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MHD Codes in Astrophysics

• 3 broad classes of hydrodynamics methods used in astrophysics:
– Grid: (e.g., Pluto, Athena, Ramses, Flash)

– SPH: (e.g., Gadget, Gasoline, Hydra, Phantom)

– Moving Mesh: (e.g., Arepo, Gizmo)
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– Grid: (e.g., Pluto, Athena, Ramses, Flash)

– SPH: (e.g., Gadget, Gasoline, Hydra, Phantom)
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“.. magnetic fields may be included 
without difficulty..”

Gingold & Monaghan (1977)
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Constrained Divergence Cleaning

• Control  
• Hyperbolic / parabolic cleaning (Dedner et al 2002):

• Produces damped “divergence” waves:

• Implemented in a Lagrangian way, using the conservation 
properties of SPH

• Tricco, Price & Bate (2016; in review) formally accounts for 
variable wave speeds

Tricco & Price (2012)
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Constrained Divergence Cleaning
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Tricco & Price (2012)

irregularities can be seen to form in the densest parts of the shockwave. These are not present when performing the full b̂ ¼ 1
subtraction (right panel).

5.5. Orszag–Tang vortex

The final two dimensional test is the Orszag–Tang vortex [22], which has been widely used as a test of MHD codes (e.g.
[10,12,39]). It consists of a magnetic vortex superimposed onto a velocity vortex generating several classes of interacting
shock waves. The complex dynamics provides an excellent test of the constrained hyperbolic divergence cleaning method.
To measure the effectiveness of the method in this case, the results are compared against that of simulations using artificial
resistivity (with particle independent strengths as described in Section 5.4.1) and Euler Potentials as measures of divergence
control. This test is also used to examine whether or not cleaning using the symmetric operator forr " B provides any advan-
tage in terms of momentum conservation. As previously, the damping parameter r is varied to find optimal values.

5.5.1. Setup
The problem is set up in a box with dimensions x; y 2 ½0;1$with periodic boundary conditions. The initial gas state is set to

q ¼ 25=ð36pÞ, P ¼ 5=ð12pÞ, c ¼ 5=3, with velocity field v ¼ ½' sinð2pyÞ; sinð2pxÞ$. The initial magnetic field is B ¼
½' sinð2pyÞ; sinð4pxÞ$. All examples presented use 512( 590 particles initially arranged on a hexagonal lattice.

5.5.2. Results
Fig. 13 shows the density (top), magnetic pressure (middle row), andr " B (bottom row) at t ¼ 1:0 for four cases: (i) con-

trol, (ii) using artificial resistivity, (iii) employing Euler Potentials, and (iv) applying divergence cleaning. This time is chosen
because the divergence errors in the control case are large enough to produce small scale disturbances in the density and
magnetic pressure fields. By adding resistivity or using Euler Potentials, the average hjr " Bj=jBj is decreased by an order

Fig. 13. The density (top row), magnetic pressure (middle row), and the difference measurement ofr " B (bottom row) in the Orszag–Tang vortex at t ¼ 1:0
comparing the control case (far left), including artificial resistivity (centre left), evolving the magnetic field using Euler Potentials (centre right), and
applying the constrained divergence cleaning method (far right).
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Reduced Numerical Dissipation

• Capture magnetic discontinuities with artificial resistivity:

• Tricco & Price (2013) switch:

AR ~ where 
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Tricco & Price (2013)
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Protostellar Core Formation
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Initial Conditions:
•1 solar mass core
•2700 AU radius
•Initial ρ0 = 7.4 x 10-18 g/cm3

•Solid body rotation
•Embedded in pressure equilibrium with 
ambient low density medium

•Uniform z-magnetic field, 
~160 μG (mass-to-flux ratio 5)

•Equation of state:
– Isothermal:  p < ρc = 10-14 g/cm3

– Adiabatic:  p > pc

•Sink particle at ρsink = 10-10 g/cm3



Collimated Jets from the First Core
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Price,Tricco & Bate (2012)



Collapse to Stellar Densities
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Bate,Tricco & Price (2014)

Magnetic Field
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Supersonic Magnetised Turbulence

Molecular Cloud conditions:
• Isothermal equation of state
• Mach 10 turbulence

Simulation details:
• Ornstein-Uhlenbeck stochastic solenoidal driving force at large scales (k=1-3)
• Periodic boundary conditions
• Initial magnetic energy 1011 weaker than turbulent kinetic energy; plasma β = 1010

• Simulations performed with SPMHD and grid (Flash code)

Study the small-scale dynamo amplification of magnetic energy

Terrence Tricco

Tricco, Price & Federrath (2016)



Grid vs. SPH on the small-scale turbulent dynamo 7

Flash

t/tc=2t/tc=2 t/tc=4t/tc=4 t/tc=6t/tc=6 t/tc=8t/tc=8

Phantom

t/tc=2t/tc=2 t/tc=4t/tc=4 t/tc=6t/tc=6 t/tc=8t/tc=8

Figure 3. z-column integrated ⇢ and |B|, defined < B >=
R
|B|dz/

R
dz, for Flash (top) and Phantom (bottom) at resolutions of

2563 for t/t
c

= 2, 4, 6, 8. The density field has similar structure in both codes at early times, but diverge at late times due to the non-
determinstic behaviour of the turbulence. The magnetic field is strongest in the densest regions, while the mean magnetic field strength
throughout the domain increases with time.

similar growth rates. In contrast, the Phantom results have
growth rates that increase with resolution by nearly a factor
of two for each doubling of resolution.

Analytic studies of the exponential growth rate of the
small-scale dynamo have shown that for Pm ⌧ 1, the growth
rate scales with Rm1/2, while for Pm � 1, it scales with
Re1/2 (Schober et al. 2012a; Bovino et al. 2013). Theoretical
predictions of the growth rate for Pm ⇠ 1, which is the
Prandtl number regime for numerical codes in the absence of
explicit dissipation terms, are more uncertain. The growth

rate in the transition region between 0.1 < Pm < 10 was
probed by Federrath et al. (2014) using Flash simulations
with explicit viscous and resistive dissipation. They found
that the magnetic energy growth rate for Pm . 1 exhibited
a steep dependence on Pm and only agreed qualitatively
with the analytical expectations of Schober et al. (2012a)
and Bovino et al. (2013). Conversely, the growth rate for
Pm & 1 quantitatively agreed with analytical expectations,
with, by comparison, relatively little variation with respect
to Pm.

MNRAS 000, 1–17 (2016)

Tricco, Price & Federrath (2016)



Turbulent Dynamo Amplification
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Magnetic Energy Power Spectra
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Distribution of Magnetic Field Strengths

10-5

10-4

10-3

10-2

10-1

100

-14 -12 -10 -8 -6 -4 -2  0  2  4

PD
F 

lo
g 

(B
2 )

Flash

10-5

10-4

10-3

10-2

10-1

100

-14 -12 -10 -8 -6 -4 -2  0  2  4

PD
F 

lo
g 

(B
2 )

log (B2)

Flash

Phantom

Terrence Tricco

Tricco, Price & Federrath (2016)



Summary

• SPH can simulate Magnetic fields:   
– via “constrained” hyperbolic divergence cleaning
– Improved shock detection to reduce numerical dissipation

• Can produce jets/outflows from simulations of protostar formation 
(Price, Tricco & Bate 2012; Bate, Tricco & Price 2014; Wurster, Price & Bate 2015; Lewis, Bate & 
Price 2015)

• Magnetised, supersonic turbulence:
– Can produce amplification of magnetic fields via small-scale dynamo
– Results consistent with grid methods
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