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• H2 effectively	invisible
• Dust	distribution	correlates	well	with	molecules
• Use	dust	or	molecular	tracers	to	infer	cloud	mass
• Requires	understanding	of	the	dust	properties	to	have	accurate	mass	measurements

Dust	as	a	Measure	of	Gas	Mass

CO

Pineda et al (2010)

Dust extinctionCO



Terrence Tricco

Dust	in	Molecular	Clouds

• Anomalous	extinction	laws:
• Rv =	Av	/	(Ab	– Av)	=	3.1	in	diffuse	clouds	(fairly	
“universal”),	but	Rv ∼ 5	in	molecular	clouds	
(Cardelli+	1989;	Weingartner &	Draine 2001)

• Implies	molecular	clouds	have	a	different	grain	
size	distribution

• Coreshine phenomenon:
• higher	abundance	of	large	grains	(>1	micron)	in	
dense	filaments	(Pagani+	2010;	Steinacker+	2010;	
Lefevre+	2014)

• e.g.,	Evans	et	al	2009	dust	re-calibration	of	c2d	
data	resulted	in	40%	change	of	cloud	mass

Weingartner &	Draine (2001)
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• Dust	behaves	dynamically	different	than	gas
• But	would	it	have	a	noticeable	effect?
• Let’s	do	some	simple	napkin	math

• 𝜌 ∼ 10-20	g/cm3 (gas	density)
• cs ∼ 0.2	km/s,	 (sound	speed)
• sgrain ∼ 0.1	micron		(grain	size)
• 𝜌grain ∼ 3	g/cm3 (intrinsic	grain	density)

Ø Drag	stopping	timescale,	ts∼ 𝜌grain sgrain /	𝜌 ∼ 103	yrs
Ø Expect	well-mixed	and	coupled	mixture	of	dust	and	gas	(High	drag	regime.)

• But	this	assumes	cloud	is	homogenous	and	ignores	turbulence!
• Could	supersonic	turbulence	cause	dynamical	variations	in	the	dust-to-gas	ratio?

Dust	is	not	gas!



Terrence Tricco

Dusty	Turbulence	with	Gizmo
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“dust filaments 
can exist where 
there is no gas 
filament at all"

“exhibit dramatic (exceeding 
factor ∼1000) fluctuations in 
the local dust-to-gas ratio"Hopkins & Lee (2016); Lee, Hopkins & Squire (2017)
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• Timestep criterion:	drag	stopping	timescale,	ts
• Spatial	criterion:	resolve	‘stopping	length’	of	dust	grains	to	be in	the	gas, ls ∼ cs *	ts (Price	&	Laibe 2012)

• For	∼ 0.1	micron	dust	grains	in	cold,	dense	molecular	clouds,	 require	∼ 16003 gas	elements	(even	stricter	in	
dense	filaments!)

Dust	&	Gas	Mixtures	in	High	Drag

• Tracer	particles	in	compressible	turbulence	
are	known	to	suffer	from	numerical	artefacts	
(Price	&	Federrath 2010;	Genel et	al	2013)

“it	is	notable	that	a	dense	shock	structure	appears	in	
the	[tracer	particles]	that	is	completely	absent	from	
both	SPH	and	grid	density	fields”

“the	resulting	[density]	PDFs	show	a	strong	deviation	
from	a	lognormal	distribution,	particularly	in	the	high	
density	tail”

“the	velocity	field	tracers	display	structures	that	do	not	
exist	in	the	gas	distribution”

Density Tracer particle density
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One	fluid	approach	(Laibe &	Price	2014a,b;	Price	&	Laibe 2015)
• Change	of	variables;	each	element	is	mixture	of	dust	and	gas

• Ideal	when	dust	and	gas	well	coupled
• No	spatial	resolution	criterion	since	gas/dust	are	combined
• Accurate	for	stopping	time	short	when	gas/dust	move	together

Dust/Gas:	Barycentric Point	of	View
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Gas mass conservation

Dust mass conservation

Gas momentum conservation

Dust momentum conservation

Total mass conservation

Total momentum conservation

Dust/gas ratio

Differential velocity
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Modelled	turbulent	dynamics	of	dusty	molecular	clouds	using	the	Phantom	SPH	code	
(Price	et	al,	2017;	phantomsph.bitbucket.io)

• Not	concerned	with	grain	growth	or	destruction
• No	self-gravity	(not	trying	to	make	stars)	or	magnetic	fields

Initial	Conditions:
• L	=	3	parsec,	𝜌 =	10-20 g/cm3	 (peak	𝜌 ∼ 10-17 g/cm3)
• Isothermal	gas	with	T=	11.5	K,	cs =	0.2	km/s
• Mach	10	turbulence	driven	on	large	scales	for	∼ 14	Myr

Dust:
• 0.1,	1	and	10	micron	dust	grains	(3	separate	simulations)
• Initially	uniform	1%	dust-to-gas	mass	ratio
• Includes	back-reaction	of	dust	on	gas

Supersonic	Dusty	Turbulence

http://phantomsph.bitbucket.io
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• Large-scale	column	dust	density	traces	gas	column	density	for	all	grain	sizes
• For	10	micron,	local	variations	in	dust	column	density	relative	to	gas	column	density

Column	Densities

Tricco, Price & Laibe, MNRAS Letters, 471, L52-L56 (2017), arXiv:1706.05107

Gas 0.1	micron	dust Gas 10	micron	dust
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• Almost	no	variation	in	dust-to-gas	ratio	for	0.1	micron	grains
• Large,	10	micron	grains	typical	variations	of	∼2-3x	(max	∼10x)

Column	Dust-to-Gas	Ratio
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Tricco, Price & Laibe, MNRAS Letters, 471, L52-L56 (2017), arXiv:1706.05107
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• ∼0.1	micron	grains:	
• Sharply	peaked	PDF	of	dust-to-gas	
ratios	at	1%

• Dust	density	distribution	matches	gas	
(well-coupled	throughout	cloud)

• 1-10	micron	grains:	
• PDFs	broaden	with	increasing	grain	
size	due	to	‘size-sorting’	

• Turbulence	causes	dynamical	transfer	
of	dust	mass	into	high	density	
filaments

Dust/Gas	Ratio	Distribution
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Tricco, Price & Laibe, MNRAS Letters, 471, L52-L56 (2017), arXiv:1706.05107
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Gas	and	Dust	Density	Distributions

dust-to-gas ratio
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Tricco, Price & Laibe, MNRAS Letters, 471, L52-L56 (2017), arXiv:1706.05107

• ∼0.1	micron	grains:	
• Sharply	peaked	PDF	of	dust-to-gas	
ratios	at	1%

• Dust	density	distribution	matches	gas	
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size	due	to	‘size-sorting’	

• Turbulence	causes	dynamical	transfer	
of	dust	mass	into	high	density	
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• Yes!	For	∼0.1	micron	grains,	turbulence	
almost	no	effect	since	dust	is	well-coupled	
to	gas	throughout	the	cloud

Is	the	Dust-to-Gas	Ratio	Constant?
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• No! For	≥	1	micron	grains,	turbulence	
causes	typical	variations	∼2-3x
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• We	find	that	0.1	micron	dust	grains	remain	well-coupled	to	the	gas throughout	a	
molecular	cloud

• We	do	not	find	orders	of	magnitude	fluctuations	for	∼0.1	micron	dust	grains,	contrary	to	
Hopkins	&	Lee	(2016)

• Local,	small-scale	variations	of	dust-to-gas	ratio	for	large	grains	(>1	micron)	can	occur,	
with	typical	increases	of	∼40%	up	to	2-3x

• A	maximum	of	10x	increase	for	10	micron	dust	grains	(max	dust-to-gas	ratio	of	1:10)
• ‘size-sorting’:	preferential	concentration	of	large	grains	into	filaments	due	to	changes	in	
dust-stopping	times	between	filaments	and	lower	density	gas
ØMay	be	relevant	for	coreshine

• These	are	dynamical	effects	– not	grain	growth!

Summary


