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Abstract—A new implementation for the time evolution of
the magnetic vector potential is obtained for smoothed particle
magnetohydrodynamics by considering the induction equation
in integral form. Galilean invariance is achieved through proper
gauge choice. This new discretisation is tested using the Orszag-
Tang MHD vortex in a 3D configuration. The corresponding
conservative equations of motion are derived, but are not found
to solve the MHD equations in the continuum limit. Tests
are performed using a hybrid approach instead, whereby the
equations of motion based on the magnetic field instead of vector
potential are used. Test results experience the same numerical
instability as with the Price (2010) formulation. We conclude
that this new formulation is non-viable.

I. INTRODUCTION

Smoothed particle magnetohydrodynamics (SPMHD) has
grown to become a robust method for solving the equations
of magnetohydrodynamics, that is, of magnetised fluids. It has
been shown that SPMHD can capture the magneto-rotational
instability [1] and the small-scale dynamo amplification of
magnetic energy in magnetised turbulence [2]. It has been
used to study the magnetic field structure in a wide of array of
problems, such as star formation [3], [4], the Milky Way [5],
tidal disruption events [6], and magnetically confined plasmas
[7].

There were many pieces of the SPMHD puzzle that had
to be solved to reach this point. Some of the key steps were
determining how to handle instability caused by magnetic ten-
sion [8], how to formulate dissipative terms [9], and upholding
the divergence-free constraint of the magnetic field [10], [11].
Some of these problems are linked. From Maxwell’s equations,
∇·B = 0, where B is the magnetic field. Numerical errors can
lead to non-zero divergence errors, which in turn can grow in
time leading to unphysical behaviour. Constrained hyperbolic
divergence cleaning [10], [11] is a numerically stable method
that typically keeps the average divergence error to around
1%, as measured by the mean h|∇ ·B|/|B|.

While divergence cleaning has been successful in the con-
text of SPMHD, there is one substantive shortcoming – it
is an approximate method for upholding the divergence-free
constraint. Ideally, the divergence-free condition would be
exactly upheld by the numerical method. One approach is to
formulate the magnetic field in terms of the vector potential,

that is, B = ∇ × A, which guarantees a divergence-free
reconstruction because the divergence of the curl is zero.
An SPMHD formulation in terms of the vector potential was
derived by [12], henceforth P10, but found that it suffered from
numerical instability. The time evolution of the vector potential
led to exponential growth of total energy, and the conservative
equations of motion derived using the vector potential were
also found to be numerically unstable.

In this paper, a different formulation for the time evolution
of the vector potential is proposed. Past approaches have
written the induction equation in terms of the vector potential
and discretised the resultant equation [12], [13]. Instead, for
this work, the discretised equation is derived by considering
the induction equation using a volume integral approach. This
leads to a novel discretisation.

Section II provides essential background. It introduces the
continuum induction equation written in terms of the vector
potential, how to reconstruct the magnetic field from the vector
potential in SPHMHD, and the P10 formulation [12]. Sec-
tion III derives the new formulation based on a volume integral
approach. Section IV discusses the equations of motion, and,
in particular, provides the corresponding equations of motion
for the new formulation. Test results are presented in Section V
for the 3D Orszag-Tang vortex, and conclusions are given in
Section VI.

II. VECTOR POTENTIAL

The induction equation for the time evolution of the mag-
netic field is

∂B

∂t
= ∇× (v ×B) , (1)

where v is the velocity. In standard SPMHD, the induction
equation is written in terms of a Lagrangian derivative, and
the right-hand side is expanded with the term proportional to
∇ ·B removed, leading to

dB

dt
= −(B · ∇)v + B(∇ · v). (2)

To create an equation which evolves A forward in time,
B = ∇×A is first substituted into (1), yielding

∂(∇×A)

∂t
= ∇× (v ×B) . (3)
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which can be ‘un-curled’ to yield

∂A

∂t
= v ×B +∇φ, (4)

where ∇φ is a constant of integration representing the gauge
choice. In the Lagrangian frame, this becomes

dA

dt
= v ×B + (v · ∇)A +∇φ. (5)

The (v · ∇)A term is a ‘reverse advection’ term added to
obtain the Lagrangian time derivative on the left-hand side.

A. Reconstructing B in SPMHD

There is freedom to choose how to estimate B = ∇ ×A
in SPMHD. A logical choice is to use a difference derivative,
given by

Ba =
1

Ωaρa

∑
b

mb (Aa −Ab)×∇aWab(ha), (6)

where Ω accounts for gradients in the smoothing length, ρ is
the density, W is the smoothing kernel, and h is the smoothing
length.

B. Price (2010) Formulation

The P10 formulation used a gauge choice of φ = −v ·A.
By using the identity

∇(v ·A) = (v · ∇)A + v × (∇×A)

+ (A · ∇)v + A× (∇× v), (7)

(5) will simplify to

dA

dt
= −A× (∇× v)− (A · ∇)v. (8)

This can equivalently be expressed in tensor notation as

dAi

dt
= −Aj

∂vj

∂xi
. (9)

The benefit of this gauge choice is that the derivatives are
moved onto the velocity. When discretised, this leads to a
Galilean invariant form, given by

dAi
a

dt
=

Aj
a

Ωaρa

∑
b

mb

(
vja − v

j
b

) ∂Wab(ha)

∂xia
. (10)

However, [12] found that this implementation suffers from nu-
merical instability. Even worse, the corresponding conservative
equations of motion for this discretisation are also numerically
unstable.

III. VOLUME INTEGRAL DISCRETISATION

Taking inspiration from [14], (4) could instead be written
in integral form according to

d

dt

∫
V

AdV =

∫
V

v ×BdV +

∫
∂V

Av · dS, (11)

where the second term represents the advection of a surface.
Note that the time derivative has changed from Eulerian to
Lagrangian derivative.

In SPMHD, there are no well-defined surfaces. Instead, the
surface integral is converted to a volume integral (which is
well defined), obtaining

d

dt

∫
V

AdV =

∫
V

v ×BdV +

∫
V

∇j

(
Avj

)
dV. (12)

The integral element is taken to be ρdV , which corresponds
to the mass element. Equation (12) is discretised to yield

d

dt

∑
a

ma
Aa

ρa
=
∑
a

ma
va ×Ba

ρa
+
∑
a

ma
∇j(Aav

j
a)

ρa
.

(13)
This implies that each particle should evolve according to

d

dt

(
Aa

ρa

)
=

va ×Ba

ρa
+

1

ρa
∇j

(
Aav

j
a

)
. (14)

At this point, there is no specific prescription as to the dis-
cretisation used to reconstruct B nor for the calculation of the
second term. In this work, the difference derivative estimate
is chosen for both. That is, the magnetic field is reconstructed
according to (6) and the second term is calculated using

1

ρa
∇j(Aav

j
a) =− 1

Ωaρ2a

∑
b

mb

[
Aava · ∇aWab(ha)

−Abvb · ∇aWab(ha)
]
. (15)

Equation (15) can be understood more intuitively through
the following analysis. If the term

− 1

Ωaρ2a

∑
b

mb(Aa −Aa)vb · ∇aWab(ha), (16)

which is equivalent to zero, is added to (15), then

1

ρa
∇j(Aav

j
a) =− 1

Ωaρ2a

∑
b

mb(Aa −Ab)vb · ∇aWab(ha)

− Aa

Ωaρ2a

∑
b

mb(va − vb) · ∇aWab(ha)

(17)

is obtained. The first term in (17) is interesting because it
represents the reverse advection term in (5), but uses the
weighted summation of the velocity of neighbouring particles
instead of the particle’s own velocity, that is, vb instead of
va. The second term in (17) is equivalent to Aa∇ · va. This
arises from the consequence of evolving A/ρ instead of just
A, which is evident from

d

dt

(
A

ρ

)
=

1

ρ

dA

dt
− A

ρ2
dρ

dt
, (18)

given that dρ/dt = −ρ∇ · v. Thus, (14) could be stated in
terms of evolving A directly according to

dAa

dt
= va ×Ba −

1

Ωaρa

∑
b

mb(Aa −Ab)vb · ∇aWab(ha).

(19)
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A. Galilean Invariance

Equation (19) is not Galilean invariant. However, this can be
achieved by the choice of φ = −v ·A for the gauge. Making
use of the identity in (7), this yields

dAa

dt
=−Aa × (∇× va)− (Aa · ∇)va

+
1

Ωaρa

∑
b

mb(Aa −Ab) [(va − vb) · ∇aWab(ha)] .

(20)

Written in tensor notation, the discretisation is

dAi
a

dt
=

Aj
a

Ωaρa

∑
b

mb

(
vja − v

j
b

) ∂Wab(ha)

∂xia

+
1

Ωaρa

∑
b

mb

(
Ai

a −Ai
b

) [
(vja − v

j
b)
∂Wab(ha)

∂xja

]
.

(21)

It is clear from this that (21) represents a novel discretisation
of dA/dt. By comparison to (10), it is equivalent to the P10
formulation with an additional term.

IV. EQUATIONS OF MOTION

A. P10 conservative equations of motion

The conservative equations of motion for the P10 formula-
tion were derived from a Lagrangian variational principle. For
simplicity, the equations are given here assuming a constant
smoothing length (i.e., no smoothing length gradients), in
which case they are

dvia
dt

=−
∑
b

mb

[
Pa

ρ2a
+
Pb

ρ2b

]
∂Wab

∂xia

+
3

2µ0

∑
b

mb

[
B2

a

ρ2a
+
B2

b

ρ2b

]
∂Wab

∂xia

− 1

µ0
εjkl

∑
b

mb(A
k
a −Ak

b )

[
Bj

a

ρ2a
+
Bj

b

ρ2b

]
∂2Wab

∂xia∂x
l
a

−
∑
b

mb

[
Ai

a

ρ2a
Jk
a +

Ai
b

ρ2b
Jk
b

]
∂Wab

∂xka
, (22)

where J = ∇×B/µ0 is the current density and, in the above,
is estimated using a symmetric derivative according to

Jk
a = −ρa

µ0
εkjl

∑
b

mb

[
Bj

a

Ωaρ2a

∂Wab(ha)

∂xla
+

Bk
b

Ωbρ2b

∂Wab(hb)

∂xla

]
.

(23)
The conservative equations of motion with the P10 formu-

lation were found to be numerically unstable. There are three
primary issues. The second term in (22) is a negative isotropic
pressure, meaning particles will clump when 3B2/2µ0 > P .
The third term involves the direct second derivative of the
kernel, which is known to be noisy. The fourth term includes
an estimate of the current density using a symmetric derivative,
which is a low-order estimate. Solutions to these problems are
not obvious.

B. Volume integral equations of motion

The conservative equations of motion for the new volume
integral formulation, given by (21) using the φ = −v · A
gauge, can also be derived using a variational principle. The
full derivation is too lengthy to include here, thus only the
final set of equations are presented. For simplicity, as with
the P10 formulation, the equations are presented assuming a
constant smoothing length, in which case they are given by

dvia
dt

=−
∑
b

mb

[
Pa

ρ2a
+
Pb

ρ2b

]
∂Wab

∂xia

+
3

2µ0

∑
b

mb

[
B2

a

ρ2a
+
B2

b

ρ2b

]
∂Wab

∂xia

− 1

µ0
εjkl

∑
b

mb(A
k
a −Ak

b )

[
Bj

a

ρ2a
+
Bj

b

ρ2b

]
∂2Wab

∂xia∂x
l
a

−
∑
b

mb

[
Ai

a

ρ2a
Jk
a +

Ai
b

ρ2b
Jk
b

]
∂Wab

∂xka

−
∑
b

mb(A
k
a −Ak

b )

[
Jk
a

ρ2a
+
Jk
b

ρ2b

]
∂Wab

∂xia
, (24)

where Jk
a is given by (23).

It is important to recognize that the second term in (22) and
(24) is present irrespective of the reconstruction used for the
magnetic field or the time evolution of the vector potential. The
third term also arises solely due to the choice of magnetic field
reconstruction given by (6). This means that using a different
formulation for dA/dt can only change the fourth term in
(22). In the case of the new volume integral formulation, this
leads to the fifth term in (24), due to the second term in (21).

The issues with the conservative equations of motion for
the P10 formulation are not solved with this new set of
equations. Furthermore, the resultant equations of motion do
not seem to yield the correct MHD equations of motion. In
Appendix C of [12], the translation of (22) to the continuum
limit was derived by using the basic summation interpolant,
Aa =

∑
b(mb/ρb)AbWab and its derivative, to understand

each term. [12] demonstrated that (22) does indeed solve the
equation

dvi

dt
= −1

ρ

∂P

∂xi
+

1

ρ

[
Jj ∂A

j

∂xi
− Jj ∂A

i

∂xj

]
, (25)

where the MHD terms derive from J ×B. The fifth term in
(24), which is the new term stemming from the volume integral
formulation, can be straightforwardly shown to be equivalent
to 2(Jj/ρ)(∂Aj/∂xi), which means (24) solves

dvi

dt
= −1

ρ

∂P

∂xi
+

1

ρ

[
3Jj ∂A

j

∂xi
− Jj ∂A

i

∂xj

]
. (26)

This is a problem. For this reason, the conservative equations
of motion are not tested in this work, opting instead for a
hybrid approach.
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VOLUME INTEGRAL PRICE (2010) DIRECTLY EVOLVING B

t=0.5t=0.5
nx=64nx=64

t=0.29t=0.29
nx=128nx=128

t=0.2t=0.2
nx=256nx=256

Fig. 1. Density slices at the midplane. The new vector potential formulation (left column) is compared to the calculations using the P10 formulation (middle
column) and directly evolving the magnetic field (right column). Both the volume integral and P10 formulations experience numerical instability at similar
times, occurring earlier as the resolution is increased (t∼0.5 for nx = 64 along the top row to t∼0.19 for nx=256 along the bottom row).

C. Hybrid approach

A hybrid approach for the equations of motion was found
by [12] to yield the most success. In this case, the magnetic
field is reconstructed from the vector potential, which is then
used in the standard SPMHD equations of motion. This is the
approach followed in this work. Specifically, the momentum
equation that is used is given by

dva

dt
=−

∑
b

mb

[
Pa

Ωaρ2a
∇aWab(ha) +

Pb

Ωbρ2b
∇aWab(hb)

]
− 1

2µ0

∑
b

mb

[
B2

a

Ωaρ2a
∇aWab(ha) +

B2
b

Ωbρ2b
∇aWab(hb)

]
+

1

µ0

∑
b

mb
(Bb −Ba)

Ωbρ2b
Ba · ∇aWab(hb). (27)

This includes the stabilisation of the magnetic tension (third
term) through subtraction of B(∇ ·B) [8].

V. RESULTS: 3D ORSZAG-TANG VORTEX

Tests of the new formulation focus on a 3D version of
the Orszag-Tang vortex [15], [16]. This test is particularly
notable as a stumbling block for the P10 formulation. It is
important to consider a fully 3D test case, since magnetic
fields for 2D test problems can be specified solely in terms
of a constant Az . Results are compared between the new
volume integral formulation, the P10 formulation, and standard
SPMHD evolving B directly.
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A. Numerical setup

The Orszag-Tang vortex is extended to three dimensions
by creating a thin slab. The spatial domain is x, y ∈
[−0.5, 0.5] and z ∈ [0, 3

√
6/64]. This gives a thick-

ness of the slab of ∼0.1148, chosen because the parti-
cles are arranged on a close-packed triangular lattice. Pe-
riodic boundary conditions are used. The initial density
and pressure are uniform, with ρ = 25/(36π), P =
5/(12π) and γ = 5/3. The initial velocity field is
[vx, vy, vz] = [− sin(2πy), sin(2πx), 0], and initial magnetic
field [Bx, By, Bz] = [−B0 sin(2πy), B0 sin(4πx), 0], with
B0 = 1/

√
4π. The corresponding vector potential is Az =

B0/(2π)[cos(2πy) + cos(4πx)/2].
The lowest resolution calculation uses a total of 42 624

particles arranged initially on a close-packed triangular lattice,
with [nx, ny, nz] = [64, 74, 9], and the highest resolution
calculation uses 2 727 936 particles with [nx, ny, nz] =
[256, 296, 36]. Resolutions are tested for nx ∈ [64, 128, 256].
Note that nz also doubles with each step increase in resolution
so that the slab retains the same physical thickness.

B. Qualitative analysis

Fig. 1 shows density slices through the midplane for all
calculations. Both the new vector potential implementation
derived from volume integrals and the P10 vector potential
formulation experience numerical instability, with large low-
density voids appearing in the obtained solutions. These appear
earlier for higher numerical resolution, occurring at t∼0.5 for
the nx = 64 calculations, t∼0.29 for the nx = 128 calcu-
lations, and t∼0.2 for the nx = 256 calculations. Reference
solutions are provided by calculations that directly evolve the
magnetic field.

That the new vector potential discretisation based on volume
integrals experience numerical instability in the same manner
and with the same timing as the P10 formulation suggests that
the extra term in (21) has negligible effect.

One important observation is that, aside from the region
where the numerical instability occurs, the solutions obtained
with the vector potential formulations are in agreement with
the solution obtained when the magnetic field is directly
evolved. Thus, using the vector potential in SPMHD does
indeed represent a valid prescription for the magnetic field. All
that is required is for the vector potential to be implemented
in a numerically stable manner.

C. Magnetic energy

Fig. 2 shows the time evolution of the magnetic energy.
The new discretisation of the vector potential based on
volume integrals experiences the same exponential growth
of magnetic energy as the P10 formulation. The onset of
numerical instability occurs earlier as the numerical resolution
increases, occurring approximately at the same time as the P10
formulation. This suggests the extra term in (21) has negligible
effect.

0.0 0.2 0.4 0.6 0.8 1.0
time

0.000

0.002

0.004

0.006

0.008

0.010

m
ag

ne
tic

 e
ne

rg
y

nx=64nx=128nx=256

Evolving B
 (nx=256)

Price (2010)
Volume Integral

Fig. 2. Time evolution of the magnetic energy for the new volume integral
formulation (blue) and the P10 formulation (red) for resolutions of nx =
64, 128 and 256 particles. The magnetic energy for direct evolution of the
magnetic field for nx = 256 is shown for comparison (black).

D. Components of the vector potential

Fig. 3 shows the time evolution of the components of the
vector potential for the nx = 64, 128 and 256 calculations. The
initially zero Ax and Ay components of the vector potential
undergo exponential amplification. Once Ax and Ay reach
parity with the Az component, then all three components
undergo exponential growth. There is negligible difference
between the volume integral and P10 formulations. The initial
tracks for the Ax and Az components are common between
the three resolutions, up to t∼0.2, at which time the particles
break off lattice.

E. z component of the magnetic field

Fig. 4 shows the time evolution of the z component of
the magnetic field. The vector potential calculations, irre-
spective of resolution, and the calculation directly evolving
the magnetic field all show the same characteristic initial
exponential growth of Bz . The calculations diverge at t∼0.2.
At this point, Bz saturates for the calculation directly evolving
B. Conversely, the vector potential calculations continue to
display exponential growth, with faster growth rates as the
numerical resolution increases. There is negligible difference
between the volume integral and P10 formulations.

Fig. 5 shows the time evolution of vz . From this, it becomes
clear that the growth of Bz is due to the growth of vz , which
is a consequence of performing these calculations in 3D. In
2D calculations, vz remains zero, but this is not the case in
3D.

VI. CONCLUSION

A novel formulation for evolving the vector potential in
SPMHD has been derived. By considering the induction equa-
tion in integral form, an altered form of the discretised ‘reverse
advection’ term is obtained. In particular, this reverse advec-
tion term uses an interpolation of the velocity of neighbouring
particles instead of a particle’s velocity directly. A Galilean
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Fig. 3. Time evolution of the maximum value of the vector potential com-
ponents for the new volume integral formulation (blue) and the formulation
by [12] (red) for resolutions of nx = 64, 128 and 256 particles (top to
bottom panels). In all cases, numerical instability occurs once the Ax and
Ay components, which are initially zero, become comparable to the Az

component.
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Fig. 4. Time evolution of the maximum Bz over all particles. The Bz

component exhibits nearly identical exponential growth for all vector potential
calculations and the calculation directly evolving the magnetic field up to
t∼0.2. At this time, the particles break off lattice. When directly evolving the
magnetic field, Bz saturates at ∼0.1, whereas the vector potential calculations
continue to experience exponential growth.
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Fig. 5. Time evolution of the maximum vz over all particles. The correlation
with Bz is apparent (see Fig. 4). When directly evolving the magnetic field,
vz has initial exponential growth, but then saturates. For the vector potential
calculations, vz continues to grow exponentially.

invariant discretisation can be obtained through suitable gauge
choice (φ = −v ·A). The Galilean invariant discretisation is
equivalent to the P10 formulation with an additional term.

The new discretisation is tested using a 3D version of the
Orszag-Tang vortex. This test has proven difficult to stably
simulate for prior SPMHD formulations of the vector potential
[12]. Results are compared to the P10 formulation and to a
calculation where the magnetic field is evolved directly (not
using the vector potential).

The key result is that the volume integral discretisation
exhibits the same numerical instability as the P10 formulation.
Initially, calculations proceed smoothly, but, at some later
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time, the magnetic energy increases exponentially. The onset
of instability occurs earlier for higher numerical resolutions.
This appears to be triggered by particles breaking off lattice
at t∼0.2, and, more concretely, once the initially zero Ax and
Ay components reach parity with Az .

A solution to the numerical instability is, in theory, straight-
forward – use the conservative equations of motion as derived
from the Lagrangian. If the magnetic energy (and hence total
energy) is unphysically increasing, then using a discretisation
that conserves total energy should fix this. This does not
work in practice. The conservative equations of motion for
the P10 formulation are plagued by negative pressure and a
noisy direct second derivative of the kernel. These particular
problems do not originate from the evolution equation used for
the vector potential evolution equation, and are thus present
in the conservative equations of motion derived for the new
volume integral formulation. The questions on how to solve
these problems remain open.

Even more troubling is that the conservative equations of
motion for the volume integral formulation do not appear to
actually solve the MHD equations. It was demonstrated in
[12] that the P10 equations of motion do indeed translate to
the MHD equations in the continuum limit. The equations of
motion for the new volume integral formulation encapsulate
the P10 equations of motion plus an additional, non-zero term.
They therefore cannot be equivalent to the MHD equations.

While the exploration of induction equation expressed in
terms of a volume integral has led to a novel discretisation
of the vector potential in SPMHD, it suffers from the same
shortcomings of the P10 formulation. The search continues for
a stable formulation of SPMHD that guarantees a divergence-
free magnetic field.
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