Protostellar jets from SPMHD simulations of star formation

Terrence Tricco terrence.tricco@monash.edu http://users.monash.edu/~tricco Daniel Price (Monash) Matthew Bate (Exeter) Christoph Federrath (Monash)

Outline

- Performing ideal MHD simulations of star formation
- Small scale:
 - Collapse of a single prestellar core to form First Hydrostatic Core
- Large scale:
 - Supersonic MHD turbulence in the interstellar medium
- Using SPH MHD with new method enhancements:
 - Constrained hyperbolic divergence cleaning
 - New artificial resistivity switch for magnetic shocks

SPMHD

- Discretize fluid into set of particles which simulate fluid motion
- Well suited for star formation:
 - Couples well with N-body methods
 - Strong conservation properties, very stable
 - Inherently adaptive, resolution traces mass

Star formation: first hydrostatic core

- Prestellar core:
 - Dense clump of molecular gas, but no central object yet
- Protostellar core:
 - a formed star
- First hydrostatic core:
 - Before H₂ disassociates
 - ~2000K, short life time ~1000-10k years, few AU in radius
 - Predicted in theory from as early as Larson, 1969
 - Observational candidates only in recent years, prime target of ALMA

Masunaga, Inutsuka, 2000

- 1 solar mass core, mass-to-flux ratio 5 (edge on view)
- Divergence errors in the magnetic field cause the disc to become unstable

Constrained divergence cleaning

- Hamiltonian formulation of hyperbolic divergence cleaning
 - Retains conservation and stability properties of SPH
 - Accounts for Lagrangian motion
 of particles
 - Ensures strict energy conservation, guaranteed to always decrease divergence of the field
 - Provides approx. 10x decrease in divergence error

- 1 solar mass core, mass-to-flux ratio 5 (edge on view)
- Well collimated magnetically propelled jet during first hydrostatic core

25180 yrs	25670 yrs	26160 yrs	26650 угз	27140 yrs	27620 yrs
and the second			100		
-					
The second se					
⊢ 500 AU					
-1	-0.5	0 0.1	5 1 ensity [g/cm ²]	1.5	2

First core Jet

- ~2-8km/s, roughly equal to escape velocity
- ~<10° opening angle for jet
- ~40% of material is ejected

Supersonic MHD turbulence

- Isothermal, driven Mach 10 turbulence
 - Initially weak magnetic field, E_{magnetic} 10 orders of magnitude smaller than E_{kinetic}
 - Using new artificial resistivity switch that captures shocks for this wide range of field strengths
 - Results compared against grid based code Flash
- Extends the pure Hydro turbulence comparison by Price, Federrath 2010

log column density

 $\log |\mathbf{B}|$

Dynamo amplification

t

Summary

- First hydrostatic core:
 - Slow, well collimated (<10°) jet
- Supersonic MHD turbulence:
 - Dynamo amplification grows magnetic energy x10¹⁰
 - Similar results to grid based code Flash
- New method enhancements for SPH MHD
 - Constrained divergence cleaning, reduces divergence error aprrox. 10x
 - Artificial resistivity switch for better treatment of magnetic shocks