Improved Simulations of Magnetic Fields in Star Formation

and the Unplanned Discharge from the First Hydrostatic Core

Terrence Tricco terrence.tricco@monash.edu http://users.monash.edu/~tricco Daniel Price (Monash) Matthew Bate (Exeter)

Numerical Method: SPH

(Smoothed Particle Hydrodynamics)

SPH is well suited for astrophysics because:

- Couples with n-body codes
- Strong conservation properties, very stable
- Inherently adaptive, resolution is where the mass is

SPH is well suited for star formation because:

- Range of scales is huge:
 - initial cloud 10⁻¹⁸ g/cm³
 - first hydrostatic core 10⁻¹³ to 10⁻¹¹ g/cm³
 - second collapse 10⁻⁸ to 10⁻¹ g/cm³ (protostellar core)
 - stellar density 1.4 g/cm³

Magnetic Fields in SPH

Most important criterion:

$$\nabla \cdot \mathbf{B} = 0$$

- Real fields have no divergence, so we want our representation of the field to be realistic,
- If large divergence is present, can cause numerical artifacts and stability issues.

- Collapse of a magnetised molecular cloud core (edge on view)
- Strong central divergence of the magnetic field causes the gas and surrounding accretion disc to explode outwards

Hyperbolic/Parabolic Divergence Cleaning

• Add new scalar field coupled to magnetic field

$$\begin{pmatrix} \frac{\mathrm{d}\mathbf{B}}{\mathrm{d}t} \\ \\ \psi \end{pmatrix}_{\psi} = -\nabla\psi$$
$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = -c_h^2 \nabla \cdot \mathbf{B} - \frac{\psi}{\tau}$$

• Produces damped "divergence waves" through the magnetic field

$$\frac{\partial^2 (\nabla \cdot \mathbf{B})}{\partial t^2} - c_h^2 \nabla^2 (\nabla \cdot \mathbf{B}) + \frac{1}{\tau} \frac{\partial (\nabla \cdot \mathbf{B})}{\partial t} = 0$$

Stable Formulation

• Define energy of ψ field

$$e_{\psi} \equiv \frac{\psi^2}{\mu_0 \rho c_h^2}$$

• Include as part of system Lagrangian

$$L = \int \left(\frac{1}{2}\rho \mathbf{v}^2 - \rho u - \frac{\mathbf{B}^2}{2\mu_0} - \frac{\psi^2}{2\mu_0 c_h^2}\right) \mathrm{d}V$$

- Retains the conservation properties of SPH, solves a lot of stability issues
- Requires matching SPH operators for ${\pmb \nabla} \psi$ and ${\pmb \nabla} \cdot {\bf B}$

Low Mass Star Formation

- 0.5 ~few solar mass
- Form in cold molecular clouds
- Isothermal collapse initially
- As density increases, becomes optically thick, starts to heat
 - Forms first hydrostatic core
 - 5-10 AU radius
 - Short lived, ~few thousand years
- At 2000 K, H₂disassociates leading to second isothermal collapse to form protostellar core

- Collapse of a magnetised molecular cloud core (edge on view)
- With divergence cleaning, collapse remains stable
- Emergence of magnetically propelled jet

Price, Tricco, Bate, MNRAS (2012)

- Jets from protostellar cores well observed and simulated
- Both wide and low angle (10° / 45°)
- High velocity (50-500 km/s)

Machida, Inutsuka, Matsumoto (2006)

Pineda et al, ApJ, (2011)

Commercon et al, A&A, (2010)

"Detection of a Bipolar Molecular Outflow Driven by a Candidate First Hydrostatic Core" Dunham et al (2011)

- Slow velocity, 2.9 km/s
- Highly collimated, ~8° opening angle

• Evolution of magnetic field lines during collapse

Price, Tricco, Bate, MNRAS (2012)

Conclusions

Treatment of magnetic fields in SPMHD has been greatly improved.

Possible to produce low angle jets from the first hydrostatic core.