

