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Abstract. Synthetic data are generated data that closely model real-
world measurements, and can be a valuable substitute for real data in
domains where it is costly to obtain real data or privacy concerns exist.
Synthetic data has traditionally been generated using computational sim-
ulations, but deep generative models (DGMs) are increasingly used to cre-
ate high-quality synthetic data. In this work, we tackle the problem of gen-
erating synthetic, multivariate sequences of banking transactions.

A key challenge in modeling transactional sequences with DGMs
is that transactions occur at irregular intervals and may depend on
timestamp-based features, such as the time of day or day of the
week. Relationships between date-based features are often poorly rep-
resented in data generated using state-of-the-art sequence DGMs,
such as DoppelGANger [17] and TimeGAN [31]. To remedy this,
we propose a novel DGM, called Banksformer (Code available at
github.com/BigTuna08/Banksformer ecml 2022), which is able to emu-
late date-based patterns found in transactional data significantly bet-
ter than other DGMs. We demonstrate Banksformers’ ability to gener-
ate high-quality synthetic sequences of banking transactions by conduct-
ing a multi-faceted evaluation that compares synthetic data generated by
Banksformer to data from other comparable DGMs, across two datasets
of banking transactions.

Keywords: Synthetic data · Deep generative models · Transaction
sequences

1 Introduction

Synthetic data are becoming an increasingly important component in machine
learning systems. Recent work has demonstrated the ability of deep genera-
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tive models (DGMs) to produce high-quality synthetic data in domains such as
images [10], text [3], and audio [6]. Each of these domains has presented unique
challenges, which were addressed by modifying model architectures from previ-
ous tasks to be more suited to the target task. Success in these general domains
has led to the creation of focused, domain-specific models. One domain that has
received considerable recent interest is financial data.

Financial data is a broad category, however most existing work on DGMs in
finance focuses on modeling price sequences for stocks and other financial instru-
ments [13,25,29]. Another important type of financial data is transactional data;
that is, data that contains sequences of records or transactions recorded at arbi-
trary intervals. Transactional data is common in finance but also occurs in other
domains. For example, both a sequence of purchase records from a credit card and a
sequence of entries in electronic health records are transactional. In general,model-
ing transactional data is more challenging than other time-series data, as we must
learn to model the intervals between transactions in addition to the transaction
features. This can be particularly challenging in a domain such as banking, where
the date and time of a transaction can be strongly related to the transaction type
and amount. Further, certain types of dates, such as the weekends or the end of
the month, can significantly influence what transactions occur.

Evaluating the quality of synthetic data is a difficult problem without a sin-
gle clear solution [1,9,26]. Ideally, we would like to measure a distance between
the real and synthetic data distributions; however, this is not feasible for multi-
dimensional sequence data. A seemingly general approach would be to use the
log-likelihood the generative model assigns to validation data. Unfortunately, this
approach is known to have issues [26], and also depends on the model being able
to assign likelihood scores, which is possible for transformers but not generative
adversarial networks (GANs) [8]. Existing work generating financial time series
is limited but commonly evaluates the quality of generated data by comparing
univariate features distributions [13,29]. However, these univariate metrics only
give a rough picture of the synthetic data quality. These metrics cannot mea-
sure how well the synthetic data captures feature interactions and interactions
between sequence elements.

The main goal of this work is to produce high-quality synthetic financial trans-
action sequence datasets, with the same statistical properties as real data upon
which they are based. We propose Banksformer (BF), a novel transformer-based
DGM designed to model transactional data with date-based patterns. GANs have
typically been used as the generative model in previous work generating sequential
financial data [13,25,29]. To demonstrate the benefits of our approach, we com-
pare BF against two high-quality GAN models – TimeGAN (TG) [31] and Dop-
pelGANger (DG) [17] – on two datasets of banking transaction sequences.

2 Datasets

We used two datasets of banking transactions to compare the quality of syn-
thetic data produced by BF with data produced by TG and DG. The first is
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a set of real banking data from the Czech Republic in the 1990s1 (czech), and
the second is a synthetic dataset of transactions from the UK in 20172 (uk).
Both datasets contain transaction records from many different bank accounts,
with the uk dataset containing 5 000 unique accounts, and the czech containing
4 500 accounts. Each transaction contains the dollar value of the transaction,
multiple categorical codes that have information about the transaction type,
and a timestamp indicating when the transaction occurred. To create a uniform
representation between datasets, we concatenate together all categorical codes
into a single field called the tcode (transaction code). In the czech data there
are 16 unique tcodes, and the uk dataset has 44 (Table 1). The timestamp in the
czech dataset only contains the transaction date, and not the specific time of
day. Because of this, we do not use the time of day information in the uk dataset
and focus only on modeling the transaction dates.

Table 1. Dataset Summary. Properties of the czech and uk data sets. Columns show
the number of unique accounts (Accts), total number of transactions (Total Trans),
statistics on the number of transactions per account (Trans per Acct), number of unique
transcations codes (Tcodes), and the date range.

Accts Total trans Trans per Acct Tcodes Date range

Count Count Min Max Mean Count Start End

Czech 4500 1.06×106 9 675 235 16 01/01/1993 31/12/1998

UK 5000 105 2 50 20 44 01/04/2017 25/05/2017

We are primarily interested in the czech dataset, which was initially made
available as part of the Discovery Challenge at the 1999 PKKD conference [23].
This dataset is likely to lead to more meaningful results than the uk dataset for
three main reasons. First, the czech dataset contains real banking data. This is
in contrast to the uk dataset, which is a synthetic dataset. Second, the czech
dataset contains over 1 M transactions, making it over ten times larger than
the uk dataset, which has only 100K transactions. Because the datasets have
a similar number of unique accounts, this means there are comparatively fewer
transactions per account in the uk dataset (Table 1). Finally, the uk data is
also from a much smaller range of dates, containing less than two months’ data,
whereas the czech dataset spans five years. Transactional banking data often
contains date-based patterns, which can be difficult for DGMs to emulate. In
the uk dataset, the most significant date-based patterns are related to the day
of the week. In that dataset, transactions never occur on Sunday. Further, certain
types of transactions are related to the day of the week, and happen more or less
often on certain days. Because the uk dataset spans less than two full months,

1 https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-
transactions.

2 https://pub.towardsai.net/generating-synthetic-sequential-data-using-gans-
a1d67a7752ac; this blog post explores using DG to create synthetic data.

https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-transactions
https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-transactions
https://pub.towardsai.net/generating-synthetic-sequential-data-using-gans-a1d67a7752ac
https://pub.towardsai.net/generating-synthetic-sequential-data-using-gans-a1d67a7752ac
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we do not consider patterns related to the day of the month. In contrast, the
czech dataset does not contain any apparent relationships involving the day of
the week. However, in the czech data there are clear patterns related to the day
of the month, with certain types of transactions only occurring at the month’s
end, and others only happening early in the month.

We transform this dataset of transactions into transaction sequences by
grouping together transactions by account, and then sorting the transactions for
each account by date (and time in the uk dataset). In order to create more uni-
form datasets, we filtered out sequences shorter than a minimum length parame-
ter lmin (5 for uk and 20 for czech), and split sequences longer than lmax (20 for
uk and 80 for czech) into multiple contiguous subsequences, so that all sequences
used for training and validation have length in the range [lmin, lmax]. In addition
to the features present in each transaction, there is also meta-data information
associated with each sequence. This meta-data contains the starting account bal-
ance, start date of the sequence, and for the czech dataset, the customers’ age
at the start of the sequence. To preprocess the data for the generative models,
continuous features are linearly scaled to have a variance of 1, and categorical
features are encoded with a one-hot encoding. In the generic preprocessing step
used by all models, we follow the method of [17] and represent time information
by providing the start date as meta-data and including a time delta feature with
each transaction that indicates the amount of time that has passed between
transactions. When using BF, we perform a further preprocessing step (detailed
in Sect. 5.1) to create additional date-based features which BF requires.

3 Methods

3.1 Generative Adversarial Networks (GANs)

GANs [8] are a commonly used generative model, and are capable of generating
high-quality synthetic data in many domains [3,6,10]. TG [31] and DG [17] are
two GAN models that have been successful at generating complex multivariate
sequence data. Each of these models has unique innovations that allow them to
generate high-fidelity synthetic sequences. In TG, an embedding scheme is used
so that the generator and discriminator are operating in an embedded space, and
a supervised loss based on predicting the next sequence element is used in addi-
tion to the standard GAN training objective. In DG, there are many innovations,
including batch generation to better capture long-term dependencies, a condi-
tional generation mechanism to deal with relationships between metadata and
sequences, and a custom auto-normalization scheme that reduces mode collapse.

3.2 Transformers

The transformer architecture [27] was designed to perform sequence modeling
tasks without a recurrence, instead relying on an attention mechanism and posi-
tional encoding scheme to model sequence ordering. While originally proposed as
a language model [27], transformers have since been applied to modeling many
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types of sequences [14,30]. In this work, we use the transformer-decoder (TD)
[18] variant of the transformer, as this is most appropriate for generating novel
sequences. TD is designed as an auto-regressive model that can model prob-
ability distributions over sequences. The main innovations in the transformer
and TD architectures are positional encodings (PEs) and multi-head attention
(MHA). Since transformers do not use recurrence, and process all sequence ele-
ments simultaneously, the PEs are designed to allow the model to learn ordered
sequences by adding a PE vector to the initial embedding. While there are many
possible options for creating PE vectors, a standard choice for d-dimensional
PE vectors is for the ith dimension, corresponding to input position t, to be
sin(t/10000i/d) if i is even, and cos(t/10000i/d) otherwise. The MHA mecha-
nism allows the model to create multiple sequence representations by projecting
the encoded sequences into multiple sub-spaces. Scaled dot-product attention
[27] is then applied separately in each sub-space. When TD models are applied
to sequences of discrete symbols, including language, they are trained using
the maximum-likelihood objective of minimizing the negative log-likelihood of
observed sequences, −log(P (seq;Θ)), with parameters Θ. The probability of a
length n sequence, s = (x1, ..., xn), is computed using the auto-regressive factor-
ization p(seq;Θ) =

∏n
i=1 p(xn|x1, ..., xn1 ;Θ), which is implemented by the TD.

4 Related Work

There are several different approaches to creating and evaluating synthetic finan-
cial time series. Here, we give a brief overview of the most relevant works.

4.1 Synthetic Financial Time Series

Traditionally, agent-based models were used to generate synthetic sequences of
financial banking data [2,19], similar to the type of data modeled in our work,
as well as for generating synthetic stock-market data [4,12,21].

Methods based on DGMs have recently begun to outperform agent-based
approaches in generating realistic, univariate financial sequences [11,24,25,29];
however, there is less research on generating multivariate financial data. A GAN
model for generating multivariate sequences of stock option prices was proposed
in [28]. The work most similar to ours is StockGAN [13], which generates syn-
thetic stock-market order-stream data, where each sequence item contains infor-
mation about the order price, quantity, type, and date.

Methods based on DGMs have recently begun to outperform agent-based
approaches in generating realistic, univariate financial sequences [11,24,25,29].
There is less research on generating multivariate financial sequences; however,
[28] introduced a GAN model for generating multivariate sequences of stock
option prices, and [13] proposed StockGAN, which generates synthetic stock-
market order-stream data.

A critical difference between the banking data we are interested in and the
datasets used in these works on financial time series is the transactional nature
of our data. The previously mentioned works all aim to model sequences where
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measurements are taken at regular intervals, such as daily stock prices. In our
transactional data, the time between transactions varies, and the timing informa-
tion plays a critical role influencing the transactional properties. Existing work
on modeling transactional data with DGMs is limited, and we are not aware of
other works which have solely focused on this task. In the papers which intro-
duced both TG [31] and DG [17], the authors briefly discuss how their models
can be used on data with irregular time intervals. In both cases, the authors
suggest adding a time delta feature to indicate the time between elements and
modeling this like a typical continuous feature. However, neither of these works
attempts to show that their models can learn patterns based on dates or times.

To the best of our knowledge, transformers have not yet been applied to the
task of generating synthetic financial time-series data. Originally proposed as
a language model, transformer models such as GPT-3 can generate novel text
with narrative structure [3]. Transformers have also been applied to modeling
other types of time series data, including influenza prevalence [30], as well as
electricity usage and traffic [7,14,16].

4.2 Evaluation of Synthetic Sequence Data

The evaluation of synthetic data depends upon its planned use. If synthetic data
is planned to augment training data, then one approach is to train the model on
synthetic data and evaluate its predictive performance on real data [17,31]. If it
can achieve comparable accuracy on real data to a model trained on real data,
then this is taken as evidence of the quality of the synthetic data. This approach
is less valuable when the use of the synthetic data is not known a priori.

Continuous Data. A simple way to evaluate synthetic financial time-series
data is to compare univariate distributions, using metrics such as the 1-
Wasserstein distance [29] or Kolmogorov-Smirnov distance [2,13]. For multivari-
ate data, these distances can be computed separately for each feature of interest
[13]. A limitation is that these metrics do not consider interactions between fea-
tures, nor sequence order. Due to the limited work in generating multivariate
banking data, there are no domain-specific metrics we are aware of. In works on
financial sequences of asset prices, such as [13,29], domain-specific metrics were
used that focused on well-documented features that occur in real market data
known as stylized-facts [5].

Categorical Data. [13] studied synthetic financial time-series that generates
data with both categorical and continuous-valued features, however, their evalu-
ation only focused on continuous features. [32] use a randomly initialized LSTM
model to generate a dataset of discrete sequences that were used to train their
sequence generator. The LSTM model was then used to evaluate the likelihood
of the data produced by the generator. [15] adopt a similar approach, performing
additional validation experiments on real text sequences. To evaluate the quality
of the generated text, they use BLEU scores [22], which measure the proportion
of N-grams in the generated data that also occur in the real data.
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5 Banksformer

We have created a modified TD model, called Banksformer (BF), to generate
multivariate sequences of banking transactions. There are two main innovations
in the design of BF. First, a preprocessing step allows BF to model sequences
of items that contain multiple features of different types, including continuous
and categorical features, as well as dates. Second, BF uses a novel method for
generating multivariate time series data, in which each field of a transaction is
generated sequentially. Our results indicate that this allows BF to better learn
the joint distribution, such as p(amount, tcode) as the product of two simpler
distributions p(amount, tcode) = p(tcode)p(amount|tcode).

5.1 Date Mechanism

The unique way Banksformer handles dates involves two parts – encoding and
prediction. In BF, we create multiple features based on the timestamp to facili-
tate learning date-based patterns. Specifically, the day of the month (DoM), the
number of days until the months’ end (DTME), the day of the week (DoW),
and the month of the transaction are each represented using two features. The
two features are f1 = sin (2πi/ni) and f2 = cos (2πi/ni), where i is an ordering
index and ni is the number of possible indices (e.g., i = 0 and ni = 12 when
encoding the month of January). Additionally, BF also models a time delta (Δt)
feature, as is done in TG and DG.

The way we have chosen to encode the date information helps BF learn date
patterns; however, it also clearly contains redundancy. When generating data
with BF, we first generate a probability distribution over the result for each
date feature, and then create a distribution over the transaction date as

p(date) =
1
Z

∏

field∈{DoM,DTME,DoW,month,Δt}
pfield(date[field]), (1)

where Z is a normalizing constant.
We implement this with the following approach. First, a maximum time

between transactions is set to make the approach feasible. The distribution over
the time delta feature is modeled with a truncated Gaussian distribution, cover-
ing the range from 0 to the maximum time. BF outputs two features for the time
delta, which are interpreted as the mean and variance to the truncated Gaus-
sian. For each of the other features, BF outputs a categorical distribution over
the options, which is created by a softmax layer. To compute the normalizing
constant for the distribution, we sum the normalized probabilities of all dates
between 0 and the maximum number of days from the current date. We then
sample a date from this distribution, and then convert the selected date back
into the separate date features.

5.2 Architecture

Figure 1 outlines the architecture of BF, which is composed of 3 main parts. The
input layer takes a sequence of multivariate transactions and maps it to a dmodel
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Fig. 1. An illustration of BF. (A) An overview of BFs architecture. (B) A zoomed-
in view of the output layers, showing how BF sequentially handles transaction parts.
When generating data, the * boxes indicate a sampling operation that samples a value
from the input distribution. During training, teacher forcing is used, and the * boxes
indicate the true value which should have been produced by the input distribution. (C)
A further zoomed-in view of the date layer, showing that each piece of date information
is predicted independently from the context, which encodes the sequence of previous
transactions and the true value of the tcode for the current transaction.

dimensional sequence to which the positional encoding is added. The decoder
stack then processes the encoded sequence and emits a context sequence that
encodes predictions about the next element in the sequence. Finally, the output
layers process each context and transform them into transaction predictions.

Input Layer. The input layer in BF is fully connected and simply maps the
input data with dimension dinput to a representation with dimension dmodel,
which is used throughout the decoder stack.

Decoder Stack. After the input layer, BF contains a stack of 4 identical
decoder layers, following a similar design as the decoder layers used in [27].
Each decoder layer is composed of two sub-layers. The first is a masked multi-
head self-attention layer. This layer allows the network to attend to all sequence
positions less than i when predicting the ith element. This design follows the
decoder stack in [18]. The final decoder layer emits a vector with size dmodel.
Our BF synthetic datasets were created using dmodel = 128 (see Supplementary
materials for a complete list of parameters).

Output Layer. In BF, the output contains multiple important pieces of
information. This work focuses specifically on three: a categorical tcode, a
transaction date, and a real-valued amount. The output layer of BF con-
tains a conditional generation mechanism, which generates each of these
values sequentially, and conditions each value on all previous ones. In the
end, our model represents the probability distribution of the kth transaction
(transk) in a sequence as p(transk|hist) = p(tcodek|hist) · p(date|hist, tcodek) ·
p(amount|hist, tcodek, date), where hist is the transaction history up to the kth

element of the sequence.
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Loss Function. The loss function used for training BF treats each piece of
information within a transaction separately, with the overall loss a weighted
sum of individual losses. For continuous features, BF outputs predictions as
parameters to a normal distribution, and the loss is the negative log probability
of the data under the distribution. For categorical features, categorical cross-
entropy is used.

5.3 Generating Data

BF generates synthetic data in the following way. The first element of the
sequence contains the metadata, transformed into a vector with the same dimen-
sionality as the feature dimension of the training sequences. A sequence of l
transactions is then iteratively generated. At each step, the current generated
sequence is passed as input, and the next element in the sequence is output. This
element is then concatenated to the existing generated sequence. When generat-
ing a transaction, BF generates each attribute in a predefined order, conditioning
each attribute on all previous attributes. Each generated attribute is output by
a unique, fully connected layer. For categorical attributes, the raw output from
the associated layer is passed through a softmax function to create a probability
distribution over possible values, and the generated value is randomly sampled
from this distribution. For continuous attributes, BF outputs two features, which
are treated as the mean and variance of a normal distribution, and the generated
value is sampled from this distribution. The transaction date is sampled from
the distribution in Eq. 1, following the method detailed in Sect. 5.1.

6 Results

In this section, we present a comparison of synthetic data generated by BF, TG,
and DG on both the czech and uk datasets. Due to space limitations, the fig-
ures in this section focus on results from the czech dataset; however, we have
included additional figures further detailing our results on the uk dataset as a
supplementary PDF. For BF and TG, all synthetic sequences had an equal num-
ber of transactions (20 for uk, 80 for czech), and the start dates (plus ages for
the czech data) were randomly sampled from the empirical distribution in the
real datasets. In contrast, DG generates sequence lengths and meta-data along
with the transaction sequences. To better understand the quality of our gener-
ated data, we use a set of metrics to evaluate multiple aspects of our synthetic
data.

6.1 Univariate Distributions

The most straightforward metrics are based on comparing univariate feature dis-
tributions for the continuous and categorical features. We use the Wasserstein-1
distance for distributions of continuous variables and the Jensen Shannon diver-
gence (JSD) for discrete variables to quantify the difference in univariate distri-
butions. For continuous variables, we compare the distributions of transaction
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amounts and monthly cash flow. The monthly cash flow of an account is simply
the sum of all credits and debits (positively and negatively-valued transaction
amounts) in a given month. We are interested in cash flow distributions because,
unlike the transaction amount, cash flow is not directly modeled as a variable in
the training data. However, cash flow is still an important facet of bank data. If
synthetic data can capture the cash flow patterns from the real training data, this
will support the claim that the model is learning the actual data distribution.
As we can see from Fig. 2, the synthetic data generated by BF best captured the
monthly cash flow patterns from the real data. This is supported quantitatively
as well (Table 2). The amount distribution produced by BF was quantitatively
worse than both TG and DG on the czech data (Table 2). However, when viewed
on a log scale, BF appears to better capture the three modes of the real amount
distribution Fig. 2. On the uk dataset, BFs’ amount distribution was closest to
the real data. The data generated by BF also performs best at emulating the
tcode distribution in the czech data, which can be seen in Fig. 2 and Table 2.
DG does nearly as well as BF at capturing the tcode distribution on the czech
data, and slightly better than BF on the uk data.

Fig. 2. Comparison of univariate distributions in czech data. This figure shows a com-
parison of the distributions for the tcode (top), log amount (middle), and monthly cash
flow (bottom) in the synthetic datasets produced by BF, DG, and TG.

6.2 N-grams

We also compare N-gram distributions for the categorical feature to measure
the models’ ability to capture sequence orderings. Here we focus on 3-grams,
and use the JSD to quantify differences in these distributions. We experimented
with other values of N and the results did not change significantly. However,
the JSD becomes harder to estimate as N increases because the empirical N-
gram distributions become worse estimates of the true N-gram distributions
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Table 2. Results Summary. The first 2 score columns are the Wasserstein-1 distances
comparing the univariate amount (Amt) and monthly cash flow (CF) distributions
respectively. The next two columns are JSD results comparing the univariate distribu-
tions of the tcode (Tcode) and transaction day of the month (DoM). The final columns
are also JSD results. The Tcode 3G column show the JSD between the distributions of
tcode 3-grams. And finally, the (Tcode, Date*) column compares the joint distributions
of tcode and the most significant categorical date feature, which is DoM for the czech
data, and DoW for the uk data. The bottom three results for the czech dataset show
the results of ablation experiments; ablation results for the uk dataset can be found in
the supplementary PDF.

Data Model Amt CF Tcode DoM Tcode 3G Tcode, Date*

Czech BF 2102 2738 0.004 0.011 0.042 0.251

DG 1939 57800 0.007 0.090 0.132 0.660

TG 1931 4980 0.075 0.059 0.337 0.638

BF-ND 3705 4191 0.009 0.059 0.059 0.595

BF-NC 3580 4775 0.158 0.006 0.411 0.542

TF-V 4726 4138 0.185 0.059 0.445 0.674

UK BF 42.6 541.8 0.015 0.024 0.156 0.008

DG 179.0 1051 0.011 0.034 0.135 0.061

TG 116.0 1460 0.237 0.087 0.622 0.077

due to the curse of dimensionality. We attempted to mitigate this with additive
smoothing [20], however this did not significantly change the results, so the
results we present are based solely on comparing empirical distributions. Figure 3
compares the distributions of the most common N-grams, and shows both BF
and DG produce more accurate N-gram distributions on the czech data than
TG. This is supported by quantitative results in Table 2, which also show that
BF outperforms DG in terms of the JSD metric on the czech dataset. This metric
also shows DG performs slightly better than BF on the uk dataset.

Fig. 3. 3-gram frequency comparison. This figure compares the frequency of the 25
most commonly occurring 3-grams in the real czech data, for each of the synthetic
datasets.



132 K. Nickerson et al.

6.3 Joint Distributions

One limitation of the previous metrics is that they do not account for how
well feature interactions are modeled in the synthetic data. To get a sense of
the overall joint distribution, we can visually compare the distributions of two-
dimensional projections of the datasets (Fig. 4). To create this visualization, we
follow the approach of [31], The sequences were first flattened along the temporal
dimension and then a PCA model was fit to the real data. All data sets are
projected into 2D using this PCA fit. Figure 4 shows that there are multiple
peaks in the real czech data, and that BF reproduces these peaks on the whole.
DG only poorly reproduces the real data, yielding a bimodal distribution, and
TG focuses on a single mode.

Fig. 4. PCA visualization of czech data. The two principal components of the data
distributions obained using PCA. The generated data are projected using the PCA
model that was fit to the real data.

Figure 5 shows the distribution over the day of the month for two specific
tcodes that only occur at specific times of the month. The top row is for interest
credited to the account, which only happens on the last day of the month, and the
bottom row is a type of debit transaction that only occurred between the 5th and
14th of the month. BF is the only model able to learn the date pattern associated
with these tcodes. In particular, our model can correctly generate transactions
at the end of the month, even though the last day of the month may occur
on days 28 to 31. The JSD may be used to quantify how well the relationship
between tcodes and categorical date features were learned in general. Table 2
shows the JSD for the czech data, using the joint (tcode, DoM) distributions,
and the uk data, using joint (tcode, DoW) distributions. For both data sets, BF
significantly outperforms both DG and TG.

Different transaction types also have different associated amount distribu-
tions. In Fig. 6, we compare the conditional amount distributions for the two
most common tcodes in the czech dataset. In this figure, we can see that BF,
TG and DG all appear to have approximately learned the relationship between
amount and tcode. Additionally, this figure also shows qualitative differences
in the conditional amount distributions produced by the different models. BF
tends to produce narrower, symmetric distributions, which are centered near the
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Fig. 5. Date, tcode relationship in czech data. This figure shows the conditional dis-
tribution of the transaction day of the month, given the tcode, for two tcodes that are
strongly related to the date. This figure shows that BF (left) is the only model which
has learned the relationship between these tcodes and the date.

mean of the real data; whereas both DG and TG tend to produce much wider,
asymmetric distributions.

6.4 Ablation

To illustrate the impact of the innovations behind BF, we perform ablation
experiments on conditional generation and date generation mechanisms. Specif-
ically, we create the following three ablated versions of BF:

– A version without the date mechanism (BF-ND). In this implementation, we
model the date using only the time delta feature, as is done in TG and DG.

– A version without conditional generation (BF-NC). In this implementation,
we generate all transaction fields simultaneously.

– A basic transformer model with neither mechanism (TF-V).

The results from these experiments are shown in Table 2, which validate
that both mechanisms introduced to the architecture of BF led to improved
performance on most metrics. This was particularly true for the metrics that
measured joint distributions, as well as metrics related to the amount, where
BF scored much better than the ablated versions, and TF-V scored noticeably
worse. For other metrics, different ablations had different impacts. The BF-NC
version did worse than BF-ND on comparisons of both the tcode and tcode 3-
gram distributions, with BF-NC being comparable to TF-V on these metrics.
Similarly, BF-ND does worse than BF-NC and is comparable to TF-V on the
DoM metric, which compares the distributions of transaction day of month.

Overall, these results are in line with expectations. It is somewhat surprising
that the conditional generation mechanism improved the distributions of tcodes
and tcode 3-grams, as the tcode is the first feature produced when generating
conditionally. It may be that without conditional generation, the other features
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Fig. 6. Amount, tcode relationship in czech data. This figure shows a comparison of
the conditional distributions p(amount|tcode) produced by BF, DG and TG, against
real data for the two most common tcodes in the real data.

become more difficult to model, causing the model to spend more effort learning
those relationships, and less on the tcodes. We plan to investigate this further
in future work.

7 Discussion

Our experiments show that the design of BF led to a clear improvement over TG
and DG in modeling financial transactional sequences. Qualitatively, the most
significant area of gain is in modeling the joint relationship between dates and
transaction types, as only BF was able to learn these. Quantitatively, BF also
created data that better matched the statistical properties of real data, according
to the majority of the metrics we considered. Through ablation experiments, we
demonstrated that both of BFs’ innovations, the date mechanism and conditional
generation for the individual transaction fields, improved synthetic data quality.
We believe a promising future direction for this work is to explore hybrid models
and combine innovations from BF, TG, and DG. There are multiple approaches
we have in mind to explore this idea, including adapting the date mechanism
from BF to GAN models based on TG and DG, and adding an adversarial
training step to BF.

Another critical area for future work is to examine the privacy implications of
these models. One major motivation for studying synthetic banking transaction
data is to minimize reliance on real private data. However, before these models
can be used to generate synthetic data to replace real data with genuine privacy
concerns, users must be aware of any potential information which could be leaked
through synthetic datasets.
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Reproducible Research Statement. Code for Banksformer is available at
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