
The Phantom of the Future

Terrence Tricco
Memorial University of Newfoundland

How did we get here?

2010 – Initial Phantom

• “written especially for studying non-self-gravitating problems”

• Only hydrodynamics! No gravity, no other physics.
• No tree! Neighbour finding using fixed grid and linked lists.
• Density and force in a single loop!

2010 – Initial Phantom

2018 – Phantom Public Release

• “initial release of Phantom has been developed with a focus on
stellar, planetary, and Galactic astrophysics, as well as accretion
discs.”

• “MHD, dust-gas mixtures, self-gravity, and a range of other
physics.”

• Phantom had been used in ~15-20 publications by this point.
• Tree-based neighbour finding!
• Density and force in separate loops!
• Range of initial setups and phantomanalysis.

2018 – Phantom Public Release

2018 – First Phantom Workshops

1st Phantom Users Workshop – Melbourne

1st Phantom European Users Workshop – Milan

2024 – Phantom

• Phantom used for dozens of research
applications.

• Code paper has hundreds of citations.

• 100+ initial setups available.

2024 – Phantom

2024 – Phantom

• Included physics has been expanded (GR, radiation, etc)
• CI/CD pipelines with automated Github actions.
• Documentation hosted on read the docs.
• Pull request templates.

2024 – Phantom

SPH

1st North American Phantom Users Workshop

 Our 6th Phantom Users Workshop!

Where do we go next?

Phantom Userbase

Has user adoption peaked?

Phantom Userbase

Has user adoption peaked?

If so, why?

Phantom Scaling

75% of papers that used Phantom used
2.5 million particles or fewer.

2018

2024

75% of papers used 2 million
particles or fewer.

2018: 18 papers
2024: 27 papers

Top 500 Supercomputers

Phantom Scaling

Here’s the problem – Phantom only uses OpenMP parallelization.

* MPI implementation available, but is not robust?

Top 500 Supercomputers

• Computing power is exponentially increasing (~doubling every 2-3 years).

Top 500 Average Computing Power (PFlops)

Top 500 Supercomputers

• Cores per node increasing much more slowly.

Top 500 Average Cores per Node

2018 average supercomputer:
• 2.4 Pflops
• 17 cores/node

2024 average supercomputer:
• 16 Pflops (8x increase)
• 38 cores/node (2x increase)

The main driver of increasing compute power is not increasing cores/node!

Top 500 Supercomputers

Phantom Scaling

Problem #1: Clusters continue to increase in node count.

Phantom Scaling

Problem #1: Clusters continue to increase in node count.

Problem #2: Clusters continue to rely on larger complements of GPUs.

Top 500 Supercomputers with GPUs

• Heterogenous architectures – 40% of clusters in 2024 have a
complement of GPUs.

of Top 500 Clusters with GPUs

Phantom Scaling

Phantom needs to move beyond just OpenMP parallelization.

• Cannot rely on scaling inherently with increasing core counts.
• Will need MPI or other solutions to scale onto many node clusters.
• Will need GPU capability to fully utilize available hardware.

MPI / CUDA / etc

• Implementing MPI, CUDA or another solution is a big task.

• Not just from the refactoring required of the code… (which is huge)

• But also how to create implementations that handle all the various
physics?

• Individual timestepping?
• 100 particles evolving on the smallest timestep won’t scale to

10,000 cores.

2030 – Phantom of the Future

What does Phantom look like in 5 years time?

2030 – Phantom of the Future

1. Development cycle (CI/CD)

2. Initial conditions / Initial setups

3. Output analysis

4. Governance structure

2030 – Phantom of the Future

1. Development cycle (CI/CD).

2. Initial conditions / Initial setups

3. Output analysis

4. Governance structure

§ Github actions, unit tests, official release cycles.

§ No more phantomsetup. Python-based initial setups?

§ No more phantomanalysis. Python-based analysis (Sarracen!)

§ Longevity and management of the codebase.

• No more phantomsetup, phantomanalysis, phantommoddump.
• Phantom is a pure SPH engine:

• Accepts input dumpfile.
• Crunches the SPH.
• Returns output dumpfiles.

Input / Output to Phantom

Phantom
(Fortran / Core SPH)

Initial
Conditions

Creator
(Python?)

Analysis
Tool

(Python/
Sarracen)

D
u
m
p
f
i
l
e

D
u
m
p
f
i
l
e

Input / Output to Phantom

• Fortran is a painpoint.
• (Daniel once called it the language of the gods; I disagree!)

• Fortran is efficient – good for scientific simulations.
• But cumbersome to work with – bad for tasks that don’t require

performance (e.g., interactivity).

• Non-simulation components of the code should move out of Fortran
(preferably Python?).

Machine Learning

• Growing presence of ML and AI will inevitably intersect with
traditional numerical simulations.

• Already are seeing a growing use of PINNs (physics informed
neural networks) to generally solve physics equations.

• Will traditional simulations be needed if AI can do the job faster and
more accurately?

Machine Learning

Will AI replace SPH?

Machine Learning

• It remains to be shown that AI can outperform traditional simulations.
• Computational cost vs accuracy?

• I believe that ML will provide a complementary solution to traditional
astrophysics simulations.

• SPH and grid-based codes are able to co-exist.
• Multiple distinct solvers that agree on a solution is a positive thing!

Machine Learning + SPH

• Some aspects of SPH simulations that may be improved by ML:
• AI Kernels (better accuracy for cheap).
• Shock capturing (artificial viscosity / replace switches).
• Sub-grid physics (any sort of heuristic algorithm).
• Data / workload decomposition for parallel optimization.
• …

Summary

• Phantom is a great code with a great community.
• Regular users workshops. Used for many research projects.
• Respected as a trustworthy code that is easy to use.

• Biggest shortcoming of Phantom is its scalability.
• The OpenMP implementation scales extremely well…
• But relying just on OpenMP isn’t viable in the long term.

Phantom of the Future

1. Phantom’s Fortran base is only for simulation.
2. SPH base code scales onto modern cluster hardwares.
3. Multi-GPU capability.

4. Initial conditions creation and output analysis handled in Python.
5. Documentation rewrite with new user guides, developer guides,

feature implementations, etc.

6. Leveraging ML / AI to create future SPH algorithms.

