### Star Formation with Smoothed Particle Magnetohydrodynamics

Terrence Tricco CITA ttricco@cita.utoronto.ca http://cita.utoronto.ca/~ttricco

Daniel Price, Monash Uni Matthew Bate, Univ. of Exeter Christoph Federrath, ANU





# MHD Codes in Astrophysics

- 3 broad classes of hydrodynamics methods used in astrophysics:
   Grid: (e.g., Pluto, Athena, Ramses, Flash)
  - SPH: (e.g., Gadget, Gasoline, Hydra, Phantom)
  - Moving Mesh: (e.g., Arepo, Gizmo)



# MHD Codes in Astrophysics

- 3 broad classes of hydrodynamics methods used in astrophysics:
   Grid: (e.g., Pluto, Athena, Ramses, Flash)
  - SPH: (e.g., Gadget, Gasoline, Hydra, Phantom)
  - Moving Mesh: (e.g., Arepo, Gizmo)

".. magnetic fields may be included without difficulty.." Gingold & Monaghan (1977)



# **Constrained Divergence Cleaning**

Tricco & Price (2012)

- Control  $\nabla \cdot \mathbf{B} = 0$
- Hyperbolic / parabolic cleaning (Dedner et al 2002):

$$\left(\frac{\mathrm{d}\mathbf{B}}{\mathrm{d}t}\right)_{\psi} = -\nabla\psi \qquad \qquad \frac{\mathrm{d}\psi}{\mathrm{d}t} = -c_h^2\nabla\cdot\mathbf{B} - \frac{\psi}{\tau} - \frac{1}{2}\psi\nabla\cdot\mathbf{v}$$

• Produces damped "divergence" waves:

$$\frac{\partial^2 (\nabla \cdot \mathbf{B})}{\partial t^2} - c_h^2 \nabla^2 (\nabla \cdot \mathbf{B}) + \frac{1}{\tau} \frac{\partial (\nabla \cdot \mathbf{B})}{\partial t} = 0$$

- Implemented in a Lagrangian way, using the conservation properties of SPH
- Tricco, Price & Bate (2016; in review) formally accounts for variable wave speeds

# **Constrained Divergence Cleaning**

Tricco & Price (2012)





# **Constrained Divergence Cleaning**

Tricco & Price (2012)



Terrence Tricco

CITA

ICAT

### **Reduced Numerical Dissipation**

Tricco & Price (2013)

Capture magnetic discontinuities with artificial resistivity:

AR ~  $\eta_{\rm AR} \nabla^2 {f B}$  where  $\eta_{\rm AR} \sim \alpha_{\rm B} v_{\rm sig} h$ 

• Tricco & Price (2013) switch:  $\alpha_{\rm B} = h |\nabla {f B}| / |{f B}|$ 





CITA

ICAT

# **Protostellar Core Formation**



#### **Initial Conditions:**

- •1 solar mass core
- •2700 AU radius
- •Initial  $\rho_0 = 7.4 \times 10^{-18} \text{ g/cm}^3$
- Solid body rotation
  Embedded in pressure equilibrium with ambient low density medium

•Uniform *z*-magnetic field, ~160 µG (mass-to-flux ratio 5)

- •Equation of state:
  - Isothermal:  $p < \rho_c = 10^{-14} \text{ g/cm}^3$
  - Adiabatic:  $p > p_c$

•Sink particle at  $\rho_{sink} = 10^{-10} \text{ g/cm}^3$ 



# Collimated Jets from the First Core

Price, Tricco & Bate (2012)







### **Collapse to Stellar Densities**

Bate, Tricco & Price (2014)





# Supersonic Magnetised Turbulence

Tricco, Price & Federrath (2016)



Molecular Cloud conditions:

- Isothermal equation of state
- Mach 10 turbulence

Simulation details:

- Ornstein-Uhlenbeck stochastic solenoidal driving force at large scales (k=1-3)
- Periodic boundary conditions
- Initial magnetic energy  $10^{11}$  weaker than turbulent kinetic energy; plasma  $\beta = 10^{10}$
- Simulations performed with SPMHD and grid (Flash code)

Study the small-scale dynamo amplification of magnetic energy





Phantom



Tricco, Price & Federrath (2016)

### **Turbulent Dynamo Amplification**

Tricco, Price & Federrath (2016)



Figure 1. Growth and saturation of the magnetic energy for FLASH and PHANTOM at resolutions of  $128^3$ ,  $256^3$ , and  $512^3$ . The top lines are the kinetic energy for the six calculations. FLASH has similar growth rates across the resolutions simulated, while PHANTOM exhibits faster growth rates with increasing resolution. This resolution dependence is a consequence of the artificial dissipation terms. Both codes saturate the magnetic energy at similar levels.



# Magnetic Energy Power Spectra

Tricco, Price & Federrath (2016)





# **Distribution of Magnetic Field Strengths**

Tricco, Price & Federrath (2016)



**Terrence** Tricco

# Summary

- SPH can simulate Magnetic fields:
  - $\nabla \cdot \mathbf{B} = 0$  via "constrained" hyperbolic divergence cleaning
  - Improved shock detection to reduce numerical dissipation
- Can produce jets/outflows from simulations of protostar formation (Price, Tricco & Bate 2012; Bate, Tricco & Price 2014; Wurster, Price & Bate 2015; Lewis, Bate & Price 2015)
- Magnetised, supersonic turbulence:
  - Can produce amplification of magnetic fields via small-scale dynamo
  - Results consistent with grid methods

