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ABSTRACT

We perform simulations of the Kelvin—Helmbholtz instability using smoothed particle hydrody-
namics (SPH). The instability is studied both in the linear and strongly non-linear regimes. The
smooth, well-posed initial conditions of Lecoanet et al. (2016) are used, along with an explicit
Navier—Stokes viscosity and thermal conductivity to enforce the evolution in the non-linear
regime. We demonstrate convergence to the reference solution using SPH. The evolution of the
vortex structures and the degree of mixing, as measured by a passive scalar ‘colour’ field, match
the reference solution. Tests with an initial density contrast produce the correct qualitative
behaviour. The £, error of the SPH calculations decreases as the resolution is increased. The
primary source of error is numerical dissipation arising from artificial viscosity, and tests with
reduced artificial viscosity have reduced £, error. A high-order smoothing kernel is needed
in order to resolve the initial velocity amplitude of the seeded mode and inhibit excitation
of spurious modes. We find that standard SPH with an artificial viscosity has no difficulty in
correctly modelling the Kelvin—Helmholtz instability and yields convergent solutions.

Key words: hydrodynamics —instabilities — methods: numerical.

1 INTRODUCTION

There exists doubt about the ability of smoothed particle hydrody-
namics (SPH) to correctly model the Kelvin—Helmholtz instability
and hydrodynamical mixing instabilities in general (e.g. He3 &
Springel 2010; Springel 2010b; Bauer & Springel 2012; Sijacki
et al. 2012; Hopkins 2013, 2015). This contention should be taken
seriously, for if true, it would imply that SPH is unable to solve
the fundamental equations of hydrodynamics. This disbelief is
borne primarily from the work of Agertz et al. (2007), who, after
comparing results between grid-based methods and SPH, concluded
that SPH has a fundamental shortcoming in the mixing of multiphase
fluids.

Wadsley, Veeravalli & Couchman (2008) and Price (2008) were
quick to point out that the results of Agertz et al. (2007) were not due
to a fundamental flaw of SPH, but are explainable by the combined
effect of discontinuous initial conditions with the lack of numerical
treatment for contact discontinuities. These are solvable issues.

The primary issue in Agertz et al. (2007)’s interpretation of their
results arises from the presence of a contact discontinuity in the
initial conditions. Discontinuities of any form lead to a multivalued
fluid, and obtaining a solution numerically may lead to an unphys-
ical solution if the fluid is assumed to be differentiable. What is
required is either to make no assumption about differentiability
(e.g. by solving the equations in integral form), or to include a
numerical method to keep the fluid single valued. In the case of
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shocks, for example, the fluid is kept single valued by the addition
of a Riemann solver (for grid codes) or artificial viscosity (SPH).
Contact discontinuities require similar treatment. For grid methods,
some measure of numerical dissipation is inherently present due to
the truncation error involved in advection of fluid between grid cells
(e.g. Robertson et al. 2010). For SPH, there is no such corresponding
numerical dissipation since the equations of motion for the particles
are derived from the Lagrangian. Advection of entropy is exact
(Springel & Hernquist 2002; Price 2008). What results is a spurious
surface tension at contact discontinuities that keeps the two phases
apart (the ‘pressure gap’; Okamoto et al. 2003; Agertz et al. 2007;
Read, Hayfield & Agertz 2010; Springel 2010a; Abel 2011). In
some sense, the problem is that SPH is too good, with the only
dissipation present that which is explicitly added.

Solutions exist to handle contact discontinuities in SPH. One
option is to explicitly add dissipation in the form of an artificial
conductivity, similar to artificial viscosity, which keeps the fluid
single valued by smoothing the contact discontinuity to the order
of the resolution length (Price 2008; Wadsley et al. 2008). This
has been shown to be effective in capturing contact discontinuities,
removing the pressure gap, and promoting mixing (Valcke et al.
2010; Kawata et al. 2013). One challenge lies in the detection
of contact discontinuities so that the artificial dissipation does
not unnecessarily diffuse pressure gradients, for example, when
pressure gradients are balanced by external forces (such as gravity).
Options have been suggested for such cases (Valdarnini 2012; Price
et al. 2017).

Other solutions have focused on changing the base SPH for-
mulation. If a kernel summation is used for the internal energy
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or entropy, then the assumption of differentiability is not implied
in the resulting equations. These methods, often referred to as
‘density-independent’ or ‘pressure—entropy’ formulations (Ritchie
& Thomas 2001; Hopkins 2013; Saitoh & Makino 2013), perform
well in promoting mixing, though no formal convergence study of
the Kelvin—Helmbholtz instability has been conducted. That they can
be used for general astrophysical simulations without introducing
other issues remains to be determined. Hopkins (2013) found
that ‘pressure—entropy’ formulations do not provide as good an
estimate of the mass density, recommending that a hybrid scheme
be used for the density summation and entropy summation when
the mass density is required (i.e. additional physics), and Read
& Hayfield (2012) found that this formulation performs poorly
when dealing with shocks. Alternative approaches to handle contact
discontinuities include kernel correction techniques (e.g. Garcia-
Senz, Cabezon & Escartin 2012; Frontiere, Raskin & Owen 2017).

Beyond the context of SPH, it is a problem in general to use
discontinuous initial conditions to study the Kelvin—Helmholtz
instability. Discontinuities present in the initial conditions, such
as in the velocity or density, prohibit formal convergence since the
initial conditions are ill defined, remaining unresolved irrespective
of the spatial resolution (Robertson et al. 2010; McNally, Lyra &
Passy 2012b). Convergence cannot be achieved because increasing
the resolution of the calculation only permits access to higher
wavenumber modes. Even if a chosen mode is seeded initially,
higher wavenumber modes can be excited by the discontinuity
and become dominant since they are the fastest growing modes
(Chandrasekhar 1961).

This has not prevented authors from using discontinuous initial
conditions to assert the accuracy of their simulations. Springel
(2010b) and Hopkins (2015), for example, argued that since their
voronoi tessellation and meshless finite mass (MFM) methods pro-
duce more small-scale structure than grid-based methods, they are
closer to a ‘true’ physical solution. This may be untrue. Since these
small-scale structures are generated by high wavenumber modes
seeded by the numerics, there is no guarantee that they represent
physical structures (McNally et al. 2012b; Duffell & MacFadyen
2015). It is inappropriate to attribute structure generated from
numerical noise as corresponding to resolved physical structure.

Smooth, well-defined initial conditions of the Kelvin—Helmholtz
instability produce converged solutions, avoiding the issues inherent
to discontinuous initial conditions. Robertson et al. (2010), McNally
et al. (2012b), and Lecoanet et al. (2016) have put forward well-
defined initial conditions. They each demonstrate convergence in
the linear regime, and, for Lecoanet et al. (2016), additionally in
the non-linear regime by the inclusion of a physical Navier—Stokes
viscosity and thermal conductivity. Convergence is demonstrated
by these authors for a variety of codes and methods. Collectively,
they use the Eulerian grid-based codes ART (Kravtsov, Klypin &
Khokhlov 1997; Kravtsov, Klypin & Hoffman 2002), ENZO (O’Shea
et al. 2005; Bryan et al. 2014), ATHENA (Stone et al. 2008), the
PENCIL CODE (Brandenburg & Dobler 2002), the pseudo-spectral
code DEDALUS (Burns et al. 2016, 2019), and the Lagrangian mesh-
free code PHURBAS (Maron, McNally & Mac Low 2012; McNally,
Maron & Mac Low 2012a). Convergence of the McNally et al.
(2012b) test has also been demonstrated for the implicit large eddy
simulation code MUSIC (Goffrey et al. 2017).

What is missing is a comprehensive study demonstrating con-
vergence with SPH. A number of studies have been conducted
using discontinuous initial conditions (Price 2008; Cha, Inutsuka &
Nayakshin 2010; Junk et al. 2010; Valcke et al. 2010; Shadloo &
Yildiz 2011; Hubber, Falle & Goodwin 2013). Studies with smooth
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initial conditions have been limited. While McNally et al. (2012b)
included results from the SPH code NDSPMHD (Price 2012) in their
work, their analyses were not focused on SPH, with a total of
five codes compared simultaneously. Other studies have either been
limited in scope (Price et al. 2017), for incompressible fluids (Yue
etal. 2015), or have used higher order corrections (Cabezén, Garcia-
Senz & Figueira 2017; Frontiere et al. 2017).

In this paper, a convergence study of the Kelvin—Helmholtz
instability in SPH is undertaken using the smooth, well-defined
initial conditions of Lecoanet et al. (2016). Importantly, a physical
Navier—Stokes viscosity and thermal conductivity are included to
set the dissipation. The aim is to demonstrate convergence in both
the linear and non-linear regimes.

The standard formulation of SPH is used, rather than alterna-
tive ‘pressure—entropy’ formulations or higher order corrections.
This is motivated by the many public astrophysical SPH codes
implemented using standard formulations of SPH with artificial
dissipation terms, e.g. GASOLINE2 (Wadsley, Keller & Quinn 2017),
GANDALF (Hubber, Rosotti & Booth 2018), and PHANTOM (Price
et al. 2017).

The paper is organized as follows. The set-up, initial conditions
and numerical method used for the Kelvin—Helmholtz test, is
described Section 2. Results are presented and analysed in Section 3.
A summary and conclusion are given in Section 4.

2 PROBLEM SET-UP

2.1 Equations

We solve the Navier—Stokes equations of hydrodynamics that
include a thermal conductivity, given by

dp

e _pV, 1
i pV v (D
d vP 1

T _Cv.m, 2)
dr PP

du P 1

— =——V.-0v+V-(-M)+ -V (xpVT), 3)
dr o p

where p is the density, v is the velocity, P is the thermal pressure,
u is the internal energy, and T is the temperature. The equations are
written in Lagrangian form, using the material derivative d/df =
d/dt + v - V. The Navier—Stokes stress tensor is

. vt v/ 290 .
v =vp + -z, 4

ax’/  oxi 3 oxk

where v is the shear viscosity. Heating from the viscosity is included
as the second term in equation (3). The third term in equation (3) is
a physical thermal conductivity, with x the thermal diffusivity. An
ideal gas equation of state is used, P = pT, with the ratio of specific
heats y = 5/3. The temperature is thus related to the internal energy
accordingto 7= (y — 1)u.

A scalar field is added to the simulation to quantify mixing. This
colour field, or dye, is evolved according to
de 1 _
pri ;V - (vepVe). ®)
The colour field is passively advected with the flow and does not
influence the dynamics. A ‘physical’ diffusion term is present to set
the diffusion rate. This is important to achieve convergence in grid
codes since numerical diffusion is introduced due to advection. For
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SPH, advection is dissipationless, but the explicitly added diffusion
is retained for these calculations in order to converge to the results
of Lecoanet et al. (2016).

2.2 Initial conditions

The initial conditions are given by

p—l—{-A—{tanh( y‘)—tanh(y_”)}, (6)

Lo a a

Uy = Vg {tanh (u> — tanh (m> — l} , @)
a a

— 2 _ 2
vy = Asin(27x) {exp <_w) + exp (_%)} 7
) . -

P = 10, &)

P {tanh (u) —tanh(y_yz) +2} , (10)
2 a a

where a = 0.05 and o = 0.2 dictate the width of the interface
regions. The simulations are run in a periodic box of size x € [0,
L] and y € [0, 2L] with L = 1. The interfaces are at y; = 0.5 and
y2 = 1.5. For the chosen initial conditions, the top half mirrors the
bottom half.

We take vy = 1, with x-velocity that smoothly transitions between
the two regions. The flow remains subsonic with Mach number
M % 0.25. The amplitude of the v, velocity perturbation used to
seed the instability is A = 0.01. These initial conditions are well
resolved even at modest resolutions.

The Reynolds number is Re=10°, where the Reynolds number is
defined according to

LAv
S

Re =

an

The box size is L = 1 and the difference in fluid velocity is Av =
2vy. This yields v = 2 x 107, with x = v = v.

Lecoanet et al. (2016) considered cases where Ap/pg = 0 and
1. That is, for uniform density with p = 1 throughout, and with
a density contrast between densities of p = 1 and 2. The strati-
fied test introduces secondary instabilities that produce complex,
small-scale structure in the flow. This a far more computationally
demanding test case, with Lecoanet et al. (2016) only achieving
convergence with the grid-code ATHENA in the non-linear regime
when 16 384 x 32 768 grid cells are used, requiring ~1 million cpu
hours. Since we do not have 1 million spare cpu hours available,
our tests focus on the unstratified, uniform density test case. This
is sufficient to quantify the convergence properties of the Kelvin—
Helmholtz instability in SPH. Tests including a density contrast are
studied in Section 3.9.

2.3 SPH

The equations are solved using SPH. The continuum equations are
discretized into a set of particles that are smoothed over their local
volume to recover continuum-like behaviour. The implementation
of SPH used is similar to that of the PHANTOM SPH code (Price et al.
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2017). No modifications have been made to the SPH formalism in
order to simulate the Kelvin—Helmbholtz instability. The calculations
use the standard form of SPH with an artificial viscosity, of the
type that has been employed for decades (Monaghan 1992, 2005).
The discrete set of equations for Euler fluid flow, equivalent to
equations (1)—(3) absent the Navier—Stokes viscous terms and
thermal conductivity, is given by

= myWap(ha), (12)
b
dv P,
‘= —Zmb { 3 VaWas(ha) + =5 Va Wa(hy)
Qap? ,0
my
+ 37 =0 v PanVa W, (13)

b ab

dua
= ab * VaWup(hy,
o Qup? Z}mbv b* av(ha)

- Z—v“g Vab * Fap)’ Fab + Va W . (14)

Here, a and b refer to particle indices and the summations are over
neighbouring particles. The shorthand notation, v,, = v, — v,, is
used, along with #,, = (r, — r},)/|r, — rp|, which is the unit vector
along the line of the sight between particles. The smoothing ker-
nel is Wop(ha) = W(ra — 1y, ho), with Wop = 5[Wap(ha)/ Q2 +
Was(hyp)/ 5] the averaged smoothing kernel. The particle mass is
m, and these sets of calculations use particles of equal mass.

The smoothing length, 4, is obtained through iteration with the
density, p, according to the relation

V4
ha =1 (’”—) , (15)
Pa

where p is the number of dimensions (two for these calculations).
We use n = 1.2 for the ratio of smoothing length to interparticle
spacing, which is ideal for the bell-shaped spline kernels (Dehnen
& Aly 2012). Gradients of the smoothing length are accounted for
by the factor

ha aWab(ha)
Q=1+— _—, 16
* PPa Xb:mb ohy (10

which is important to ensure exact energy conservation in the
spatial discretization (Monaghan 2002; Springel & Hernquist 2002).
The discretized momentum equation exactly conserves linear and
angular momentum.

Artificial viscosity is included by the second terms of the
momentum and energy equations (equations 13 and 14). This
implementation closely matches that of Monaghan (1997). The
signal velocity used is
vy = %&ah(cs.a + ¢sp) = BVap - Pap, an
where c; is the sound speed, o and § are dimensionless quantities,
and @, = %(aa + o). The Morris & Monaghan (1997) switch is
used to reduce numerical dissipation. Each particle has an individual
o, which is time integrated according to
da, o, —

=max(V -v,,0) — R (18)
Ta

such that « is increased in regions of compression. The range of
values is enforced to be « € [ag, 1], with @p = 0.1 the minimum
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value used in these calculations. The time-scale over which « decays
is 7, = 0.1h,/ max(v'$), where max(v¥) is the maximum signal
velocity as calculated over all neighbouring particles. This decay
time-scale roughly corresponds to the time it takes for a sound wave
to cross five smoothing lengths (Morris & Monaghan 1997). The
P term represents a von Neumann—Richtmyer-type viscosity and
is used to prevent particle interpenetration (Monaghan 1989). In
following of the PHANTOM and GASOLINE2 codes, this term is not
multiplied by «. In general, the kinetic energy dissipated by the 8
term tends to be lower than the « term since it scales as och?.

The one important ingredient required to achieve convergence in
these simulations is a high-order smoothing kernel. The amplitude
of the initial velocity perturbation for the seeded Kelvin—Helmholtz
mode has Mach number of the order of M =~ 0.0025, notably
smaller than in the initial conditions used by Springel (2010b),
Robertson et al. (2010), McNally et al. (2012b), and Hopkins
(2015). It is required that velocity noise caused by errors in the
pressure gradient be below this amplitude in order to resolve the
linear growth phase. Additionally, the excitation of other non-
seeded modes by velocity noise must be inhibited in order to
correctly model the non-linear phase. We found that the cubic
spline is unable to do this for this problem, and that while the
quintic spline produces all of the correct features of the reference
solution, the kernel bias prevents convergence. The calculations
presented here use the septic spline, which exhibits convergence,
as will be demonstrated. Though the septic spline has a smoothing
volume greater than the cubic or quintic splines, thus includes more
neighbour particles, the resolution length of the calculation is the
same. The ratio of smoothing length to interparticle spacing, as
obtained via equation (15), is unchanged. The bias of the smoothing
kernel on our calculations is discussed further in Section 3.7, and
a list of the spline kernels, up to the nonic spline, is given in
Appendix A.

2.4 Physical dissipation in SPH

Navier—Stokes viscosity is implemented using two first derivatives,
in a manner similar to Flebbe et al. (1994), Watkins et al. (1996),
and Sijacki & Springel (2006). Each component of the stress tensor
(equation 4) is calculated using a difference derivative estimate
(Price 2012) according to

d oW, (h
v Zm” # (19)
Bx apa Bxu

The corresponding term in the momentum equation can be derived
from the Lagrangian to be

dv! 1y
c= - Z My o
dr > Q,p2
The derivative of the stress tensor is a symmetric derivative oper-
ator. The conjugate nature of difference and symmetric derivative
operators has been noted in other contexts (Cummins & Rudman

1999; Price 2010; Tricco & Price 2012).
Heating from the Navier—Stokes viscosity is given by

du, vl vl 2 vk

= VP, -+ ) — v <), 21
a =P <8x,f ax;,) 377 (axg; @b
where by the square of the first term we mean the tensor summation
STy with T;; = 9vl /dx) + dvi /dx. The heating term is

positive definite provided the terms of the stress tensor are calculated
using equation (19). The derivation of the viscous heating term is

m
w(he) + =5V Wab(hw} . (20
Qppj
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given in Appendix B. This spatial discretization of the Navier—
Stokes viscosity exactly conserves energy and linear momentum.
Thermal conductivity is implemented in SPH according to Cleary
& Monaghan (1999), given by
Tab - VaWap(ha)

du,
o =X Zmb(pa + o)1ty — "”)T (22)

This uses a direct second derivative in the manner of Brookshaw
(1985). Cleary & Monaghan (1999) proposed that the harmonic
mean of the thermal diffusivity coefficients, 4 x p,0p/(pa + Pb), 1S
better for discontinuous thermal conductivities. For these calcula-
tions, the arithmetic mean, % x(pa + pp), is used instead since the
thermal conductivity for this problem varies smoothly.

Colour diffusion is implemented in an analogous fashion to the
thermal conductivity, given by

ab - VaWap

de,
= Zmb(pa + Pp)(ea — %)T (23)

This formulation exactly conserves the volume integral of colour,
that is > ,m,c,, since it is equal and opposite for each particle pair.

2.5 Calculations

Calculations are performed using 256 x 592, 512 x 1184, 1024 x
2364, and 2048 x 4728 particles in the x- and y-directions, respec-
tively, labelled as ny = 256, 512, 1024, and 2048. The particles
are arranged on triangular lattices, with the largest calculation
consisting of ~10 million particles (ny = 2048), requiring ~70 000
cpu hours of computational time.

2.6 Reference solution

There is no analytic solution to the Lecoanet et al. (2016) Kelvin—
Helmbholtz test. In its absence, we turn to a solution obtained using
high-resolution calculations, which acts as an approximation to the
true solution. The SPH calculations performed in this work are
compared to the data from the D2048 calculation of Lecoanet et al.
(2016). This solution is obtained using the pseudo-spectral code
DEDALUS (Burns et al. 2016, 2019),' on a grid of 2048 x 4096
points. The data consist of the density and colour fields at times of
t=2,4,6,and 8.

3 RESULTS

The SPH calculations are qualitatively and quantitatively compared
with the solution of the D2048 DEDALUS calculation from Lecoanet
et al. (2016). Our focus is to study the convergence properties of
SPH with respect to this solution, particularly in the strongly non-
linear regime.

3.1 Linear regime; ¢ < 2

Fig. 1 shows the colour field at t = 2 for the SPH calculations at
resolutions of n, = 512, 1024, and 2048 particles, along with the
D2048 reference solution (far right-hand panel). Only the bottom
half (y < 1) of the calculations are shown since the top and bottom
mirror each other. At this time, the calculation is at the end of the
linear evolution phase of the Kelvin—Helmholtz instability.

Thttp://dedalus-project.org
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Figure 1. The colour field in the region x, y € [0, 1] for the ny = 512, 1024, and 2048 particle SPH calculations (three leftmost panels) with the D2048
DEDALUS calculation (far right-hand panel) at = 2. In all cases, the SPH calculations have grown the seeded mode to the correct shape. For the ny = 512
particle calculation, there is some noise in the inner region of the curl arising from particle motion. This noise is absent from the ny = 2048 particle calculation,

which reproduces the D2048 reference solution in all aspects.

In all cases, the SPH calculations form a single large curl
corresponding to the seeded k = 27 mode, in agreement with the
reference solution. For the n, = 512 particle calculation, the inner
tip of the curl is not wound as tightly as the reference solution.
There is some additional noise in the inner region, due to particles
breaking off lattice. These differences disappear for the n, = 2048
particle calculation. Indeed, the visual appearance of the curl for the
highest resolution SPH calculation (n, = 2048) closely reproduces
the reference solution.

The initial velocity perturbation grows exponentially in the linear
regime of the Kelvin—Helmholtz instability, occurring at a rate
oexp (y1). The linear growth rate for an incompressible, infinite
domain fluid is given by (Chandrasekhar 1961)

_ (op)'?
p1+ P2

For the initial conditions in Section 2.2, the corresponding quantities
are k=2m, p; = p =1,v; =1, and v, = —1. This yields a growth
rate of y = 2.

However, the growth rate in these calculations is expected to
differ since the interfaces are smoothed. Wang, Ye & Li (2010)
derive analytic estimates of the growth rate for incompressible
fluids with smoothed density and/or velocity interfaces. Their key
conclusion is that smoothing the velocity interface slows the growth
rate. Using their analytic estimate (cf. their equation 18) with the
initial conditions employed here yields y & 5.09, about a 20 per cent
reduction from the estimate using equation (24).

Our calculations additionally smooth the velocity perturbation,
and are for a compressible fluid in a periodic domain with a peak
density fluctuation of ~ 10 per cent. Therefore, it is expected that
the growth rate will be further reduced. It is likely that an estimate
using the approach of Wang et al. (2010) merely represents an upper
bound.

Berlok & Pfrommer (2019) derive the linear theory for the
Kelvin—Helmholtz instability with smooth initial velocity and
density profiles (as well as the magnetized Kelvin—Helmholtz
instability). Using their code, PSECAS, a numerical solution was
obtained for the linear growth rate for the initial conditions of
Lecoanet et al. (2016), with the growth rate of the k = 27 mode
found to be y & 3.227.

To measure the growth rate of the k = 27 mode in our
calculations, we use a calculation based on a discrete convolution,

[vr — valk. 24
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as described by McNally et al. (2012b). A weighting term for each
particle, i, is defined according to

B {h?exp(—w,- —3l/0%) y<1
h}exp(—|2 = y) = 51/0%) y =1,

where / is the smoothing length and the weighting has characteristic
size of the v, perturbation as given in the initial conditions (equation
8). The wave components for the k = 2w mode are given by

(25)

Si = Uy, sin(27vci), (26)

Ci = Vy COS(27TX,‘). (27)

The mode amplitude, M, may then be computed by the weighted
summations of the components of the mode according to

s (Shada)]
M=2 ( Z17\11 51d1> +< ZI?V] Cldz> , (28)
i=1% i=1%

where the summation of d; in the denominator acts as a normaliza-
tion condition. The summations are over all particles. This approach
avoids the need to interpolate to a fixed grid since the v, values are
taken directly from the SPH particles.

Fig. 2 shows the amplitude of the X = 27 mode in the linear
regime. For all calculations, it undergoes exponential amplification
of the y-velocity, as expected for the linear regime of the Kelvin—
Helmholtz instability. The mode amplitude reaches a maximum at
t &~ 2, establishing that the non-linear regime begins at this time.

The measured growth rates per resolution are summarized in
Table 1. The ny = 2048 calculation has a growth rate y ~ 3.139,
which is in close agreement to the expected value of y & 3.227
obtained using the PSECAS code (Berlok & Pfrommer 2019), with
the growth rate converging linearly in resolution to the expected
value.

3.2 Non-linear regime; ¢ > 2

Fig. 3 shows the colour field at t = 4, 6, and 8 for the n, = 512,
1024, and 2048 particle SPH calculations with comparison to the
D2048 DEDALUS calculation. Only the bottom half (y < 1) of the
calculation is shown since the top and bottom mirror each other.
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Figure 2. Amplitude of the k = 27 seeded mode for the ny = 256, 512,
1024, and 2048 SPH calculations. The growth is exponential in the linear
regime, as expected for the Kelvin—-Helmholtz instability. The ny = 2048
calculation has a growth rate I"ocexp (3.1397).

Table 1. Measured growth rates, I, of the linear phase.

ny I
256 2.92
512 3.055
1024 3.113
2048 3.139

At these times, the Kelvin—Helmholtz instability is in the strongly
non-linear regime. The evolution of the instability in the non-linear
regime is dictated by the dissipation — both numerical and physical.
The curl produced in the linear regime (r = 2; Fig. 1) continues to
wind tighter as time progresses (¢ = 4), producing multiple features
as the curl turns into itself (# > 6). At t = 8, the physical dissipation
applied to the colour field has blended many of the smaller features
together, producing a well-mixed colour field along the interface.

The SPH calculations qualitatively reproduce the evolution and
morphology of the reference solution. For the ny = 512 particle
calculation, there is noise in the colour field due to particle motion,
evident by the ‘jaggedness’ of the filaments comprising the curl.
The origin of the noise is attributed to the high Reynolds number
(Re=10") of the calculations, which is challenging to meet at
low resolutions. This noise is absent in the ny = 2048 particle
calculation.

Differences between the solutions, as seen in multiple local
features, are reducing as the resolution improves. For all time
snapshots, the innermost tip of the red curl is more tightly wound
with increasing resolution. At ¢ = 4, the outer features of the curl
become more sharply defined, and, at t+ = 8, the top and bottom
spurs are lengthening with increasing resolution. In all features, it
is clear that the SPH calculations are converging to the reference
solution.

3.3 Colour entropy

The volume-integrated colour entropy is measured to quantify the
mixing of the two regions. Following Lecoanet et al. (2016), the
specific colour entropy is defined to be

= —cln(c), 29)
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with the total colour entropy given by the volume integral

S = / psdV. (30)

In SPH, this integral can be computed by summation according to
S = Z MySa, 3D

such that pdV is equivalent to the mass element dm. This quantity
has the property that it monotonically increases in time when v, >
0.

Fig. 4 shows the total colour entropy as a function of time for
the SPH calculations. The black dots at t = 2, 4, 6, and 8 are the
values from the reference solution. The total colour entropy of the
SPH calculations reproduces the behaviour of the reference solution
(compare also to fig. 3 in Lecoanet et al. 2016). In the non-linear
phase (# > 2), the difference in total colour entropy between the
SPH calculations and the reference data points decreases as the
resolution increases. That is, the SPH calculations are converging
to the reference solution. At late times, the lower resolution SPH
calculations have lower total colour entropy than the reference
solution, in contrast to Re=10° ATHENA results by Lecoanet et al.
(2016) that had increased colour entropy for lower resolutions. This
difference in behaviour is caused by advection in grid-based codes
introducing numerical diffusion, thereby artificially increasing the
rate of mixing. Advection is exact in SPH.

Deviations of the total colour entropy from the reference solution
are minor even for our lowest resolution of n, = 256 particles,
and the shape and magnitude of the total colour entropy curve are
well represented. From a practical perspective, SPH, even at modest
resolutions, not only reproduces the correct qualitative features of
the Kelvin—Helmholtz instability (cf. Fig. 3), but also the correct
amount of mixing.

3.4 L, error

The £, error is computed to quantify the convergence of the SPH
calculations towards the D2048 calculation. To compute the error
between the two calculations, the SPH particles are interpolated
to a 2048 x 4096 grid so that the two solutions can be directly
compared. The colour at each grid point is computed according to

>y mpcy Wap(hp)
S, mWap(hy)
where the summation in the denominator is the normalization

condition. The £, error between the SPH interpolated grid and
D2048 grid is computed as

o(r) = (32)

12
Lo = |dV Z |esPH — c(‘fm‘“‘|2 , (33)

where dV is the volume of each grid cell (i.e. 1/2048%), and ¢S/
and P24 are the colour fields of the SPH interpolated grid and the
D2048 grid, respectively.

Fig. 5 shows the £, error between the SPH calculations and
the D2048 DEDALUS calculation. The error is computed at t = 2,
4, 6, and 8, with the lines between points present only for visual
aid. The convergence rates at each time are listed in Table 2. The
convergence rate at t = 2 is close to linear, with each doubling of
resolution reducing the £, error by half. The solution at r = 4 is
converging towards the reference solution, though at a rate slower
than linear. In the late non-linear regime of the instability (r = 6 and
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Figure 3. The colour field in the region x, y € [0, 1] in the strongly non-linear regime for the ny = 512, 1024, and 2048 SPH calculations (three leftmost
columns) with the D2048 DEDALUS calculation (rightmost column) at = 4, 6, and 8 (top, middle, and bottom rows, respectively). The SPH calculations
reproduce the large-scale morphology of the DEDALUS calculation at all times. Differences in small-scale features are seen to be converging away as the

resolution increases.
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Figure 4. Total colour entropy for the ny = 256, 512, 1024, and 2048
particle SPH calculations, with the black dots the values from the D2048
solution. The shape and magnitude of the total colour entropy curve agree
with the reference data points for all resolutions.
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8), the SPH solution only begins to demonstrate convergence for
resolutions above ny, = 512 particles. The error between the ny, =
256 and 512 is similar at these times, a consequence of the artificial
viscosity still dominant over the Navier—Stokes viscosity. The long-
term behaviour, for the resolutions presented, is governed still by the
numerical dissipation. Only when the physical dissipation begins to
be resolved, that is in the ny = 1024 and 2048 particle calculations,
does the £, error decrease with resolution, though at a rate slower
than linear. The effect of numerical dissipation is investigated in
detail in Section 3.5.

Overall, the SPH calculations are converging towards the D2048
reference solution. At all times, the £, errors of the n, = 2048
particle calculation are lower than for the n, = 1024 particle
calculation, which are lower than the n, = 512 particle calculation.

3.5 Convergence of the dissipation rate

One question is whether the dissipation of kinetic energy is
dominated by the physical Navier—Stokes viscosity or the numerical
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Figure 5. £, error of the SPH calculations with respect to the D2048
solution at t = 2, 4, 6, and 8. The connecting lines are merely for visual aid.
The convergence rate is linear at = 2. In the late non-linear regime (¢ >
6), the error only decreases once the Navier—Stokes viscosity begins to be
resolved. The SPH calculations are converging to the reference solution at
all times, with the £, error of the ny = 2048 particle calculation lower than
the ny = 1024 particle calculation, which is lower than the ny = 512 particle
calculation.

Table 2. Convergence rates of the £ error fit to oz ®.

t o (artificial viscosity switch) o (a=0)
2.0 0.875 1.108
4.0 0.623 0.754
6.0 0.257 0.381
8.0 0.278 0.376

dissipation of the artificial viscosity. This may be estimated by
simple analytic arguments and through measurements directly from
the calculations.

As discussed by Artymowicz & Lubow (1994), Murray (1996),
and Lodato & Price (2010), the « term of the artificial viscosity can
be equated to a shear and bulk Navier—Stokes viscosity, with shear
component

1

VAV Eavsighs (34)
and bulk component that is ¢*Y = 5/3 x vAY. Since the fluid is
subsonic, the Morris & Monaghan (1997) artificial viscosity switch
is effective at reducing « for all particles in all calculations to o
~ o, where g = 0.1. For the ny = 256 particle calculation, this
would imply that v & 18v, that is, the numerical dissipation is
18 times greater than the Navier—Stokes viscosity. For our highest
resolution calculation (n, = 2048), it would thus be expected
that v2¥ be roughly twice as large as v, with the Navier—Stokes
viscosity becoming dominant over the numerical dissipation only
for resolutions ny > 4096 particles.

The rate at which kinetic energy is dissipated by each source of
dissipation may be directly measured from the calculations. Both
the artificial viscosity and Navier—Stokes viscosity are explicitly
added sources of dissipation. The rate of change of kinetic energy
can be measured by computing

dE; dv,
? :Zmuva'?s (35)
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Figure 6. Rate of change of kinetic energy (dEj/df) from sources of
dissipation, as directly measured from the ny = 2048 particle calculation.
The grey dotted line represents twice the average Navier—Stokes dissipation.
In agreement with analytic expectation, the artificial viscosity is about twice
as dissipative as the explicit Navier—Stokes viscosity at this resolution. The
increase of dissipation by the artificial viscosity at t &~ | corresponds to
when the particles first break off the initial lattice arrangement.

and substituting in dv/d¢ from the artificial viscosity (from equa-
tion 13) and Navier—Stokes viscosity (equation 20).

Fig. 6 shows dE;/dt for the artificial viscosity, Navier—Stokes
viscosity, and the sum of the two for the n, = 2048 calculation.
This measurement confirms the analytic estimate that the rate
at which kinetic energy is dissipated by the artificial viscosity
is approximately twice that of the Navier—Stokes viscosity. The
B viscosity must be an insignificant contribution to the overall
numerical dissipation in this case. The sharp increase of dissipation
by the artificial viscosity at # & 1 occurs from the particles breaking
off the initial lattice arrangement.

These analyses suggest that the non-linear evolution of the SPH
calculations is influenced considerably by numerical dissipation,
with a ratio of 2:1 of numerical-to-physical dissipation for our
highest resolution calculation. The ratio of kinetic energy dissi-
pation is expected to be equal for ny, = 4096 particles, with the
explicit Navier—Stokes viscosity becoming the dominant source of
dissipation only at resolutions greater than that.

It is worth noting that the calculations in this work have used
the Morris & Monaghan (1997) switch with oy = 0.1. More
sophisticated artificial viscosity limiters have been developed in
recent years that are better at reducing numerical dissipation (Cullen
& Dehnen 2010; Read & Hayfield 2012; Wadsley et al. 2017), in
particular permitting the use of oy = 0 in some instances. Using one
of these more advanced switches should improve the convergence
properties of SPH on this Kelvin—Helmholtz test. This is explored
further in Section 3.6.

3.6 Reducing the artificial viscosity (¢ = 0)

To investigate the convergence properties when the Navier—Stokes
viscosity is the dominant source of kinetic energy dissipation, we
have repeated our highest resolution calculation (17, = 2048) using a
fixed o = O for all particles. By reducing the numerical dissipation,
this result should be indicative of higher resolutions calculations
that use typical artificial viscosity parameters and switches.

It is important to be careful about setting « = 0 since the
primary role of artificial viscosity in these calculations is to maintain
particle regularity. As discussed in Section 3.5, the shear viscosity
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Figure 7. The colour field in the region x, y € [0, 1] at t = 6 (left
column) and r = 8 (right column) for the standard ny = 2048 particle
SPH calculation using the Morris & Monaghan (1997) viscosity switch
(first row), using a fixed « = 0 to reduce artificial viscosity (middle
row), and the D2048 reference solution for comparison (bottom row). At
this resolution, the explicit Navier—Stokes viscosity is sufficient to keep
the particles regular. By reducing the numerical dissipation (¢ = 0), the
qualitative agreement between the SPH and D2048 solutions is dramatically
improved in comparison to calculations that employ the Morris & Monaghan
(1997) artificial viscosity switch.

introduced by the artificial viscosity for the n, = 2048 particle
calculation is about twice that of the explicitly added Navier—
Stokes viscosity. It is reasonable to expect that the Navier—Stokes
viscosity may be sufficient by itself to keep the particles regular
for this resolution. Note that the 8 term of the artificial viscosity is
retained for these calculations since it represents a von Neumann—
Richtmyer-type viscosity. Its contribution to the overall dissipation
of kinetic energy should be small.

Fig. 7 shows the colour field at + = 6 and 8 for fixed @ = 0.
The qualitative agreement between the SPH calculation and the
reference solution is significantly improved in comparison to the
standard calculation (cf. Fig. 3). Most noticeable is the inner tip
of the curl, which is wound as tightly as the reference solution in
both time snapshots. The thick red filament in the upper region of
the curl at # = 8 is concentrated towards the upper right, as in the
reference solution, whereas this feature in the standard calculation
is diffuse across the top of the curl. Overall, numerous features

MNRAS 488, 5210-5224 (2019)
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Figure 8. L, error of SPH calculations using fixed & = 0 in the artificial
viscosity with respect to the D2048 solution at t+ = 2, 4, 6, and 8. The
connecting lines are for visual aid. The solution of the ny = 2048 particle
calculation with reduced numerical dissipation is in better agreement to the
D2048 reference solution than the standard SPH calculation (cf. Fig. 5).

can be identified by eye as resembling the reference solution more
closely in this calculation than for the standard calculation.

Fig. 8 shows the £, error for fixed « = 0 calculations for
resolutions of ny = 2562048 particles. The convergence rates are
given in Table 2. At low resolutions, substantial noise occurs in
the particle arrangement due to the absence of sufficient viscosity
(either numerical or physical). The results at low resolution are not
significantly improved in the non-linear regime, except for at r = 2
since the particles have yet to rearrange significantly. However, at
high resolution (n, = 2048), the £, error is uniformly lower than the
standard calculation (cf. Fig. 5), by approximately 20 per cent at t =
2 and 30 per cent in the late non-linear regime (¢ > 4). The solution
obtained at this resolution is more accurate than the standard
calculation, suggesting that SPH with typical artificial viscosity
parameters will indeed converge to the reference solution as the
resolution increases due to decreasing numerical dissipation. This is
substantiated by the improved rate of convergence when the artificial
viscosity is reduced (cf. Table 2), although the rate of convergence
still remains sublinear in the non-linear regime of the instability.

Itis expected that the results of this calculation would be similar to
acalculation that used a higher order artificial viscosity limiter, such
as the approaches by Cullen & Dehnen (2010), Read & Hayfield
(2012), or Wadsley et al. (2017). The Cullen & Dehnen (2010)
artificial viscosity switch, for example, uses the time derivative
of the divergence of the velocity, d(V - v)/dt, promising more
accurate shock detection than the Morris & Monaghan (1997)
switch. In practice, this permits the use of ay = 0 (e.g. equation 18),
granting significant reduction in numerical dissipation. Therefore, it
is reasonable to expect that more accurate switches would allow for
« to be near zero for this problem, and that the results obtained here
are indicative of results that use a higher order artificial viscosity
switch.

3.7 Kernel bias

The calculations performed in this work used the M8 septic spline.
It is important to note that the use of a high-order kernel is not an
intrinsic requirement to capture the Kelvin—Helmholtz instability.
Rather, a high-order B-spline has been used to minimize velocity
noise caused by errors in the pressure gradient. This is examined in
greater detail below.
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Figure 9. The colour field in the region x, y € [0, 1] for ny = 1024 particle SPH calculations at = 4 using the cubic, quartic, quintic, septic, and nonic splines
(left to right). All produce a dominant curl of the correct mode frequency, but the cubic spline, and to a lesser degree the quartic spline, evolves incorrectly
in comparison to the reference solution (cf. Fig. 3). The quintic spline shows substantial noise along the spiral arm edges, arising due to particle motion. The
colour fields of the septic and nonic spline results are smooth and virtually indistinguishable, demonstrating that the kernel bias does not affect the evolution

for these high-order splines.

Fig. 9 shows the colour field at t = 4 for ny, = 1024 particle
calculations using the B-splines between cubic (M4) and nonic
(M10). In all cases, a single dominant curl forms, mixing the two
fluids along the interface. However, the shape of this vortex changes
distinctly with respect to the quality of the smoothing kernel. The
cubic spline does not resemble the reference solution except that the
correct mode has developed. It lacks the interior structure present
in the reference solution. The calculation with the quartic spline
improves upon this. It resembles the reference solution better than
the cubic spline result, though the curl is not wound as tightly as it
should, and the filaments are broader and stunted. It is also narrower
in the y-direction. The quintic spline improves upon this further.
The overall shape and structure of the vortex is in close proximity
to the reference solution. However, the interface along the spirals
shows substantial noise, noticeable by the ‘jaggedness’ of the spiral
edges.

The best results are obtained when the septic or nonic spline
is used. In both cases, a smooth spiral structure develops that
closely resembles the reference solution, as discussed in Section 3.2.
The noise present in the quintic spline result is gone. The nonic
spline solution is virtually identical to the septic spline result,
demonstrating that the kernel bias is no longer the dominant source
of error.

To better understand the effect of the kernel bias on the growth of
the Kelvin—Helmholtz instability, we consider the maximum kinetic
energy in the y-direction. Fig. 10 shows the maximum of % pv§ over
all particles. This maximum is initially ~107*, as defined by the
initial conditions.

For the septic and nonic spline calculations, the maximum y-
kinetic energy undergoes steady exponential amplification over
four orders of magnitude between 0 < ¢ < 2. This is the expected
behaviour in the linear regime of the Kelvin—Helmholtz instability,
and further establishes that the non-linear regime begins at r > 2.
Additionally, the results between the septic and nonic splines are
virtually indistinguishable at all times, showcasing further that the
kernel bias has no effect on the results obtained in the standard
calculations.

On the other hand, the cubic and quartic spline results show an
immediate discontinuous jump of two to three orders of magnitude
in y-kinetic energy. The maximum y-velocities are M = 0.05 and
M = 0.03, respectively, significantly larger than the M ~ 0.0025

log max(1/2 p vy2)
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Figure 10. The maximum y-kinetic energy, % pvf, over all particles for
calculations using the cubic to nonic spline kernels. The results using the
cubic and quartic splines undergo sharp initial jumps, occurring due to errors
in the pressure gradient leading to particle rearrangement. The quintic spline
result shows similar behaviour. In contrast, calculations using the septic
spline show steady exponential growth, as expected of the Kelvin—-Helmholtz
instability. The nonic spline result matches the septic spline result, showing
that the kernel bias no longer affects the evolution of the instability.

amplitude of the initial velocity perturbation. Similar behaviour was
noted by McNally et al. (2012b). Despite the differing growth of
y-kinetic energy, the peak energy for the cubic and quartic spline
calculations is of similar magnitude to the high-order splines. The
peaks are delayed, however, occurring at later times. Overall, the
initial jump and delayed peak of y-kinetic energy demonstrate that
the evolution of the instability is strongly affected by the kernel bias
for these low-order kernels (see also Fig. 9).

The quintic spline result is between these two extremes. It exhibits
a sharp jump in y-kinetic energy, as with the low-order splines, but
at r &~ (0.25 and not as large in magnitude, with a corresponding
maximum y-velocity of M =~ 0.01. However, between 1 < ¢ <
2, the y-kinetic energy undergoes steady exponential amplification
along the track of the high-order splines. This is reflected in the
colour field (Fig. 9), which qualitatively contains the features of
the reference solution, but with noise introduced by the early sharp
increase in energy.

MNRAS 488, 5210-5224 (2019)
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The sharp increase in y-kinetic energy for the low-order splines
is due to errors in the pressure gradient, which generates spurious
velocity noise. The error in the discretization of the pressure
gradient scales as O(1) with respect to resolution. That is, the errors
are not reduced by increasing the resolution of the calculation.
However, the pressure gradient in the standard formulation of
SPH is derived from the discretized Lagrangian using the density
summation (Price 2012), such that the SPH equations of motion are
exactly the Lagrangian equations of motion for the particle system.
The errors in the pressure gradient act to regularize the particles,
pushing them towards a better arrangement, which in turn leads to
better interpolation properties. This means that maintaining particle
regularity is inherently built into SPH, though at the cost of a small
degree of velocity noise. Using a more accurate discretization for the
pressure gradient is problematic because it requires the introduction
of a particle regularization scheme. Instead, the primary approach to
reduce pressure gradient errors is to use a better smoothing kernel.
This has led to investigation of new kernels, such as the Wendland
family of kernels (Dehnen & Aly 2012), but the same effect can be
obtained by switching to high-order splines.

Fig. 10 demonstrates that the magnitude of the velocity noise
decreases as the quality of the smoothing kernel improves. It is
clear that the amplitude of the velocity perturbation used to seed
the Kelvin—Helmholtz instability must be greater than the velocity
noise introduced by particle arrangement in order to correctly model
the linear regime. For these calculations, the lowest order spline
kernel that meets this criterion is the septic spline. This may not be
the sole requirement. It would additionally be expected that other
modes not seeded in the initial conditions will be excited by any
introduced velocity noise, as if they had initial amplitudes similar to
the threshold specific to each kernel. The growth of these spurious
modes would have the potential to affect the solution.

This conjecture was tested by restarting the n,=2048 calculation
at t = 2 with the smoothing kernel switched from the septic spline
to the cubic spline. In this way, the linear growth phase will be
accurately modelled using a high-order kernel before switching to
a low-order kernel. Fig. 11 shows the colour field of the cubic
spline restarted calculation at t+ = 4, alongside the septic spline
calculation for comparison. A substantial degree of noise is present
in the vortex structure of the cubic spline calculation, occurring due
to velocity noise introduced by errors in the pressure gradient. This
demonstrates that a high-quality smoothing kernel is necessary for
both the linear and non-linear phases.

3.8 Calculations without physical dissipation

Astrophysical simulations often rely solely on numerical dissi-
pation, that is, without explicit physical dissipation. Here we
present the results of calculations without Navier—Stokes viscosity
or thermal conductivity. The artificial viscosity is as described in
Section 2.3. An artificial thermal conductivity is applied according
to

du, 1

1 me [|Pa— Pl
dr 10 b ﬁab ﬁab

(Ma - Mh)flub : Va Wuh(hu)’ (36)

making use of the Price (2008) switch. Since advection is dissipa-
tionless in SPH, there is no numerical dissipation associated with
the colour field in the absence of explicitly prescribed terms. In such
a case, the total colour entropy would remain constant over time as
the colour of each particle would remain fixed. Rather than creating
a contrived ‘artificial colour diffusion’ term for the colour field for
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Figure 11. The n,=2048 calculation at r = 4 (left-hand panel) alongside a
calculation where the smoothing kernel was changed from the septic spline
to the cubic spline at r = 2 (right-hand panel). Switching to the low-order
kernel partway through the calculation introduces substantial noise into the
solution.

the purposes of diffusing colour between particles, we simply retain
the ‘physical’ dissipation term given by equation (23).

Fig. 12 shows the colour field for these calculations at t = 4
and 6, alongside the standard calculations with physical dissipation
terms. Slight differences are evident to the calculation with physical
dissipation; however, as the artificial dissipation is the dominant
source of kinetic dissipation for both calculations (cf. Section 3.6),
the differences are minimal. Since the artificial viscosity can be
equated to a Navier—Stokes shear and bulk viscosity, it is expected
that a more complex vortex structure would develop only when the
artificial dissipation is lower than the physical dissipation. That is,
when the Reynolds number exceeds 10°, occurring for resolutions
ny > 4096 particles.

3.9 Calculations with a density contrast

Lecoanet et al. (2016) studied the Kelvin—Helmholtz for both
initial conditions that have uniform density and a difference in
density between the two flow regions. Including a density contrast
introduces a significant degree of complexity to the structure
and evolution of the instability. In this case, the computational
demand to achieve convergence is strict, with Lecoanet et al. (2016)
only achieving convergence between ATHENA and DEDALUS when
16 384 x 32 768 grid cells were used.

We study the behaviour of SPH on the Kelvin—Helmbholtz insta-
bility problem of Lecoanet et al. (2016) that has an initial density
contrast. The initial density profile is specified as in equation (6)
with Ap/pg = 1. The particles are arranged using the stretch
mapping technique (Price et al. 2017) to achieve the correct density
profile. The calculations are performed for n, = 512, 1024, and
2048 particles. The D4096 solution from Lecoanet et al. (2016) is
used as the reference solution.

Fig. 13 shows the colour field at t = 2, 4, and 6 for the SPH
calculations for resolutions up to n, = 2048 particles. The instability
is triggered in all cases, with a curled vortex forming by ¢ = 2 that is
similar in shape to the reference solution. The similarity improves
as the resolution increases.

At t = 4, the physical thermal conductivity is insufficient to
properly mix the two flow regions for the ny = 512 particle
calculation, resulting in a clumpy structure. This issue is alleviated
at higher resolution (n, = 2048). Including an artificial thermal
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Figure 12. Calculations relying solely on artificial dissipation terms for
the velocity and internal energy fields, contrasted with the standard SPH
calculations with physical dissipation terms, and the DEDALUS reference
solution. At this resolution, ny = 2048 particles, there is no significant
difference in the vortex structure as the artificial dissipation is the dominant
source of dissipation even when physical dissipation is present.

conductivity would help prevent this issue from occurring at low
resolution (Price 2008).

The non-linear evolution of the vortex structure for the n, =
1024 and 2048 particle SPH calculations exhibits a greater degree
of mixing in comparison to the reference solution. Similar behaviour
was found for ATHENA calculations (Lecoanet et al. 2016) at lower
resolution, thus this outcome is not surprising given that the highest
resolution ATHENA calculation has length resolution one-eighth that
of the ny = 2048 particle SPH calculation. Overall, the qualitative
behaviour of the SPH calculations is as expected for the resolutions
simulated.

4 CONCLUSION

We have performed calculations of the Kelvin—Helmholtz instability
using SPH. Our tests have used the unstratified, uniform density test
of Lecoanet et al. (2016) with a Reynolds number of Re=10°. The
calculations have included a passive scalar ‘colour’ field to quantify
the degree of mixing by the instability. Physical dissipation terms

The Kelvin—Helmholtz instability and SPH 5221

have been included in order to control the evolution of the instability
in the non-linear regime.

We have compared our results qualitatively and quantitatively
to the D2048 results obtained using the pseudo-spectral code
DEDALUS, as presented by Lecoanet et al. (2016). Results have been
examined in both the linear and non-linear regimes of the instability.
Our key observations are:

(i) The SPH calculations qualitatively agreed with the reference
solution on the linear and non-linear evolution of the Kelvin—
Helmholtz instability. A single dominant curl formed in the linear
regime, which continued to wind producing substantial substructure
in the non-linear regime. At late times (¢ > 8), the instability, in
combination with the physical dissipation terms, produced a well-
mixed interface. The internal structure of the vortices resembled the
reference solution for the times compared, with the visual agreement
improving as the resolution was increased.

(i) No modifications to SPH were required to activate or cor-
rectly evolve the instability. The Kelvin—Helmholtz instability can
be captured using the standard density formulation of SPH with
artificial dissipation terms, of the kind that has been used for
decades.

(iii) The exponential growth rate of the seeded mode in the
linear regime was in agreement with the expected growth rate
of oxexp (3.2271), as obtained numerically using the PSECAS code
(Berlok & Pfrommer 2019). This is half the analytic estimate for
an incompressible fluid with sharp interfaces. The SPH growth rate
was linearly converging to the expected rate, and was accurate even
at our lowest resolution of ny = 256 particles.

(iv) The Kelvin—Helmholtz instability can be activated in SPH
even for modest resolutions. For our lowest resolution calculation
of ny = 256 particles, the total entropy of the colour field increased
monotonically along a similar curve to the reference solution.
Even though small-scale features in the vortices were not as
well represented at low resolutions, the overall degree of mixing
experienced, with respect to the reference solution, was similar.

(v) The rate of convergence of £, error was linear in the linear
regime of the Kelvin—Helmholtz instability. That is, the £, error
decreased by a factor of 2 for each factor of 2 increase in resolution
in each spatial direction. In the non-linear regime, the £, errors
were decreasing, but the convergence rate was sublinear.

(vi) Numerical dissipation was the primary factor in convergence
rate. Performing calculations with reduced artificial viscosity, using
o = 0, yielded results that qualitatively and quantitatively better
agreed with the reference solution. The filaments and spiral structure
of the vortices more closely resembled the reference solution, and
the £, errors were lower at all times sampled. That the calculations
could be performed with @ = 0 was permissible only because, at high
resolution, the physical Navier—Stokes viscosity was as dissipative
as the numerical dissipation and was sufficient to maintain particle
regularity.

(vii) It was found that the septic spline was the minimum order of
B-spline required for these Kelvin—Helmbholtz calculations in order
to accurately model both the linear and non-linear regimes. High-
order kernels are needed to minimize the generation of spurious
velocity noise from errors in the pressure gradient. This background
velocity noise must be less than the initial velocity perturbation
in order to correctly model the linear regime. Velocity noise can
additionally excite other modes, disrupting the non-linear phase
even when the linear phase is correctly modelled, as demonstrated
using the cubic spline.
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Figure 13. The colour field with a density contrast in the initial conditions (Ap/pg = 1) for SPH calculations of ny = 512, 1024, and 2048 particles (first to
third columns), with the DEDALUS reference solution for comparison (D4096) at r = 2, 4, and 6 (top to bottom rows). The instability is triggered in SPH even at
modest resolutions. The vortex structure is trending towards the reference solution as the resolution increases, but would require significantly higher resolution

to match the reference solution for ¢ > 4.

(viii) Calculations employing an initial density contrast qualita-
tively agree with the reference solution. A single curl forms during
the linear regime, which continues to wind producing substantial
substructure in the non-linear regime. The interior structure of the
vortex is overmixed compared to the reference solution, but similar
behaviour was found for ATHENA calculations at similar resolutions
(Lecoanet et al. 2016).

The true test of any numerical method is whether it converges to
an agreed upon solution, and, in this work, it has been demonstrated
that SPH is converging towards the Kelvin—Helmholtz solution of
Lecoanet et al. (2016). It would be of interest to test the convergence
properties of voronoi moving mesh or other particle-based schemes.
Our core conclusion is that SPH can correctly model the Kelvin—
Helmholtz instability.
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APPENDIX A: B-SPLINE KERNELS

The family of B-spline kernels (Schoenberg 1946) can be written
in the functional form
o

Wap(ha) = ﬁw(q), (AD)

where o is the normalization, p is the number of dimensions, and ¢
= rap/h,. Each spline is a piecewise polynomial. Table Al lists the
M4 (cubic) to M10 (nonic) polynomial spline kernels. In the table,
the kernel function, w(g), is for the range R — 1 < g < R, where R
is the radial extent of the kernel. The full piecewise function can be
constructed from this.

For clarity, we also explicitly write the cubic spline,

2—¢q)P —4(1—¢q)°
w@)=<{ 2—q)

g <1,
l=q<2, (A2)
0 q=2,

quintic spline,

B—qX—62—qP°+15(1—¢q)° ¢ <1,

_JB—-9P—-62—-¢q) l<g<2,
0 q=>3,
and septic spline,
(4-q9)" —83—q) +282—¢q) <1
—56(1 — g)’ ="
) @-97-83—-9)7+282—¢q) 1<qg<2,
WD =N 4 gy - 8G—q) 2<g<3 *Y
4 - q)7 3<qg <4,
0 qg > 4.

The increased computational cost for higher order kernels com-
pared to the cubic spline can be estimated by the increased number
of particles within the radial extent of the kernel. In two dimensions,
such as the calculations in this paper, it would imply that the
increased computational cost of switching to the quintic spline
over the cubic spline would be 2.25 x. For the septic spline
over the cubic spline, this would be 4 x. There is a further
floating point operation cost incurred to compute the more complex
splines.
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Table A1. List of bell-shaped spline kernels, with the functional form, normalization (o), and radial extent (R). The functional form, w(g), is for the piece R

— 1 < ¢ < R, from which the full piecewise function can be constructed.

Name w(q) o (1D) o (2D) o (3D) R (9)
Cubic 2—-¢q? -4 —-¢g)° 3! 5/(147) 6/(4'7) 2
Quartic G- =53 —)* + 105 —g)* 4 96/(1 19977) 6/(5'7) 25
Quintic B —¢q) —62—¢q) + 151 —¢q) 5! 7/(4787) 6/(6!7) 3
Sextic G-9°=7G -9 +213 —¢)° = 35(3 — ¢)° 6! 256/(113 1497) 6/(7'7) 3.5
Septic 4 -9 —83—¢q) +282—¢q)" —56(1 —¢q)’ 7! 9/(29 7497) 6/(8!7) 4
Octic G- =92 — )8 +36(3 —q)® —84(3 — ¢)® +126(} — ¢)® 8! 512/(14 345 6637) 6/(9'7) 45
Nonic 5—¢q)° — 104 — q)° + 453 — ¢)° — 1202 — ¢)° + 210(1 — ¢)° 9! 11/(2 922 2307) 6/(10!7) 5

APPENDIX B: DERIVATION OF THE
NAVIER-STOKES HEATING TERM

The heat gained from the two first derivatives implementation of
Navier—Stokes viscosity in SPH can be derived as follows. The total
energy is the sum of kinetic and thermal energy from all particles,

E= Zm( v’ +ua). (B1)

Conservation of energy requires the total energy to remain constant,
thus

dE dv, du,
i o v, =0. B2
dr Zm(” dt+dt) (B2)
Rearranging yields

du, dv,
NI ®

Substituting in the Navier—Stokes term from the SPH momentum
equation (equation 20) yields, for the RHS,

3 [

Substituting in the definition the Navier—Stokes stress tensor (equa-
tion 4) yields

av! vl 29 VIW,p(h
55 o (2 + 2 208 it
oxi 3 Bx"f

Q4 pa
A ov o)
+} < Byt

ij

I1 .
w(ha) + =5V Wab<hb)} . (B4
Qp P}

(B5)

8)(; Bxb 3 3xb prb

2 0, Su> w} ,
Swapping the summation indices on the second term produces

av! v/ 20 ViW..(h
szumbv [ ( . +oe U“alf) M}

ax; | oxi 3 9xk QuPa

. (V] v/ 2 9vk
1 a 7{1 a Ij
+;;mambv |:Uh(8x‘{+3xtil S )

Vé Wab(ha)
Qupa |

(B6)
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The kernel derivative in the second term can be substituted using the

identity V,W,, = —V,W,;, allowing the two terms to be combined
to produce
dv/ 2 vk - ViW,(h
ax] 3 8x" R Pa
(B7)

By utilizing the definition of the difference derivative estimate
(equation 19), one can arrive, after simplification, to

Zm ; vl avg? 8vu‘ 2 vk . B8)
0 xa ij, 0 x'a/ 3 Bxl’;
The second term represents the divergence of the velocity, V - v.

The first term may be simplified by splitting the sum into two equal
halves and swapping the i, j indices on the second half,

Z v} 'y A AN IV A
mev | = , - | — —
ox} ox 3\ axk
NG IAVCIANE : 59)
2 \oxi  axl axi ) 3 8x" '

which after combining yields

8v avj vl vl 2 (9t ?
Zma Ly —a) 2 .(B10)
Bx‘ ax) vl 3\ axk
The heat gain from the Navier—Stokes viscosity is obtained by
substituting the preceding into equation (B3), yielding

du, v vl vl 2 vk :

= -+ — ) — = . (BI11)
dr 2 [\ax] 0x] 3\ oxk
This is guaranteed to yield positive definite increases in thermal

energy, provided that the velocity derivatives are computed using
difference derivative estimates.
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