Protostellar jets from SPMHD
simulations of star formation

Terrence Tricco Daniel Price (Monash)
terrence.tricco@monash.edu Matthew Bate (Exeter)
http://users.monash.edu/~tricco Christoph Federrath (Monash)

MONASH University

Science




QOutline

Performing ideal MHD simulations of star formation

Small scale:

. Collapse of a single prestellar core to form First Hydrostatic
Core

Large scale:

. Supersonic MHD turbulence in the interstellar medium
Using SPH MHD with new method enhancements:

. Constrained hyperbolic divergence cleaning
New artificial resistivity switch for magnetic shocks
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SPMHD

. Discretize fluid into set of particles which
simulate fluid motion

. Well suited for star formation:

. Couples well with N-body methods
. Strong conservation properties, very stable
. Inherently adaptive, resolution traces mass
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Star formation: first hydrostatic core

Prestellar core:

Dense clump of molecular gas, but
no central object yet

Protostellar core:

a formed star
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First hydrostatic core:

Before H, disassociates -

~2000K, short life time ~1000-10k ~ 'F~—— "
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Predicted in theory from as early as Masunaga, Inutsuka, 2000
Larson, 1969

Observational candidates only in
recent years, prime target of ALMA



1 solar mass core, mass-to-flux ratio 5 (edge on view)
« Divergence errors in the magnetic field cause the disc to become unstable




Constrained divergence cleaning

Hamiltonian formulation of
hyperbolic divergence cleaning

Retains conservation and ;
stability properties of SPH
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Accounts for Lagrangian motion
of particles
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Ensures strict energy
conservation, guaranteed to

always decrease divergence of oo Lo
the field

Provides approx. 10x decrease
In divergence error




1 solar mass core, mass-to-flux ratio 5 (edge on view)
« Well collimated magnetically propelled jet during first hydrostatic core
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First core Jet
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. ~2-8km/s, roughly equal to escape velocity
. ~<10° opening angle for jet

. ~40% of material is ejected



Supersonic MHD turbulence

. Isothermal, driven Mach 10 turbulence

. Initially weak magnetic field, Eagneiic 10 orders of
magnitude smaller than E;;.qiic

. Using new artificial resistivity switch that captures
shocks for this wide range of field strengths

. Results compared against grid based code Flash

. Extends the pure Hydro turbulence
comparison by Price, Federrath 2010
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Dynamo amplification
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Summary

. First hydrostatic core:
. Slow, well collimated (<10°) jet

. Supersonic MHD turbulence:
. Dynamo amplification grows magnetic energy x101°
. Similar results to grid based code Flash

. New method enhancements for SPH MHD

. Constrained divergence cleaning, reduces divergence
error aprrox. 10x

. Artificial resistivity switch for better treatment of
magnetic shocks



