The Phantom of the Future

Terrence Tricco

Memorial University of Newfoundland

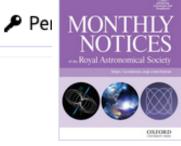
How did we get here?

<u>2010</u> – Initial Phantom

JOURNAL ARTICLE

On the diffusive propagation of warps in thin accretion discs 🚥

Giuseppe Lodato ∞, Daniel J. Price


Monthly Notices of the Royal Astronomical Society, Volume 405, Issue 2, June 2010, Pages

1212-1226, https://doi.org/10.1111/j.1365-2966.2010.16526.x

Published: 11 June 2010 Article history

■ Split View 66 Cite

JOURNAL ARTICLE

A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence @

Daniel J. Price 🖾, Christoph Federrath

Monthly Notices of the Royal Astronomical Society, Volume 406, Issue 3, August 2010, Pages 1659–1674, https://doi.org/10.1111/j.1365-2966.2010.16810.x Published: 03 August 2010 Article history v

- "written especially for studying non-self-gravitating problems"
- Only hydrodynamics! No gravity, no other physics.
- No tree! Neighbour finding using fixed grid and linked lists.
- Density and force in a single loop!

<u>2018</u> – Phantom Public Release

Publications of the Astronomical Society of Australia

РНАNTOM: A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics

Published online by Cambridge University Press: 25 September 2018

Daniel J. Price (D), James Wurster (D), Terrence S. Tricco (D), Chris Nixon (D), Stéven Toupin, Alex Pettitt (D), Conrad Chan (D), Daniel Mentiplay (D), Guillaume Laibe, Simon Glover (D), Clare Dobbs (D), Rebecca Nealon (D), David Liptai (D), Hauke Worpel (D), Clément Bonnerot, Giovanni Dipierro (D), Giulia Ballabio, Enrico Ragusa (D), Christoph Federrath (D), Roberto Iaconi (D), Thomas Reichardt, Duncan Forgan (D), Mark Hutchison (D), Thomas Constantino (D), Ben Ayliffe, Kieran Hirsh (D) and Giuseppe Lodato (D)

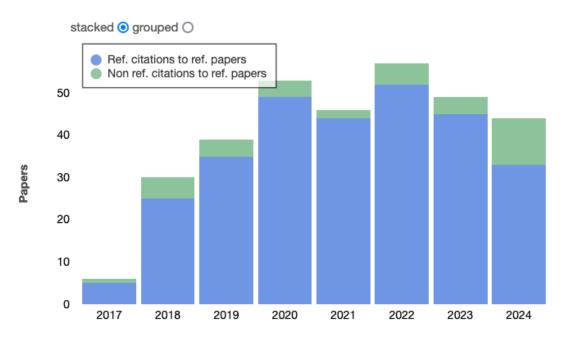
Show author

<u>2018</u> – Phantom Public Release

- "initial release of Phantom has been developed with a focus on stellar, planetary, and Galactic astrophysics, as well as accretion discs."
- "MHD, dust-gas mixtures, self-gravity, and a range of other physics."
- Phantom had been used in ~15-20 publications by this point.
- Tree-based neighbour finding!
- Density and force in separate loops!
- Range of initial setups and phantomanalysis.

2018 – First Phantom Workshops

1st Phantom Users Workshop – Melbourne

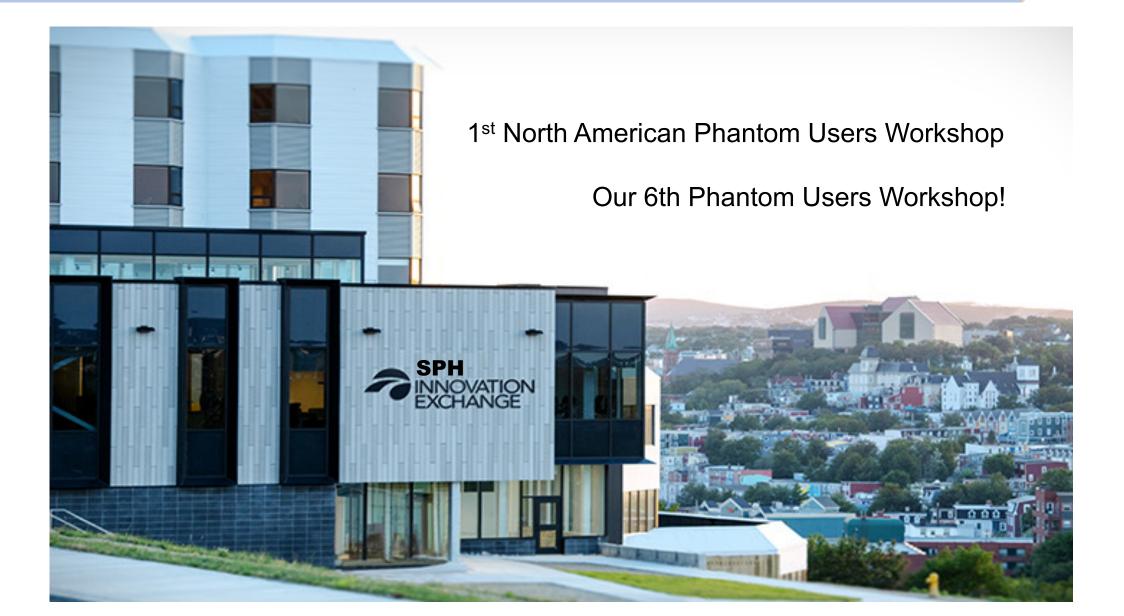


1st Phantom European Users Workshop – Milan

<u>2024</u> – Phantom

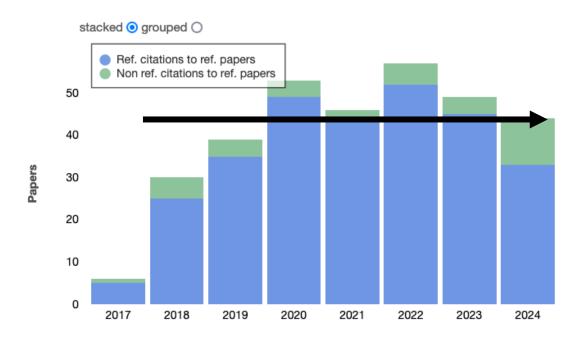
- Phantom used for dozens of research applications.
- Code paper has hundreds of citations.

<u>2024</u> – Phantom


• 100+ initial setups available.

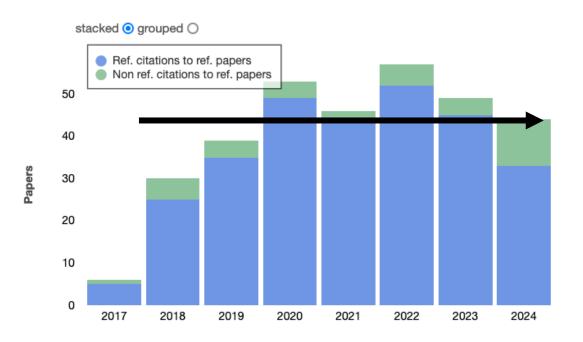
SETUP=	dustystar	jadvect	radshock	tokamak
BHL	dustywave	jet	radstar	torus
adiabaticdisc	empty	jetdusty	radwind	turb
alfven	evrard	jetnimhd	sedov	turbdrive
asteroidwind	exoALMA	kh	sgdisc	wave
balsarakim	firehose	lightcurvedisc	shock	wavedamp
binary	flrw	mhdblast	solarsystem	wd
binarydiscMFlow	flrwpspec	mhdrotor	sphereinbox	wddisc
blob	galaxies	mhdshock	srblast	wind
bondi	galcen	mhdsine	srpolytrope	windtunnel
cluster	galdisc	mhdvortex	srshock	
common	galdiscmhd	mhdwave	star	
converging	gr_testparticles	neutronstar	taylorgreen	
default	grbondi	nimhdshock	tde	
disc	grbondi-inject	nshwdisc	test	
dustsettle	grdisc	nsmerger	test2	
dustybox	growingdisc	orstang	testcyl	
dustydisc	growthtomulti	planetatm	testdust	
dustyisosgdisc	grstar	planetdisc	testgr	
dustysedov	grtde	polytrope	testgrav	
dustysgdisc	gwdisc	prtest	testgrowth	
dustyshock	hierarchical	quebec	testkd	
	ismwind	raddisc	testlum	
	isosgdisc	radiativebox	testnimhd	
	isowind	radiotde	testparticles	

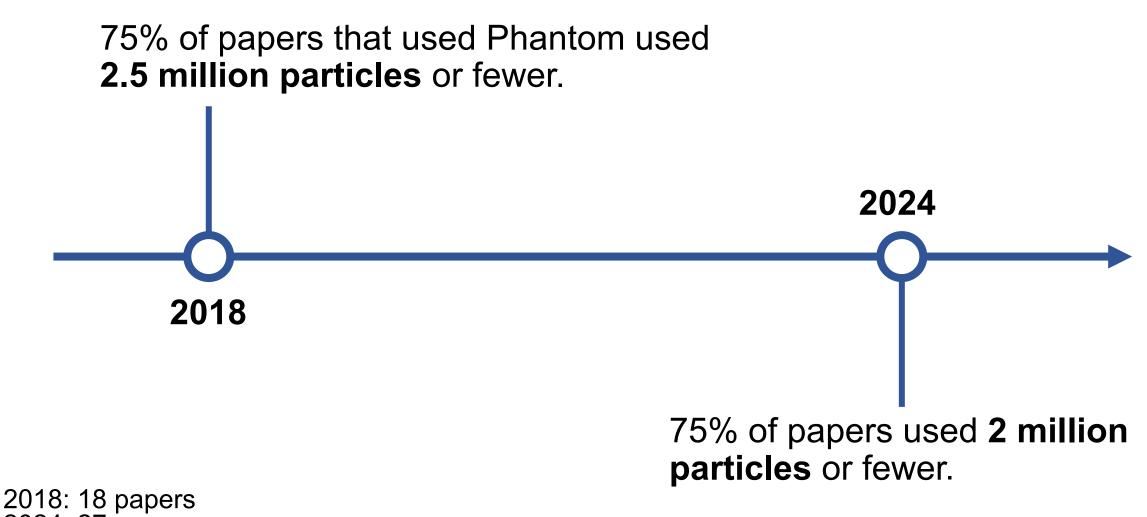
- Included physics has been expanded (GR, radiation, etc)
- CI/CD pipelines with automated Github actions.
- Documentation hosted on read the docs.
- Pull request templates.


<u>2024</u> – Phantom

Where do we go next?

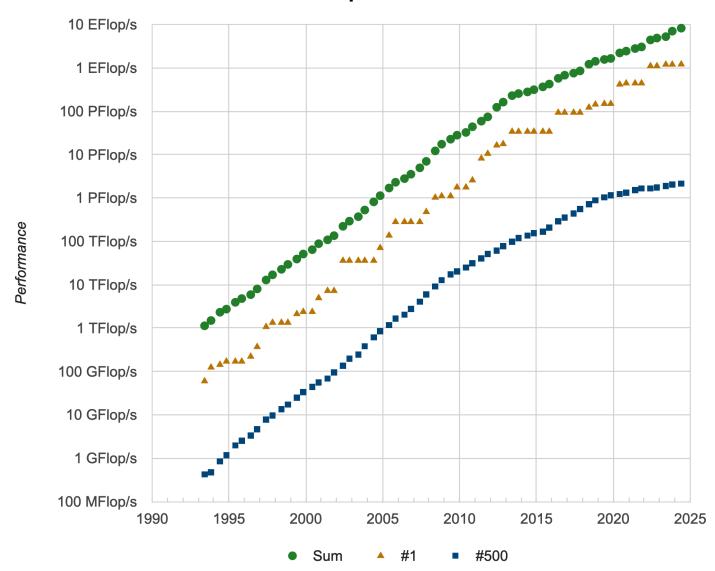
Phantom Userbase


Has user adoption peaked?

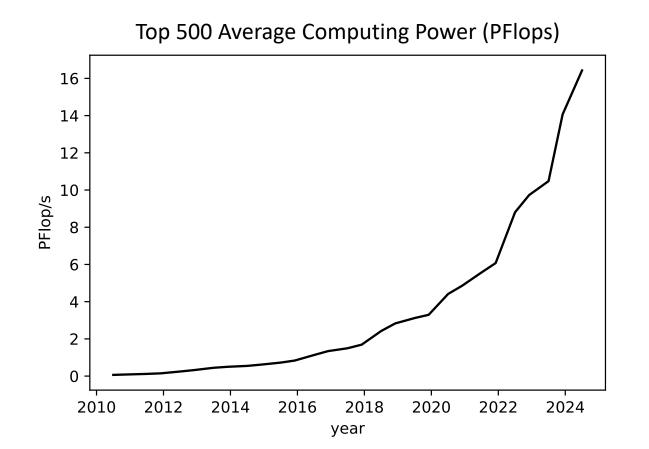


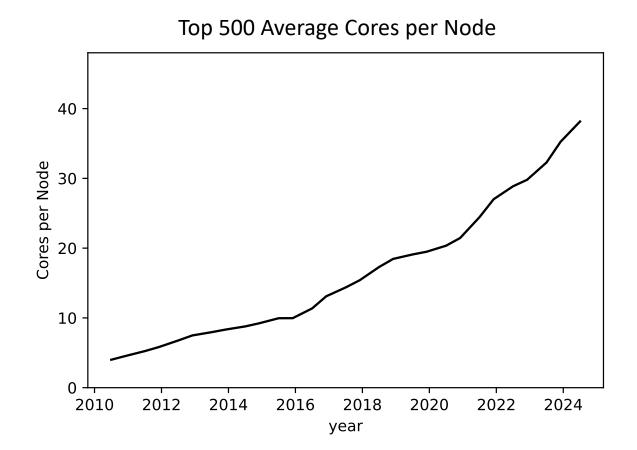
Phantom Userbase

Has user adoption peaked?


If so, why?

2024: 27 papers


Performance Development


Here's the problem – Phantom only uses OpenMP parallelization.

* MPI implementation available, but is not robust?

• Computing power is exponentially increasing (~doubling every 2-3 years).

• Cores per node increasing much more slowly.

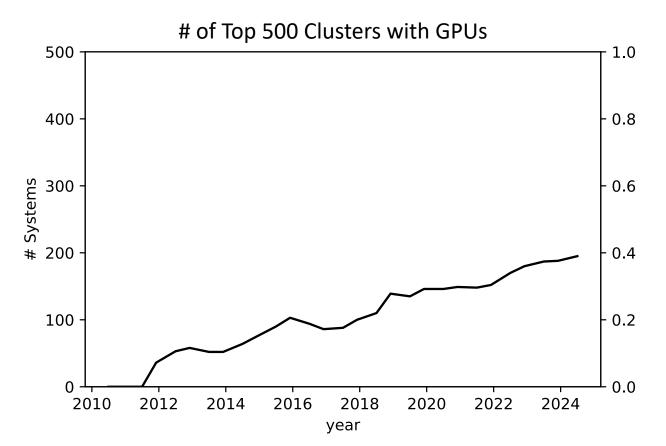
2018 average supercomputer:

- 2.4 Pflops
- 17 cores/node

2024 average supercomputer:

- 16 Pflops (8x increase)
- 38 cores/node (2x increase)

The main driver of increasing compute power is **not** increasing cores/node!


Problem #1: Clusters continue to increase in node count.

Problem #1: Clusters continue to increase in node count.

Problem #2: Clusters continue to rely on larger complements of GPUs.

Top 500 Supercomputers with GPUs

 Heterogenous architectures – 40% of clusters in 2024 have a complement of GPUs.

Phantom needs to move beyond just OpenMP parallelization.

- Cannot rely on scaling inherently with increasing core counts.
- Will need MPI or other solutions to scale onto many node clusters.
- Will need GPU capability to fully utilize available hardware.

- Implementing MPI, CUDA or another solution is a big task.
- Not just from the refactoring required of the code... (which is huge)
- But also how to create implementations that handle all the various physics?
- Individual timestepping?
 - 100 particles evolving on the smallest timestep won't scale to 10,000 cores.

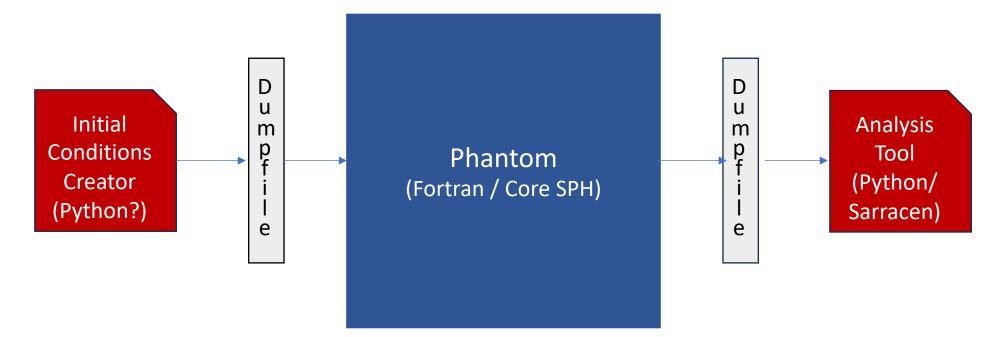
2030 – Phantom of the Future

What does Phantom look like in 5 years time?

<u>2030</u> – Phantom of the Future

1. Development cycle (CI/CD)

2. Initial conditions / Initial setups


3. Output analysis

4. Governance structure

<u>2030</u> – Phantom of the Future

- 1. Development cycle (CI/CD).
 - Github actions, unit tests, official release cycles.
- 2. Initial conditions / Initial setups
 - No more phantomsetup. Python-based initial setups?
- 3. Output analysis
 - No more phantomanalysis. Python-based analysis (Sarracen!)
- 4. Governance structure
 - Longevity and management of the codebase.

Input / Output to Phantom

- No more phantomsetup, phantomanalysis, phantommoddump.
- Phantom is a pure SPH engine:
 - Accepts input dumpfile.
 - Crunches the SPH.
 - Returns output dumpfiles.

Input / Output to Phantom

- Fortran is a painpoint.
- (Daniel once called it the language of the gods; I disagree!)
- Fortran is efficient good for scientific simulations.
- But cumbersome to work with bad for tasks that don't require performance (e.g., interactivity).
- Non-simulation components of the code should move out of Fortran (preferably Python?).

Machine Learning

- Growing presence of ML and AI will inevitably intersect with traditional numerical simulations.
- Already are seeing a growing use of PINNs (physics informed neural networks) to generally solve physics equations.
- Will traditional simulations be needed if AI can do the job faster and more accurately?

Machine Learning

Will AI replace SPH?

Machine Learning

- It remains to be shown that AI can outperform traditional simulations.
- Computational cost vs accuracy?
- I believe that ML will provide a complementary solution to traditional astrophysics simulations.
- SPH and grid-based codes are able to co-exist.
- Multiple distinct solvers that agree on a solution is a positive thing!

Machine Learning + SPH

- Some aspects of SPH simulations that may be improved by ML:
 - Al Kernels (better accuracy for cheap).
 - Shock capturing (artificial viscosity / replace switches).
 - Sub-grid physics (any sort of heuristic algorithm).
 - Data / workload decomposition for parallel optimization.

• . . .

- Phantom is a great code with a great community.
 - Regular users workshops. Used for many research projects.
 - Respected as a trustworthy code that is easy to use.

- Biggest shortcoming of Phantom is its scalability.
- The OpenMP implementation scales extremely well...
- But relying just on OpenMP isn't viable in the long term.

- 1. Phantom's Fortran base is only for simulation.
- 2. SPH base code scales onto modern cluster hardwares.
- 3. Multi-GPU capability.
- 4. Initial conditions creation and output analysis handled in Python.
- 5. Documentation rewrite with new user guides, developer guides, feature implementations, etc.
- 6. Leveraging ML / AI to create future SPH algorithms.