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Smoothed particle
magnetohydrodynamics

Terrence S. Tricco*

Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada

Smoothed particle magnetohydrodynamics has reached a level of maturity that
enables the study of a wide range of astrophysical problems. In this review,
the numerical details of the modern SPMHD method are described. The three
fundamental components of SPMHD are methods to evolve the magnetic
field in time, calculate accelerations from the magnetic field, and maintain
the divergence-free constraint on the magnetic field (no monopoles). The
connection between these three requirements in SPMHD will be highlighted
throughout. The focus of this review is on the methods that work well in
practice, with discussion on why they work well and other approaches do not.
Numerical instabilities will be discussed, as well as strategies to overcome them.
The inclusion of non-ideal MHD effects will be presented. A prospective outlook
on possible avenues for further improvements will be discussed.
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1 Introduction

Smoothed particle magnetohydrodynamics (SPMHD) is a robust numerical method
for solving the equations of magnetohydrodynamics (MHD). It is a Lagrangian, mesh-free
method that builds upon the smoothed particle hydrodynamics (SPH) framework (Gingold
and Monaghan, 1977; Lucy, 1977). The general picture of SPH is to solve the equations
of hydrodynamics by discretising a fluid into a collection of particles that mimic fluid
behaviour. Recent reviews of the fundamentals of SPH include Rosswog (2009), Springel
(2010) and Price (2012).

SPH, and by extension SPMHD, has many advantages for astrophysics. One, the
resolution is tied to the mass. Regions of higher mass have more particles, thus
more resolution, which is advantageous as the densest areas are typically the most
interesting (e.g., stars forming in a molecular cloud). Two, it is trivial to incorporate
gravitational N-body methods since SPH is a particle-based scheme. Three, advection
is done perfectly, that is, without any dissipation, since it is a Lagrangian method.
Four, it can easily handle complex geometries. Five, the Courant timestep does not
depend upon the fluid velocity, thus allowing larger timesteps. And six, perhaps its
strongest attribute, it has exact simultaneous conservation of mass, momentum, angular
momentum, energy, and entropy to the precision of the time-stepping algorithm. This
makes SPH significantly robust and stable since it reflects the conservation properties of
nature.

Over the past decade, SPMHD has been used to simulate the evolution and impact
of magnetic fields in a wide variety of astrophysical problems, such as the study of
single and binary star formation (Bürzle et al., 2011a; Bürzle et al., 2011b; Price et al.,
2012; Bate et al., 2014; Tsukamoto et al., 2015a; Tsukamoto et al., 2015b; Lewis et al., 2015;
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Wurster et al., 2016; Wurster et al., 2017; Lewis and Bate, 2017;
Wurster et al., 2018a; Wurster et al., 2018b; Tsukamoto et al., 2018;
Tsukamoto et al., 2020; Wurster et al., 2021; Wurster et al., 2022),
star cluster formation (Wurster et al., 2019; Dobbs and Wurster,
2021), star formation rates in spiral galaxies (Herrington et al.,
2023), accretion discs (Forgan et al., 2017), tidal disruption events
(Bonnerot et al., 2017), themagnetic field structure of spiral galaxies
(Dobbs et al., 2016; Wissing and Shen, 2023), and galaxy cluster
formation (Barnes et al., 2012; Barnes et al., 2018). It has been
shown to yield correct behaviour for the small-scale dynamo
amplification of magnetic fields (Tricco et al., 2016b), and can
sustain turbulence incited by the magnetorotational instability
(MRI) (Deng et al., 2019; Wissing et al., 2022). SPMHD has also
found use outside of astrophysics, where it has been employed to
study pinch plasmas and fusion (Vela Vela et al., 2019; Thompson
and Cassibry, 2020; Park et al., 2023).

The minimum requirements for incorporating MHD into SPH
are three-fold: 1) an approach for evolving the magnetic field
forward in time, 2) calculation of the accelerations deriving from
the Lorentz force, and 3) an approach to uphold the divergence-free
constraint of the magnetic field. These need not be independent.
Adhering to the divergence-free constraint is strongly connected
to the choice of how the magnetic field is numerically evolved, for
instance.

The modern SPMHD method solves the set of continuum
equations given by

dρ
dt
= −ρ ∂v

i

∂xi
, (1)

dvi

dt
= 1
ρ
∂Sij

∂xj
, (2)

d
dt
(B

i

ρ
) = B

j

ρ
∂vi

∂xj
, (3)

∂Bi

∂xi
= 0, (4)

where the stress Sij is defined as

Sij = −Pδij + 1
μ0
(BiB j − B

2

2
δij), (5)

and ρ is the density, v is the velocity, B is the magnetic field,
P is the pressure, and μ0 is the permeability of free space. This
system of equations is closed by a suitable equation of state.
Note that the continuum equations are written with Lagrangian
derivatives, d/dt ≡ ∂/∂t+ v j∂/∂xj, since SPMHD is a Lagrangian
method.

The first attempts to include magnetic fields in SPH were
performed by Gingold and Monaghan (1977) who considered
magnetic polytropes, though in a form which did not conserve
momentum or angular momentum. The modern SPMHD method
has its roots in the work by Phillips and Monaghan (1985), who
formulated equations of motion that conserve momentum by using
the stress tensor, and applied the method to three-dimensional
simulations of gravitationally collapsing gas clouds (Phillips, 1986a;
Phillips, 1986b).

The challenge with the conservative approach is that it
is numerically unstable when the magnetic pressure exceeds
the thermodynamic pressure, that is, for plasma β < 1 where
β ≡ P/(B2/2μ0). Though the onset of instability is described by this

criterion, the fundamental nature of the instability is linked to
magnetic accelerations which are not perpendicular to the magnetic
field, that is, that originate from magnetic monopoles. Solutions to
this instability invariably incur some penalty to the conservation of
momentum (Meglicki et al., 1995; Morris, 1996; Børve et al., 2001),
though at a cost related to the magnitude of divergence errors
in the magnetic field. Again, the linkage between calculating the
accelerations deriving from the magnetic field and the approach
used to uphold the divergence-free constraint of the magnetic field
should be noted.

Carefully evolving the magnetic field in such a way as to
avoid divergence errors altogether would be ideal. For grid codes,
this can be accomplished with, for example, constrained transport
(Evans and Hawley, 1988), but a significant impediment to do
this in SPMHD is the lack of any well-defined surfaces. To
date, no satisfactory approach to ensure a truly divergence-free
magnetic field has yet to be found for SPMHD (Brandenburg,
2010; Price, 2010). Instead, modern SPMHD straightforwardly
discretises the induction equation, with the recognition that
divergence errors may be generated as there is no intrinsic
divergence control. The magnetic field must be corrected through
some other procedure. In practice, “divergence cleaning” (Tricco
and Price, 2012; Tricco et al., 2016a) works well to remove
divergence errors and is the method used in many modern SPMHD
calculations.

Other pieces of the SPMHD puzzle that had to be solved include
construction of the fully conservative equations incorporating
varying resolution and magnetic discontinuity capturing terms
(Price and Monaghan, 2004a; Price and Monaghan, 2004b; Price
and Monaghan, 2005). It worthy to note that modern SPMHD is
equivalent in formulation to the eight-wave approach of Powell
(1994); Powell et al. (1999), in that the SPMHD equations have
source terms related to the divergence of the magnetic field, such
that divergence errors are advected with the fluid flow. Additionally,
non-ideal MHD formulations for Ohmic dissipation, ambipolar
diffusion, and the Hall effect have been constructed (Wurster et al.,
2014; Wurster et al., 2016). SPMHD has also been adapted for
2D axisymmetric geometry, promising computational efficiency for
phenomena involvingmagnetic fields with axial geometries (García-
Senz et al., 2023).

The outline of this review is as follows. A brief reminder
of the fundamental SPH equations is provided first (Section 2).
The ingredients comprising modern SPMHD are subsequently
discussed, focusing on the threemain requirements of approaches to
evolve the magnetic field (Section 3), to calculate accelerations from
the magnetic field (Section 4), and to maintain the divergence-free
constraint of the magnetic field (Section 5). Non-ideal extensions
are described in Section 6, and a prospective outlook is given in
Section 7.

2 Smoothed particle hydrodynamics

In this review, a standard form of SPH is assumed whereby
the density of an SPH particle is calculated by mass-weighted
summation. A number of SPH variants and implementations have
been proposed over time (Ritchie andThomas, 2001; Hopkins, 2013;
Saitoh and Makino, 2013; García-Senz et al., 2022), but here we
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focus on traditionalmass-weighted SPH.Themass-weighted density
summation is given by

ρa =∑
b
mbWab (ha) , (6)

with h the smoothing length, m the mass, and summation is
over neighbouring particles within the support radius of the
smoothing kernel, Wab(ha) ≡W(|ra − rb|,ha), where r is the particle
coordinates. One could discretise Eq. 1 directly, though a benefit of
Eq. 6 is that the density can then be computed at any location at
any time. There is no need to time integrate the density. This also
avoids assumptions about the differentiability of the density. See also
Price (2012) for a nuanced presentation on the trickle down effects
of using this SPH density estimate.

Smoothing lengths that are individual per particle can be
obtained by simultaneously solving the density summation (Eq. 6)
with an expression for density given by

ρa =ma(
ha
nh
)
−ndim

, (7)

where ndim is the number of dimensions and nh is a dimensionless
quantity specifying the ratio of smoothing length to particle spacing.
The smoothing length that yields agreement between Eqs 6, 7 can be
obtained via a root-finding procedure.

The conservative equations of motion derived from the
Lagrangian for the discretised system need only specify the density
summation in Eq. 6 (Monaghan, 2002; Springel and Hernquist,
2002). Doing so yields

dva
dt
= −∑

b
mb[

Pa
Ωaρ

2
a
∇aWab (ha) +

Pb
Ωbρ

2
b

∇aWab (hb)] , (8)

where factors

Ωa = 1−∑
b
mb

∂Wab (ha)
∂ha

∂ha
∂ρa

(9)

are present to account for spatially varying smoothing lengths.
Obtaining ∂ha/∂ρa may be done through Eq. 7. See Monaghan
(2005); Springel (2010); Price (2012) for detailed derivations of the
SPH equations of motion from the Lagrangian.

If the pressure is a function of internal energy, u, then a suitable
equationmust be used to evolve the internal energy forward in time.
This can be derived from the first law of thermodynamics, yielding

du
dt
= P
ρ2

dρ
dt
. (10)

The time derivative of ρ can be obtained by taking the time derivative
of the density summation, Eq. 6. Using this, the discretised internal
energy equation is

dua
dt
=

Pa
Ωaρ

2
a
∑
b
mbvab ⋅∇aWab (ha) . (11)

Note that the total specific energy or entropy of each particle
could be evolved instead. The differences between these choices are
minimal (see Price, 2012).

The choice of smoothing kernel has many considerations. In
practice, the two families of kernels that are most widely used for
astrophysical SPMHD calculations are the bell-shaped B-splines

and the Wendland kernels. The kernel function can be written in
functional form according to

Wab (ha) =
σ

hndim
w (q) , (12)

where σ is the normalisation and q = rab/ha.The cubic spline is given
by

w (q) =
{{
{{
{

(2− q)3 − 4(1− q)3 q < 1,
(2− q)3 1 ≤ q < 2,
0 q ≥ 2,

(13)

with σ = 1/π in 3D, the quintic spline by

w (q) =

{{{{{
{{{{{
{

(3− q)5 − 6(2− q)5 + 15(1− q)5 q < 1,
(3− q)5 − 6(2− q)5 1 ≤ q < 2,
(3− q)5 2 ≤ q < 3,
0 q ≥ 3,

(14)

with σ = 1/(120π) in 3D and Wendland C4 kernel, scaled to a radius
of 2h, defined as

w (q) = {
(1− q/2)6 (35q2/12+ 3q+ 1) q < 2,
0 q ≥ 2,

(15)

with σ = 495/(256π). The cubic spline has a long history within
SPH since it is the lowest order spline that has a continuous first
derivative. The quintic spline (or other higher order splines) may
be used when higher accuracy is required and the kernel bias needs
to be reduced. The B-splines cannot be scaled to arbitrarily large
radii because doing so will lead to the formation of close particle
pairs. The Wendland kernels are attractive because they are stable
against particle pairing for all neighbour numbers owing to their
positive definite Fourier transform (Dehnen and Aly, 2012). The
price they pay for this is that they yield larger density errors than the
B-splines at lower neighbour numbers. The choice of kernel plays
a role in numerical convergence and the reduction of “E0” errors
from the pressure gradient (Read et al., 2010; Dehnen and Aly, 2012;
McNally et al., 2012; Hopkins, 2015), but this is dependent upon the
particular details of a calculation. In the context of SPMHD, both the
cubic spline and Wendland C4 kernel have been used successfully
within a variety of dynamo and astrophysical applications, so the
choice of kernel seems less important than other numerical details.

3 Evolving the magnetic field

The approach that works best for evolving the magnetic field
forward in time is to directly discretise the induction equation. This
is also the most straightforward. Once the time derivative of the
magnetic field has been calculated, it can be used within standard
time integration schemes. A popular option is a kick-drift-kick
leapfrog scheme owing to its efficiency, simplicity and conservation
properties (Springel, 2005; Wadsley et al., 2017; Price et al., 2018).

3.1 Induction equation

Discretising the induction equation is as simple as applying
standard differencing operators to Eq. 3. Each particle evolves B/ρ
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according to

d
dt
(B
ρ
)
a
= − 1

Ωaρ
2
a
∑
b
mbvab [Ba ⋅∇aWab (ha)] , (16)

where vab = va − vb. The magnetic field, when needed, can simply be
reconstructed by multiplying the evolved quantity by the density.

One could evolve B directly instead of B/ρ. Expanding the left-
hand side of Eq. 3 yields

dB
dt
= ρ d

dt
(B
ρ
)+ B

ρ
dρ
dt
, (17)

and by making use of Eq. 3 and the continuity equation (Eq. 1),

dB
dt
= (B ⋅∇)v− (∇ ⋅ v)B. (18)

The corresponding discretisation is

dBa

dt
= − 1

Ωaρa
∑
b
mbvab [Ba ⋅∇aWab (ha)]

+ 1
ρa
∑
b
mbBa [vab ⋅∇aWab (ha)] . (19)

Numerically, any difference between Eqs 16, 19 should arise solely
by the addition of the dρ/dt term when evolving B directly. The
differential form of the continuity equation is baked into the
evolution ofB, whereas evolvingB/ρ uses the integral formulation of
the continuity equation (i.e., the density summation) to reconstruct
B. In theory, evolving B/ρ should thus be preferable over B in
situations where a discontinuity is present in the density as it avoids
assumptions about the differentiability of the density (see also Price,
2008). In practice, however, no substantive evidence has been found
of any meaningful difference between evolving B/ρ and B (e.g.,
Morris, 1996).

An advantageous property of the above discretisations, aside
from their simplicity, is that they are Galilean invariant. That is, the
addition of any constant background velocity does not introduce
numerical error.

The most significant disadvantage of these discretisations is
that they do not place any guarantee on the divergence of the
magnetic field. Even with an initially divergence-free magnetic field,
numerical errors will lead to divergence errors that can grow over
time. A secondary approach is required to treat these errors. The
most effective approach to accomplish this at present seems to be
mixed hyperbolic/parabolic divergence cleaning (Tricco and Price,
2012; Tricco et al., 2016a), as is discussed further in Section 5.

Additionally, it can be seen that the induction equation solved
in SPMHD mimics the source term approach of Powell (1994);
Powell et al. (1999). Consider the conservative formulation of the
induction equation given by

∂B
∂t
= ∇× (v×B) . (20)

Thevector calculus identity∇× (v×B) ≡ (B ⋅∇)v− (∇ ⋅ v)B− (v ⋅∇)B
+(∇ ⋅B)v can be used to rewrite Eq. 20 in terms of a Lagrangian
derivative, yielding

dB
dt
= (B ⋅∇)v− (∇ ⋅ v)B+ (∇ ⋅B)v. (21)

This is identical to Eq. 18 except for the term proportional to ∇ ⋅B.
In SPMHD, this term is ignored, in essence evolving the magnetic

field under the assumption that the divergence of the magnetic field
is zero.This treatment ofmonopoles is equivalent to howmonopoles
are treated by the eight-wave formulation.

The inclusion or absence of the ∇ ⋅B term consequently means
that divergence errors are either, respectively, advected or dispersed.
Taking the divergence of Eq. 21 yields,

∂ (∇ ⋅B)
∂t
= 0, (22)

whereby the constraint for the divergence of the magnetic field only
appears as an initial condition. This preserves the volume integral of
B. By contrast, the divergence of Eq. 18 yields

∂ (∇ ⋅B)
∂t
+∇ ⋅ (v∇ ⋅B) = 0. (23)

In this case, the divergence of the magnetic field is treated in
the same manner as density via the continuity equation, in that
the volume integral of ∇ ⋅B is conserved. The implication is that
divergence errors are advected with the fluid flow. For the previous
case, divergence errors are dispersed, and it has been shown that
including the term proportional to ∇ ⋅B leads to a poorer treatment
of divergence errors in SPMHD (Price and Monaghan, 2005).

3.1.1 Example: Source term in the induction
equation

The advection of a divergence ‘blob’ illustrates the difference
between solving Eqs 18, 21, that is, whether the term proportional to
the divergence of the magnetic field is included or not. These results
mimic those presented by Price and Monaghan (2005), with the
divergence advection test originating from Dedner et al. (2002). The
test is set up using 50× 50 particles on a square lattice set within x,
y ∈ [−0.5,1.5].The density is uniformly ρ = 1, with p = 6 and γ = 5/3.
The initial velocity field is v = [1,1], such that the fluid flows from
the bottom left towards the top right. The initial magnetic field
is Bx = 1/√4π, with a perturbation Bx = [(r/r0)8 − 2(r/r0)4 + 1]/√4π
for r < r0, with r0 = 1/√8. The perturbation to the magnetic field
artificially introduces a non-zero divergence to the magnetic field.

Figure 1 shows the transport of the divergence error between the
source term (Eq. 18) and volume conservative (Eq. 21) approaches.
When the term related to the divergence of the magnetic field is
excluded (equivalent to the source term approach of the eight-wave
solver), the divergence error is passively advected with the fluid flow.
The formulation remains consistent in the presence of divergence
errors. By contrast, with this term included, the volume conservative
form spreads the divergence error throughout the domain.

3.2 Artificial resistivity

The discretised induction equation assumes that the magnetic
field is differentiable, which would not be true at discontinuities
since the magnetic field would be multi-valued. An artificial
resistivity is applied to the magnetic field to smooth discontinuities
over the resolution scale so that the magnetic field remains
single valued. Developed by Price and Monaghan (2004a), Price
and Monaghan (2005), artificial resistivity adds dissipation to the
magnetic field according to

d
dt
(B
ρ
)
a
=∑

b
mb

vsig,B
ρ2
ab

(Ba −Bb) ̂rab ⋅∇aWab, (24)
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FIGURE 1
The advection of ∇ ⋅B with and without a source term related to the divergence of the magnetic field in the induction equation (top and bottom rows,
respectively). With the source term (top row), the volume integral of ∇ ⋅B is preserved and the divergence of the magnetic field is advected with the
fluid flow. Without the source term (bottom row), the divergence of the magnetic field is dispersed throughout the domain.

where ρab ≡ (ρa + ρb)/2 and ∇aWab ≡ [∇aWab(ha)/Ωa +∇aWab(hb)
/Ωb]/2. The signal velocity, vsig,B, represents the speed of
information propagation between two particles.

Energy dissipated from the magnetic field may be added to the
internal energy, u, through

dua
dt
= −∑

b
mb

vsig,B
ρ2
ab

(Ba −Bb)
2 ̂rab ⋅∇aWab. (25)

Importantly, the deposition of dissipated magnetic energy into
the internal energy is guaranteed to be positive definite. Unlike
artificial viscosity, artificial resistivity is applied to both approaching
and receding particles, since discontinuities in the magnetic field
can occur during both compression and rarefaction, and to all
components of the magnetic field (rather than just along the line
of sight like artificial viscosity), since magnetic discontinuities can
occur oblique to the motion (Price and Monaghan, 2004a; Price and
Monaghan, 2005).

One option for the signal velocity is

vsig,B =
1
2
αB,ab (vmhd,a + vmhd,b) , (26)

which uses the averaged fast magnetosonic wave speed, vmhd. A
dimensionless parameter, αB, may be included per particle to switch
dissipation off in regions that are not discontinuous, with αB,ab =
(αB,a + αB,b)/2. Price and Monaghan (2005) created a switch for αB
based on analogy to the Morris and Monaghan (1997) switch for

artificial viscosity. In this case,

dαB,a

dt
=max(

|∇×Ba|
√μ0ρa
,
|∇ ⋅Ba|
√μ0ρa
)−

αB,a − αB,0

τ
, (27)

such that dissipation increases in the presence of strong gradients of
the magnetic field. Barnes et al. (2012) found that αB,0 = 0 leads to
satisfactory results in their shock tube and other two-dimensional
MHD tests.

However, Tricco and Price (2013) noted that the Price and
Monaghan (2005) switch will not apply sufficient dissipation to
capture discontinuities if strong shocks are present and themagnetic
field is very weak (i.e., plasma β ∼ 106–1010), leading to numerical
noise in the magnetic field and spurious growth of magnetic
energy. In such a regime, using the Alfven speed instead of fast
magnetosonic speed in the signal velocity is similarly problematic
if shocks are present. They recommend a new switch, setting

αB,a =
ha|∇Ba|
|Ba|
. (28)

Note that this does not require the time evolution of αB. On test
problems, this switch led to less overall magnetic energy dissipation
than the Price and Monaghan (2005) switch. However, Barnes et al.
(2018) found that the Tricco and Price (2013) switch was too
dissipative in cosmological simulations of galaxy cluster formation.

Price et al. (2018) advocated setting the signal velocity to

vsig,B = |vab × ̂rab|. (29)
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No tunable dissipation parameter in the form of αB is required.
It is noteworthy to realize that this switch is not dependent upon
the magnetic field at all. Yet, despite this, the switch in Eq. 29
appears to provide less dissipation and work robustly in a variety
of real applications, for example, within simulations of the MRI
(Wissing et al., 2022) or the collapse of molecular cloud cores to
stellar densities (Wurster et al., 2022).

Though numerical stability is the purpose of including artificial
resistivity in simulations, its implementation is equivalent to
a (resolution-dependent) physical dissipation term η∇2B with
magnetic diffusivity

ηAR ∼
1
2
vsig,Bh. (30)

This is analogous to the translation of artificial viscosity to a physical
viscosity (Artymowicz and Lubow, 1994; Lodato and Price, 2010).
Keep in mind that advection in SPMHD is dissipationless since it is
a Lagrangian scheme. This means that, for ideal MHD calculations
with only numerical dissipation, it is possible to estimate
the magnetic Reynolds number or magnetic Prandtl number
directly from the artificial dissipation terms (e.g., Wissing et al.,
2022).

Measurements of the magnetic Prandtl number, Pm = ν/η,
where ν is the kinematic viscosity, typically range between
Pm ∼ 0.1–2 when the only sources of dissipation are artificial
viscosity and resistivity. There is slight dependence upon the
numerical resolution as given by the particle smoothing lengths,
but of more importance seems to be the specific problem under
consideration. Tricco et al. (2016b) found Pm ≈ 1 in simulations of
supersonic, magnetized turbulence, and Wissing et al. (2022) found
Pm ≈ 1.5 in stratified, net-flux shearing box simulations. Wissing
and Shen (2023) performed simulations of the galactic dynamo in
spiral galaxies, measuring Pm ≈ 0.1 in the inner radius of the galaxy
and Pm ≈ 0.7 in the outer regions.

Overall, artificial resistivity works well to treat magnetic
discontinuities. However, it is a crude tool for this purpose as
it is difficult to reliably detect magnetic discontinuities, and it
does not distinguish between Alfvén waves and compressive waves.
Iwasaki and Inutsuka (2011) use a Godunov scheme instead of
artificial resistivity to address these issues. This offers reduced
numerical dissipation, but brings additional computational expense,
whereas artificial resistivity is computationally inexpensive as it does
not introduce additional time constraints or extra loops over the
particles.

3.2.1 Example: Brio-Wu shock tube
The accuracy of the artificial resistivity switch given by Eq. 29

can be demonstrated with the shocktube from (Brio and Wu, 1988),
which also corresponds to shocktube 5A fromRyu and Jones (1995).
This test is a magnetic extension of the Sod (1978) shocktube.
The results of this particular shocktube configuration have been
presented multiple times for SPMHD, for example, amongst
others, Børve et al. (2001); Price and Monaghan (2004a),Price and
Monaghan (2004b); Barnes et al. (2012); Tricco and Price (2013);
Hopkins and Raives (2016); Tricco et al. (2016a); Price et al. (2018);
Wissing and Shen (2020). Other shocktube configurations have
been tested with SPMHD, some of which are in the preceding
references.

The initial conditions are given by [ρ, P] = [1, 1] for the left
state, and [ρ, P] = [0.125, 0.1] for the right state. The equation of
state uses γ = 5/3, as in Ryu and Jones (1995), which is in contrast
to γ = 2 in Brio and Wu (1988). The test is calculated in full 3D,
with 800× 20×20 particles for the left state and 400× 10×10 particles
for the right state, initially arranged on cubic lattices. The velocity
is zero for both the left and right states. The magnetic field vector
is [Bx, By, Bz]L = [0.75, 1, 0] for the left state and [Bx, By, Bz]R =
[0.75, −1, 0] for the right state. There is no smoothing of the initial
conditions.

Figure 2 shows the results at t = 0.1. The black circles represent
the values on the particles, with the red line a reference solution
given by the grid-based code ATHENA (Stone et al., 2008) using
104 grid cells. This shocktube contains a slow compound structure,
which is notably absent from the Riemann solver solution given by
Ryu and Jones (1995). SPMHD captures all of the shock structures.
For the magnetic field components in particular, By agrees with the
reference solution, with the discontinuities at x ∼ −0.03 and x ∼ 0.13
represented over 4–8 particle spacings. In the analytic solution, the
other magnetic field components remain constant over time, with
Bx = 0.75 and Bz = 0. This is maintained in the SPMHD solution,
except for small deviations due to the initial contact discontinuity
near x ∼ 0.06 that introduce noise into the particle arrangement.
The absolute max deviations in Bx and Bz are on the order of
∼10−3.

3.3 Euler potentials

Alternative formulations to evolve the magnetic field have
been investigated, though with little success. One approach that
appeared promising on the surface was defining the magnetic field
in terms of the Euler potentials, B = ∇αE ×∇βE, where αE and βE
are scalar potentials. This upholds ∇ ⋅B = 0 by construction. The
scalar potentials themselves are simply advected with the fluid flow.
This is trivial to implement into a Lagrangian scheme, as the scalars
become just constant, passive values attached to each particle. The
re-construction of the magnetic field is thus dependent solely upon
the configuration of the potentials.

Calculating the gradient of each potential may be done
with standard SPH derivative operators, such as the differencing
derivative operator,

∇αE = −
1

Ωaρa
∑
b
mb (αE,a − αE,b)∇aWab (ha) , (31)

∇βE = −
1

Ωaρa
∑
b
mb (βE,a − βE,b)∇aWab (ha) . (32)

Plugging the re-constructedmagnetic field into the conservative,
Lagrangian equations of motion (see Section 4) yields a numerically
stable scheme, and numerical formulations of this type have been
used in several astrophysical applications, such as star formation
(Price and Bate, 2007; Price and Bate, 2008; Price and Bate,
2009), neutron star mergers (Price and Rosswog, 2006) and the
magnetic fields of galaxies (Dobbs and Price, 2008; Kotarba et al.,
2009).

However, the Euler potentials are incapable of correctly
capturing the full range of magnetic field topologies (Brandenburg,
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FIGURE 2
Brio-Wu shocktube at t = 0.1 with γ = 5/3. The initial configuration leads to a compound shock structure. The black circles represent the SPMHD
solution, with the red line a reference solution from the ATHENA code. The magnetic field components of the SPMHD solution agree with the reference
solution. Notably, Bx remains constant even in the presence of density jumps and velocity discontinuities, with only small deviations in Bx and Bz

located near the initial contact discontinuity. Results are presented using the artificial resistivity switch given by Eq. 29.

2010). Since the potentials are passively advected, there is a one-
to-one mapping from the initial magnetic field topology to any
evolved field. This is problematic for rotating discs, for example, as
the magnetic field would be essentially reset with each turn once
the particles return to their initial positions. Even worse is that
the Euler potentials are incapable of modelling dynamos, and are
incompatible with linear diffusion operators (Brandenburg, 2010).

Star formation calculations highlight the preceding limitations.
SPMHD calculations that evolve the magnetic field via the
induction equation produce magnetically-driven jets and outflows
(e.g., Bürzle et al., 2011b; Price et al., 2012; Bate et al., 2014;
Tsukamoto et al., 2015b; Lewis et al., 2015; Hopkins and Raives,
2016; Wurster et al., 2018a; Tsukamoto et al., 2018; Wissing and
Shen, 2020; García-Senz et al., 2023). However, no such outflows
are produced when similar calculations are performed using the
Euler potentials (Price and Bate, 2007). At present, it seems there is
little use for the Euler potentials in astrophysical simulation, except
perhaps as a secondary check for numerical artefacts (Dolag and
Stasyszyn, 2009).

3.4 Vector potential

Defining the magnetic field in terms of the vector potential,
B = ∇×A, would seem an ideal choice. Doing so would guarantee
a divergence-free magnetic field, without any of the topological
restrictions associated with the Euler potentials. However, SPMHD

implementations of the vector potential appear to be plagued with
numerical instabilities (Price, 2010).

An evolution equation for the vector potential can be obtained
by combining B = ∇×A with the induction equation (i.e., Eq. 22),
which yields

dA
dt
= v× (∇×A) + (v ⋅∇)A+∇ϕ, (33)

where ∇ϕ represents the gauge choice, arising as a constant of
integration. Price (2010) used the gauge ϕ = −v ⋅A, yielding

dA
dt
= −A× (∇× v) − (A ⋅∇)v. (34)

This has the effect of moving the derivative onto v instead of A,
which makes the discretisation Galilean invariant. In spite of this,
using the same approach to calculate the Lorentz force as employed
with the Euler potentials, whereby the re-constructed magnetic
field is used within the equations of motion (see Section 4), will
lead to numerical instability and runaway energy growth (Price,
2010). That this occurs for the vector potential and not the Euler
potentials is understandable because the Euler potentials are held
constant.

Numerical instability and runaway energy growth occur due to
the mismatch of variables between the evolution of the magnetic
energy (evolving A) and kinetic energy (equations of motion using
B), such that the total energy in this hybrid formulism is not
conserved. In theory, this is solved by deriving the consistent,
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conservative equations of motion from the Lagrangian that directly
use the vector potential. Unfortunately, this only seems to lead
to a different set of numerical issues. The resultant equations of
motion contain three terms, with the first term acting like a negative
magnetic pressure, the second term involving second derivatives
of the kernel (which are known to be highly sensitive to particle
disorder), and the third term nested low-order derivative estimates
(Price, 2010). These equations do fundamentally represent the
MHD equations of motion in the continuum limit, such that, for
example, the second and third terms partially encode the magnetic
pressure to offset the negative pressure of the first term, but
the inherent numerical issues mean that this is not realized in
practice.

Stasyszyn and Elstner (2015) explored options to revive
the hybrid formulism, such as smoothing the re-constructed
magnetic field, adding numerical dissipation of the vector potential,
and choosing the Coulomb gauge, ϕ = ∇ ⋅A, which is upheld
through mixed hyperbolic/parabolic divergence cleaning (more
on this in Section 5.1). Tu et al. (2022) also smoothed the re-
constructed magnetic field, with the Weyl gauge, ϕ = 0, albeit
within a meshless finite mass (MFM) scheme. Further testing
is required on the robustness of these approaches. Tricco and
Price (2023) derived a novel discretisation for the evolution
equation of A in terms of a volume integral, but which also
failed to produce a valid numerical solution. At present, it
remains to be demonstrated that there is a formulation of the
vector potential in SPMHD that is viable for general astrophysical
application.

4 Accelerations from the magnetic
field

The equations of motion for SPMHD are derived from the
Lagrangian. The implication of doing this is that the discretised
equations ofmotion are the physical equations governing the system
of discrete particles. This imparts a number of desirable properties,
such as exact conservation of momentum, energy and entropy.
Some early work directly discretised the Lorentz force, J×B, where
J = ∇×B/μ0 is the current density, but these formulations do not
provide the conservation properties of the Lagrangian approach
(Gingold and Monaghan, 1977; Meglicki et al., 1995) and are poor
at capturing shocks (Morris, 1996).

4.1 Conservative equations of motion

The SPMHD Lagrangian is

LSPMHD =∑
a
ma(

v2a
2
− ua −

B2
a

2μ0ρa
). (35)

The SPMHD equations of motion can be derived by using a
variational approach (Price and Monaghan, 2004b; Price, 2012).
The only ingredients necessary are the prescription for density (via
the density summation in Eq. 6) and the specification on how the
magnetic field is evolved. The induction equation given by Eq. 16 is
assumed (or equivalently Eq. 19).

The resultant equations of motion from the Lagrangian are

dva
dt
= −∑

b
mb[

Pa
Ωaρ

2
a
∇aWab (ha) +

Pb
Ωbρ

2
b

∇aWab (hb)]

− 1
2μ0
∑
b
mb[

B2
a

Ωaρ
2
a
∇aWab (ha) +

B2
b

Ωbρ
2
b

∇aWab (hb)]

+ 1
μ0
∑
b
mb[

Ba

Ωaρ
2
a
Ba ⋅∇aWab (ha)

+
Bb

Ωbρ
2
b

Bb ⋅∇aWab (hb)] . (36)

The second term in Eq. 36 represents an isotropic magnetic
pressure and the third term an anistropic magnetic tension. The
correspondence between the SPMHD momentum equation and the
stress tensor is clear upon examination of Eq. 36 with Eqs 2, 5, and,
indeed, Eq. 36 could be written in terms of the stress tensor as

dvia
dt
=∑

b
mb
[

[

Sija
Ωaρ

2
a

∂Wab (ha)

∂x j
a

+
Sijb

Ωbρ
2
b

∂Wab (hb)

∂x j
a

]

]
. (37)

Note, however, that while these equations of motion exactly
conservemomentum, energy and entropy (provided they are used in
conjunctionwith the density summation and the induction equation
prescribed in their derivation), they do not conserve angular
momentum. The anisotropic magnetic tension is not invariant to
rotation. Notably, this term is derived solely from the numerical
choice for the induction equation.

Wissing and Shen (2020) investigated switching the gradient
operator in the momentum equation to one based on geometric
density averaging, given by

dvia
dt
=∑

b
mb

Sija + S
ij
b

ρaρb
∇jaWab. (38)

This type of gradient operator is used for the (thermodynamic)
pressure gradient in the GASOLINE2 code (Wadsley et al., 2017),
and promises to reduce artificial surface tension type effects
(Agertz et al., 2007). For SPMHD, Wissing and Shen (2020) find
that the geometric density average formulism has a lower numerical
resolution requirement to produce magnetically-driven outflows
from the gravitational collapse ofmagnetisedmolecular cloud cores.
This is promising and warrants further examination.

Writing the momentum equation in terms of the stress tensor
creates a complication in that the anisotropic tension contains a
component due to monopole moments. The third term in Eq. 36
is equivalent to (B ⋅∇)B/μ0ρ+ (∇ ⋅B)B/μ0ρ in the continuum limit.
The force contributions proportional to ∇ ⋅B are present in order
to be momentum conserving in the presence of monopoles. The
issue of monopole forces in SPMHD is complicated, in that even
for a magnetic field that is constant and uniform (i.e., ∇ ⋅B = 0),
the discretisation used in the momentum equation may produce
monopole forces. This is related to the “E0” errors often discussed
in relation to the pressure gradient (Read et al., 2010; Dehnen and
Aly, 2012; McNally et al., 2012; Hopkins, 2015).

The real challenge with monopole accelerations is not related
to the discretisation, however, but arise from any non-zero
divergence errors that may be present in the magnetic field.
The induction equation in SPMHD makes no guarantee of a
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divergence-free magnetic field. The detrimental effect of
(∇ ⋅B)B/μ0ρ is most strongly connected to the severity of non-zero
divergence errors.

Compounding the considerations of monopole accelerations is
that the conservative equations of motion themselves are tensile
unstable. The anisotropic magnetic tension is an attractive force,
and if it exceeds the isotropic pressure, then the particles will
unphysically clump. For Eq. 36, this occurs for plasma β < 1
(Phillips andMonaghan, 1985; Børve et al., 2001; Børve et al., 2004).
Importantly, this criterion is only based upon the magnitude of the
magnetic field. Fortunately, removing the tensile instability is not
difficult.

4.2 Removing the tensile instability

The approach that seems to work best to counteract the tensile
instability is to explicitly subtract the non-physical force arising
from the monopole contribution (Børve et al., 2001). This aligns
with the source-term approach of the eight-wave solver (Powell,
1994; Powell et al., 1999). Importantly, the removal of monopole
accelerations must use the same discretisation for ∇ ⋅B as in the
momentum equation, that is,

(
dva
dt
)

divB
= −β̂a∑

b
mb[

Ba

Ωaρ
2
a
⋅∇aWab (ha)

+
Bb

Ωbρ
2
b

⋅∇aWab (hb)] , (39)

where β̂a used to regulate the strength of the applied correction, with
β̂a = Ba corresponding to a full correction of the force term. Adding
Eq. 39 to the conservative momentum equation (Eq. 36) yields a
numerically stable solution.

The consequence of removing monopole accelerations is that
the conservative equations of momentum no longer conserve
momentum. The severity of this non-conservation of momentum
is dependent upon the magnitude of divergence errors. In the
worst case, this can corrupt the obtained solution (for a dramatic
example of this, see Tricco and Price, 2012). Thus, controlling
the magnitude and growth of divergence errors will improve
momentum conservation.

Børve et al. (2004) showed that the tensile instability can be
corrected with β̂ = 1

2
B, thereby subtracting only 1

2
(∇ ⋅B)B/μ0ρ. In

theory, this provides a factor of two improvement on the non-
conservation of momentum. Barnes et al. (2012) recommended
this for general SPMHD calculations, though Tricco and Price
(2012) found that this might cause numerical artefacts as, while
technically sufficient to prevent instability, it may leave particles
in a near-pressureless state. Compounding this is that subtracting
the full strength term (β̂a = Ba) causes dispersive errors in slow
magnetosonic waves. The half strength term (β̂a =

1
2
Ba) does

not introduce these type of errors (see Section 4.2.1, c.f. Iwasaki,
2015).

Since the tensile instability only manifests for plasma β < 1,
Børve et al. (2006), Price et al. (2018) and Wissing and Shen (2020)
have proposed schemes where the tensile instability correction
is switched off in pressure-dominated regimes, suggesting,

respectively,

β̂a =
{{
{{
{

Ba β < 2
Ba (10− β)/8 2 < β < 10
0 β ≥ 10

(40)

and

β̂a =
{{
{{
{

Ba β < 1
Ba (2− β) 1 < β < 2
0 β ≥ 2

(41)

Both provide a linear transition from full correction to no correction
once plasma β is above a critical threshold. This provides exact
momentum conservation when possible.

An alternative approach to deal with the tensile instability is
to use a more accurate derivative estimate for the anisotropic term
Morris (1996). This uses the conservative form for the isotropic
hydrodynamic and magnetic pressure (first and second terms in
Eq. 36), but replaces the anisotropic force (third term in Eq. 36) with

(
dvia
dt
)

aniso
= 1
μ0
∑
b
mb

Bi
bB

j
b −B

i
aB

j
a

ρaρb
∇jaWab (ha). (42)

This is not momentum conserving, but yields a numerically stable
solution. A disadvantage is that the Morris (1996) approach cannot
be switched off, and also has dispersive errors in slow magnetosonic
waves (Iwasaki, 2015).

4.2.1 Example: Propagation of an isolated wave
The tensile instability correction term, depending upon its

implementation, can introduce dispersive errors to slow MHD
waves. Here, this is demonstrated using the test from Iwasaki
(2015) of the propagation of an isolated wave. The initial
density is ρ = 1, with 320× 160 particles arranged on a square
lattice in the domain x ∈ [−2,2] and y ∈ [−1,1]. An isothermal
equation of state is used, with p = 1 and sound speed, cs = 1.
The magnetic field is uniform along the x-direction with plasma
β = 0.1. The test is performed using the cubic and quintic spline
kernels.

Figure 3 shows the rightward propagating wave at t = 0.5 for
β̂ = B (top panel) and β̂ = 1

2
B (bottom panel), where β̂ is the

leading term in the tensile instability correction term given by
Eq. 39. The location of the expected peak of the wave at t = 0.5
is given by the vertical dashed line (x = 0.5). For β̂ = B, dispersive
errors cause supersonic velocities preceding the wave. In this case,
the quality of the kernel affects the result, with the cubic spline
showing a larger phase velocity than the quintic spline. For β̂ = 1

2
B,

there are no dispersive errors and the wave propagates (mostly) as
expected.

5 Divergence-free constraint of the
magnetic field

Upholding the divergence-free constraint on the magnetic field
is critical. In one respect, real magnetic fields are purely solenoidal,
so modelling magnetic fields that preserve this topological
constraint is only logical. From a theoretical perspective, magnetic
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FIGURE 3
The propagation of an isolated wave in a strongly magnetized medium
(plasma β = 0.1) with the full tensile instability correction term (top) and
the correction term reduced by half (bottom), that is, β̂ = B and β̂ = 1

2
B

as used in Eq. 39. Applying the full correction term leads to supersonic
dispersive errors, whereas the half correction term yields results
consistent with the expected solution.

fields within simulation should avoid unphysical configurations. In
another respect, there are numerical justifications for minimizing
divergence errors. Doing so avoids numerical artefacts in the
momentum equation and the overall conservation of momentum
and energy.

An important question is: how does one define a “divergence-
free magnetic field” numerically? One such definition has already
been used in Eq. 39, whereby

∇ ⋅Ba = ρa∑
b
mb[

Ba

Ωaρ
2
a
⋅∇aWab (ha) +

Bb

Ωbρ
2
b

⋅∇aWab (hb)] . (43)

Instead of this symmetric gradient estimate, one could instead
measure the divergence of the magnetic field with a difference
gradient estimate according to

∇ ⋅Ba = −
1

Ωaρa
∑
b
mb (Ba −Bb) ⋅∇aWab (ha) . (44)

Measuring zero divergence of the magnetic field in one metric
does not guarantee zero in another. As a case in point, neither
of the above discretisations are zero when the magnetic field is
specified in terms of the Euler potentials, even though it intrinsically
guarantees a divergence-freemagnetic field (Tricco and Price, 2012).
Nonetheless, minimizing divergence error in one discretisation will
often reduce divergence error in another discretisation. This is
important for SPMHD, as it means the detrimental side effects of
the tensile instability correction will benefit from divergence control
in a different discretisation.

At present, there are no robust methods in SPMHD for exactly
preserving the divergence-free constraint on the magnetic field.
The challenges faced with the Euler potentials and vector potential
implementations are discussed in Section 3.3 and Section 3.4.
Instead, it would appear that the best option currently is to only
approximately uphold this constraint.

5.1 Hyperbolic/parabolic divergence
cleaning

Dedner et al. (2002) introduced a divergence cleaning approach
that transports divergence errors away from their source and damps
them through a set of coupled hyperbolic and parabolic equations.
In essence, divergence errors are propagated through a dampedwave
equation. A new, scalar field, ψ, is coupled to the magnetic field to
facilitate this.

Tricco and Price (2012) adapted the Dedner et al. (2002)
divergence cleaning scheme for SPMHD, with later improvements
by Tricco et al. (2016a). The cleaning equations, in continuum form,
are given by

dB
dt
= −∇ψ, (45)

d
dt
(
ψ
ch
) = −ch (∇ ⋅B) −

1
τ
(
ψ
ch
)− 1

2
(
ψ
ch
)(∇ ⋅ v) . (46)

This formulation differs from Dedner et al. (2002), in that Eqs 45,
46 use Lagrangian derivatives, use ψ/ch for the evolved variable, and
account for compression and rarefaction of the fluid. Also accounted
for are wave cleaning speed, ch, and parabolic damping, τ, that
vary in time. Tricco et al. (2016a) showed that the above system of
equations can be combined to create a generalised wave equation of
the form

d
dt
[ 1
√ρch

d
dt
(

ψ
√ρch
)]−
∇2ψ
ρ
+ d

dt
[ 1
√ρch
(

ψ
√ρchτ
)] = 0. (47)

If ch, τ, ρ and the fluid velocity are held constant, this reduces to the
usual damped wave equation, specified in the original Dedner et al.
(2002) formulation,

∂2ψ
∂t2
− c2h∇

2ψ+ 1
τ
∂ψ
∂t
= 0. (48)

The SPMHD discretised cleaning equations are

d
dt
(B
ρ
)
a
= −∑

b
mb[

ψa

Ωaρ
2
a
∇aWab (ha) +

ψb

Ωbρ
2
b

∇aWab (hb)] , (49)
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FIGURE 4
The gravitational collapse of a molecular cloud core. Without divergence control (left panel), divergence errors lead to material becoming kicked out of
the plane of the disc due to momentum errors arising from the tensile instability correction. With divergence cleaning (right panel), divergence errors
are kept sufficiently low to avoid catastrophic momentum injection, and the disc remains planar. Reproduced from Figure 21 in Tricco and Price (2012).

d
dt
(
ψ
ch
)
a
=

ch,a
Ωaρa
∑
b
mb (Ba −Bb) ⋅∇aWab (ha) −

1
τ
(
ψ
ch
)
a

+ 1
2
(
ψ
ch
)
a
∑
b
mbvab ⋅∇aWab (ha) . (50)

Note that the difference estimate is used for ∇ ⋅B (Eq. 44). These
‘constrained’ hyperbolic/parabolic divergence cleaning equations
have formal guarantees about numerical stability. The discretised
cleaning equations were derived by considering the energy content
of the ψ field, eψ = ψ2/2μ0ρc

2
h, ensuring that any change in the

magnetic energy is conserved by an equal but opposite change in ψ
energy so that total energy is conserved. Imposing this constraint
further ensures that the parabolic damping will only ever siphon
energy from the magnetic field.

The hyperbolic wave speed, ch, is typically taken to be the fast
magnetosonic wave speed, so that propagation is at the fastest rate
permissible within the Courant timestep condition. This is given,
per particle, by Δta = Cha/ch,a where C ∼ 0.3 is the Courant factor.
Since the hydrodynamical timestep is already constrained by the fast
magnetosonic speed, this does not impose any additional timestep
constraint. It is possible to use a faster speed, so long as the timestep
is commensurately decreased (Dobbs and Wurster, 2021). The rate
of damping is set by

τ = h
σch
, (51)

with σ = 1 an optimal choice (Tricco and Price, 2012; Barnes et al.,
2018).

The divergence error within a calculation can be measured by
the dimensionless quantity

ϵdivB =
h|∇ ⋅B|
|B|
. (52)

Typically, ‘constrained’ divergence cleaning keeps the mean ϵdivB in a
simulation around ∼ 1%. This is sufficient for practical applications,
and, generally, reduces average divergence error by about an order
of magnitude for most test problems and astrophysical applications.
Divergence cleaning can subsequently yield multiple orders of
magnitude improvement in momentum conservation through the
connection of the tensile instability correction with the divergence
of the magnetic field. An example of this is shown in Figure 4,

FIGURE 5
Change in total linear momentum over 1.4 free-fall times for the
gravitational collapse of a molecular cloud core (see Figure 4). A sharp
injection of momentum occurs when a sink particle is introduced
around one free-fall time. Divergence cleaning improves the
conservation of momentum by two orders of magnitude, which is
sufficient to keep the sink particle within the disc. Reproduced from
Figure 22 in Tricco and Price (2012).
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which showcases the gravitational collapse of a molecular cloud
core from Tricco and Price (2012) (their Figure 21). Without
divergence cleaning, material is ejected out of the plane of the
disc due to spurious momentum gain from the tensile instability
correction arising fromdivergence errors.With divergence cleaning,
the disc remains stable over long-term evolution. Figure 5 shows
the corresponding total momentum change. A sink particle
is introduced around one free-fall time. Divergence cleaning
improves momentum conservation by approximately two orders of
magnitude, which is sufficient to keep the sink particle within the
disc.

Importantly, the ‘constrained’ divergence cleaning scheme is
stable in the presence of free boundaries or sharp density contrasts
(Tricco and Price, 2012). Price and Monaghan (2005) tested a
non-conservative scheme on the Orszag-Tang vortex (Orszag and
Tang, 1979), finding that it gives, at best, a factor two reduction
in average divergence error, but could potentially increase overall
divergence error through spurious energy creation (a “divergence
creating” scheme). Stasyszyn et al. (2013) demonstrate that a non-
conservative scheme can corrupt shocktube solutions with sharp
density jumps.

Although divergence cleaning uses the difference derivative
estimate for ∇ ⋅B, as given by Eq. 44, it is possible in principle
to use other discretisations. As an example, Tricco and Price
(2012) constructed “constrained” divergence cleaning equations
that used the symmetric derivative estimate (Eq. 43). Though

FIGURE 6
Density cross-sections of the 3D Orszag-Tang vortex.

FIGURE 7
The median divergence error across all particles for the 3D
Orszag-Tang vortex, as measured by h|∇ ⋅B|/|B|, with and without
divergence cleaning (orange dashed line and blue solid line,
respectively). The shaded regions represent the inter-quartile range,
that is, the 25th and 75th percentiles.

numerically stable, this low-order estimate was found to be overly
dissipative and could introduce artefacts into the physical portions
of the magnetic field since this estimate is sensitive to particle
disorder.

5.1.1 Example: 3D Orszag-Tang vortex
The Orszag-Tang vortex (Orszag and Tang, 1979) is a widely

used test that consists of interacting vortices that incite magnetized
turbulence, and is used here to demonstrate the efficacy of mixed
hyperbolic/parabolic divergence cleaning. Results for this test have
been shown for SPMHD many times, for example, Price and
Monaghan (2005); Børve et al. (2006); Rosswog and Price (2007);
Dolag and Stasyszyn (2009); Barnes et al. (2012); Tricco and Price
(2012), Tricco andPrice (2013); Price et al. (2018);Wissing and Shen
(2020). Originally a 2D test, it is extended to 3D for this test by
adding a small thickness in z. The simulation domain is x, y ∈ [0,1]
and z ∈ [0,3/128], with 512× 512×12 particles arranged on a cubic
lattice. The initial conditions are ρ = 25/(36 π), p = 5/(12π), v =
[-sin(2πy), sin(2πx), 0] and B = [-sin(2πy), sin(4πx), 0] with γ =
5/3. The calculations use the artificial resistivity switch given by
Eq. 29.

Figure 6 shows the density cross-sections at t = 0.5 and t = 1
for the calculation with divergence cleaning. The divergence error
can be measured by the dimensionless quantity ϵdivB = h|∇ ⋅B|/|B|,
which provides a standard metric for comparison. Figure 7 shows
the median ϵdivB over time for calculations of the 3D Orszag-
Tang vortex with and without divergence cleaning. The shaded
regions represent the inter-quartile range, that is, the 25th to
75th percentiles. There is a significant reduction in divergence
error when divergence cleaning is applied. The median ϵdivB
with divergence cleaning is ∼0.1% (the average ϵdivB is also
∼0.1%). This is below the 25th percentile without divergence
cleaning.
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5.2 Alternative divergence control
approaches

SPMHD calculations enjoy a minor level of divergence
control through artificial resistivity. As discussed in Section 3.2,
the explicitly added dissipation from artificial resistivity is
equivalent to a (resolution-dependent) physical dissipation,
ηAR∇2B = ηAR∇(∇ ⋅B) − ηAR∇× (∇×B). Though artificial resistivity
is intended to treat discontinuities in the magnetic field, it may help
dissipate magnetic monopoles. The caveat is that dissipation is also
applied to physical portions of the field, so using artificial resistivity
primarily as a divergence control measure has its drawback.

Periodically smoothing the magnetic field to remove small-
scale noise has occasionally been suggested (Børve et al., 2001;
Dolag and Stasyszyn, 2009; Stasyszyn and Elstner, 2015; Tu et al.,
2022). However, the frequency of the smoothing procedure
needs to remove small-scale noise without overly smoothing
the field. Smoothing procedures are adhoc without any formal
guarantees.

Formulations that yield a truly divergence-free magnetic field
would be ideal. SPMHD appears to be far from achieving this
currently (see discussion on the Euler potentials and vector potential
in Section 3.3 and Section 3.4). One avenue that is under-explored
are projection methods (Brackbill and Barnes, 1980; Tóth, 2000).
Considering an “unclean” magnetic field, B*, it can be written
in terms of its physical and unphysical components according to
B* = ∇×A+∇ϕ, where A is the vector potential and is the physical
portion of the field (since the divergence of the curl is zero). From
this, it can be stated that ∇ ⋅B* = ∇2ϕ, and then by solving for ϕ, the
divergence-free magnetic field can be obtained from B = B*−∇ϕ.
It is noteworthy to consider that projection methods are commonly
used to obtain divergence-free velocity fields for the simulation of
incompressible fluids in SPH (Cummins and Rudman, 1999; Hu and
Adams, 2007; Lind et al., 2020).

Price and Monaghan (2005) tested projection methods in
SPMHD, finding that they worked well for simple test problems.
The most significant disadvantage is the computational cost in
solving the elliptic set of equations. Using a tree may help improve
efficiency, but would still be similar in cost to tree-based gravity
solvers. Individual particle timesteps add further complication.
It may be worth revisiting projection methods and testing
further.

6 Non-ideal MHD

Non-ideal MHD concerns plasmas that are only partially
ionized. A population of neutral particles can introduce important
deviations from the flux freezing condition of ideal MHD. In the
context of star formation, these non-ideal effects may play a role
in molecular cloud formation, disc fragmentation and braking, and
the seeded magnetic field strength inside protostars (see reviews by
Pudritz and Ray, 2019; Hennebelle and Inutsuka, 2019; Maury et al.,
2022).

Consider a partially ionized plasma consisting of electrons,
ions, and neutrally charged particles. Ohmic resistivity refers to the
impediment of free electron flow in conducting plasmas. Ambipolar
diffusion is the process of neutral particles drifting through ions.

The magnetic field is tied to the electrons and ions, thus there
is a movement of mass that does not result in transport of the
magnetic field. Both Ohmic resistivity and ambipolar diffusion are
dissipative processes. The Hall effect, on the other hand, is not
dissipative, but rather dispersive. For the Hall effect, ions or charged
dust grains are collisionally coupled to the neutral species, but the
electrons are not. The magnetic field is only transported by the
electrons. See, for example, Wardle and Ng (1999); Braiding and
Wardle (2012a), Braiding and Wardle (2012b); Pudritz and Ray
(2019); Tsukamoto et al. (2022) for discussion on non-ideal effects
in the context of star formation.

The three non-ideal effects of Ohmic dissipation, ambipolar
diffusion, and the Hall effect have all been implemented into
SPMHD (Tsukamoto et al., 2013; Wurster et al., 2014) and have
been used for a variety of simulations related to star formation (e.g.,
Tsukamoto et al., 2015a; Wurster et al., 2016; Wurster et al., 2019).
Generally speaking, the context in which non-ideal effects would
be expected to play a substantial role is when the ionization rate
is sufficiently low. For this reason, Wurster et al. (2014) implement
non-ideal effects using a single species of SPMHD particles using
the strong coupling approximation, though it is possible to model
using two species of particles, e.g., ambipolar diffusion (Hosking and
Whitworth, 2004).

The continuum equations for the non-ideal MHD effects are
given by

dB
dt
= −∇× [ηO (∇×B)]

+∇× {ηA [(∇×B) × B̂] × B̂}

−∇× [ηH (∇×B) × B̂] , (53)

where B̂ = B/|B|, that is, the unit vector in the direction of the
magnetic field, and ηO, ηA, and ηH are the coefficients for Ohmic
resistivity, ambipolar diffusion, and the Hall effect, respectively.

Non-ideal MHD effects introduce additional timestep
constraints for numerical stability. This is given by

δt =
Cηh

2

η
, (54)

which is calculated for each non-ideal effect. Price et al. (2018) use
Cη = 1/(2π).This timestep constraint can becomedominant for large
η, and additionally note that it scales ∝ h2, whereas the Courant
condition is only ∝ h. Super-time-stepping may be of some benefit
to alleviate pressure from the non-ideal MHD timestep constraints
(Alexiades et al., 1996; Tsukamoto et al., 2013; Wurster et al., 2016),
though this is only applicable for Ohmic dissipation and ambipolar
diffusion.

6.1 Ohmic dissipation

Tsukamoto et al. (2013) and Wurster et al. (2014) implemented
Ohmic resistivity in SPMHD using a “two-first derivatives”
approach (also for ambipolar diffusion and the Hall effect). This
approach makes including non-constant resistivity coefficients
straightforward. The discretised equations are given by

∇×Ba =
1

Ωaρa
∑
b
mb (Ba −Bb) ×∇Wab (ha) , (55)
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d
dt
(B
ρ
)
a
= −∑

b
[
ηO,a(∇×B)a

Ωaρ
2
a
×∇aWab (ha)

+
ηO,b(∇×B)b

Ωbρ
2
b

×∇aWab (hb)] . (56)

The curl ofB is calculated first using a difference derivative estimate,
then the curl of the result with a symmetric derivative estimate. This
conjugate pair of derivative operators appear in many contexts (e.g.,
Cummins and Rudman, 1999; Price, 2010; Tricco and Price, 2012).
The Ohmic dissipation yields a positive-definite increase in thermal
energy according to

dua
dt
=
ηO,a(∇×B)

2
a

ρa
(57)

Note that artificial resistivity is equivalent to an Ohmic
dissipation (see Section 3.2). In this case, it is calculated using a
second derivative directly in a manner equivalent to Brookshaw
(1985) and Cleary and Monaghan (1999), rather than with two
first derivatives as above. Ohmic resistivity implemented with a
direct second derivative does work well, provided the resistivity
coefficient is spatially constant (Bonafede et al., 2011; Biriukov and
Price, 2019).

6.2 Ambipolar diffusion

Ambipolar diffusion can be implemented using a two-first
derivatives approach, with the inner derivative, (∇×B)a, calculated
using a difference derivative estimate (Eq. 55). The second
derivative is estimated with a symmetric derivative, according
to

d
dt
(B
ρ
)
a
= −∑

b
[
DA,a

Ωaρ
2
a
×∇aWab (ha)

+
DA,b

Ωbρ
2
b

×∇aWab (hb)] , (58)

with

DA,a = −ηA,a [(∇×B)a × B̂a] × B̂a. (59)

A positive-definite increase in thermal energy is ensured
(Wurster et al., 2014), with

dua
dt
=
ηA,a

ρa
{(∇×B)2a − [(∇×B)a ⋅ B̂a]

2} . (60)

6.3 Hall effect

The Hall effect calculates (∇×B)a in the same manner as
Ohmic resistivity and ambipolar diffusion, that is, according to
the difference derivative estimate in Eq. 55. The outer derivative
is calculated using a symmetric derivative estimate according to
Eq. 58, but with

DH,a = ηH,a (∇×Ba) × B̂a (61)

in place of DA.

As the Hall effect is dispersive, and not dissipative, it only leads
to the re-distribution ofmagnetic energy.There is no deposition into
thermal energy.

The Hall effect introduces an additional wave type known as
whistler modes (Sano and Stone, 2002; Pandey and Wardle, 2008;
Bai, 2014). The left and right polarizations of Alfvén waves become
asymmetric in the presence of the Hall effect, that is, they have
different phase velocities.The right-handed polarization is called the
whistler wave. The introduction of an additional wave type can be
generally understood in that the Hall effect is hyperbolic in nature
rather than parabolic.

7 Prospective outlook

If there is any indication on the future potential of SPMHD as
a tool to study astrophysical problems, one only needs to look at
the large bodies of work that have been conducted over the past
decade in a variety of astrophysical contexts. It may taken decades
for SPMHD to reach its current level of maturity, but all major
roadblocks have been cleared. SPMHD is finally a method that is
generally applicable for the study of astrophysics. This is not to say
that there is no room to improve the method further. Far from
it.

With respect to grid-based codes, SPMHD possesses a number
of advantages, such as its conservation properties, adaptive
resolution with respect to the density, and absence of dissipation
due to advection. On the other hand, the numerical dissipation
arising from artificial viscosity and resistivity is typically greater
than that stemming from Reimann-based solvers in grid codes.
SPMHD is also typically more computationally expensive than
grid-based codes, owing to the number of neighbours under the
kernel (∼60–200) and the need for a nearest neighbour search.
The inherent particle “re-meshing” motions additionally incur
a level of background noise in the velocity field, though this
can be addressed by using more neighbours or better kernels,
but at increased computational expense (e.g., Tricco, 2019). For
magnetic fields, SPMHD can only approximately uphold the
divergence-free constraint at present, whereas grid-based codes can
utilize approaches such as constrained transport to exactly solve
for a divergence-free magnetic field. Furthermore, the magnetic
field can only be specified where there is mass present (i.e.,
particles).

One area that deserves more study is the MRI. Deng et al.
(2019) found that SPMHD adequately simulates the MRI in
unstratified shearing boxes with net flux, but have decaying
solutions for zero-net flux. They also found that SPMHD produces
unphysical behaviour for stratified shearing boxes, though the
calculations of Wissing et al. (2022) were able to sustain MRI-
induced turbulence in stratified shearing boxes for over 100
orbits, seemingly due to the geometric density average formulism
(see Figure 8). Wissing et al. (2022) were also able to sustain
turbulence in zero-nut flux unstratified shearing boxes, provided
the magnetic Prandtl number was above a critical threshold. Part
of the complication of studying the MRI is the breadth of initial
configurations and parameters. One avenue worth exploring is the
inclusion of physical dissipation to set the Reynolds and magnetic
Reynolds numbers, along with the magnetic Prandtl number.
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FIGURE 8
Spacetime diagrams of magneto-rotational instability (MRI) calculations in a stratified net flux shearing box over 100 orbits. The top panel shows the
horizontal averaged radial magnetic field, and the bottom panel the azimuthal magnetic field. The characteristic “butterfly” diagram is produced,
whereby azimuthal fields are transported out of the plane of the disc and the direction of the magnetic field periodically reverses. Reproduced with
permission from Figure 15 in Wissing et al. (2022).

Another avenue that seems ripe is global disc simulations. SPH has
a rich history of simulating accretion discs owing to its conservation
properties, and applying SPMHD in this direction would appear
sensible.

There is also need to explore the properties of SPMHD on
other fundamental MHD phenomena and to validate correctness
of obtained solutions. Dynamos are one class of problem deserving
more attention. To date, there has only been limited exploration
of the small-scale dynamo (Tricco et al., 2016b) and galactic
dynamos (Wissing and Shen, 2023). And only the surface has
yet been scratched on the properties of magnetised turbulence in
SPMHD.

There should be continued effort to improve the fundamental
accuracy or convergence of SPMHD. There are discussions and
advancements within hydrodynamical schemes for Lagrangian,
particle-based methods that may be relevant for SPMHD. García-
Senz et al. (2012) developed an SPH scheme that has higher-order
gradient estimates through matrix inversion, and Iwasaki and
Inutsuka (2011) use Riemann solvers inside their Godunov-SPH
scheme.

Meshless finite mass (MFM) (Hopkins, 2015; Hopkins and
Raives, 2016) is another Godunov-type scheme that uses a least-
squares matrix gradient operator and Riemann solvers with slope
limiters. Like SPMHD, MFM uses mixed hyperbolic/parabolic
divergence cleaning to uphold the divergence-free constraint on
the magnetic field, but also employs a constrained-gradient method
for further reduction of divergence errors in the magnetic field
(Hopkins, 2016). At present, it is difficult the quantify how
important is the choice of numerical scheme as there is a lack of

overlap in astrophysical simulations between MFM and SPMHD,
with use of MFM focused primarily on galaxy formation (e.g.,
the FIRE simulations Hopkins et al., 2014; Hopkins et al., 2018;
Hopkins et al., 2023) and SPMHD on star formation calculations.
Perhaps theremay be lessons from these numericalmethods, or even
others, in regards to improvements for SPMHD.

Coupling magnetic fields with charged dust is a perfect
opportunity to extend SPMHD in new directions. Non-ideal
MHD effects and dust are tied together, as dust grains can
adsorb electrons or ions. There are already robust solvers for
gas-dust mixtures in SPH (Laibe and Price, 2012a; Laibe and
Price, 2012b; Price and Laibe, 2015), and there is nothing in
principle preventing creation of algorithms to couple magnetic
fields and dust together in a unified solver. Tsukamoto et al.
(2021), Tsukamoto et al. (2023) have made initial steps in this
direction, expanding upon the one-fluid dust approach of Laibe
and Price (2014) to include magnetic fields. They make a number
of simplifications, and better treatment on the differences between
neutral and charged dust are still required (depending upon the
physical regime).

Finally, it is worth noting that adapting existing SPH codes to
include magnetic fields is straightforward. At its core, this involves
evolving another variable (the magnetic field), adding magnetic
dissipation terms, calculating accelerations from the magnetic
field, and solving the divergence cleaning equations alongside the
evolution of the magnetic field. While there are improvements
that can still be made to the method, recent advancements and
achievements with SPMHD suggest that it is capable of general
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theoretical studies of astrophysics, providing a complementary
approach to grid-based methods.
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