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Abstract—In scientific exploration and daily life, inter-
connectivity between entities is ubiquitous, such as species via
the food webs, people among social networks, and products and
customers in e-commerce. Graphs and networks are natural con-
structs to model such linkages, which can capture the relational
information in addition to features provided by individual nodes.
Graph neural networks (GNNs) are a powerful computation tool
for reasoning about interconnected data and can help us make
better use of the information imbued in data collectively. GNNs
have found many successful applications, such as predicting drug
side-effects, classifying diseases, and predicting the function of
proteins. Most existing GNN methods are designed for datasets with
moderate node features, where individual node features provide
limited information, and assortative graph datasets, where nodes
and their neighbours are more likely to be similar. However, for
graphs with rich node features, or for the disassortative graphs,
where nodes and their neighbours tend to be different, the message
passing process in GNNs might be susceptible to inferences from the
neighbourhood, leading to performance deterioration. To address
this issue, we find that ego networks contain an extra layer of
information to further distinguish different ego nodes. Based on
that, we propose a generic GNN model that can better utilize
structural information of nodes’ proximity to extract informative
messages and resist contradictory ones from their neighbourhood.
We analyze how node features and graph structure can influence
the performance of GNN models. Experimental results provide in-
sight on how our method outperforms the baselines. The presented
model paves the way for incorporating ego networks’ structural
information into the learned graph representations, which brings
GNNs with better performance and higher robustness over differ-
ent datasets.

Index Terms—Graph neural network, ego aggregation, Jaccard
similarity, graph representation learning.

I. INTRODUCTION

THE network, or graph in mathematics, is a powerful tool to
represent and analyse complex systems in the real world.

Given a set of entities, their individual features, and how they
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are linked, we often wish to classify a node by examining the
graph [1], [2], [3], predict if there may be a missing link between
two individuals [4], [5], [6], [7], [8], or even decide whether the
graph should possess certain traits overall [9], [10], [11], [12],
[13]. The past few decades has seen an evolution of methodology
for reasoning about graphs to distill knowledge from networked
data. Learning from graphs started with data mining of graph
properties available from different scopes of the input graph.
The properties include various node degrees and pagerank,
motifs and orbits, betweenness centrality, and more [14], [15].
However, traditional learning approaches are limited since they
require hand-engineered statistics and measures of the graph,
which is inflexible and time-consuming [16]. In recent years,
graph representation learning has provided an alternative to
reasoning about graphs [17], [18], [19], [20]. Instead of ex-
tracting features from the graph manually, graph representation
learning automatically maps a graph to vector representations
in a Euclidean space encompassing both structural and feature
information. Graph neural networks (GNNs), as a typical graph
representation learning approach, have attained potent perfor-
mance in reasoning about networks and attracted significant
attention recently [1], [2], [3]. Compared to traditional deep
learning paradigms designed for the Euclidean domain, such
as convolutional neural networks (CNNs) [21], [22], recurrent
neural networks (RNNs) [23], and autoencoders [24], GNNs
distill informative vectorial representations from non-Euclidean
graphical data. GNNs have found important applications in
various fields [25], such as road traffic prediction [26], [27], [28],
urban planning [29], drug discovery [30], molecular fingerprint
calculation [31], [32], [33], [34], cancer gene prediction [35],
and financial fraud detection [36], [37]. Moreover, GNNs can be
combined with reinforcement learning and other machine learn-
ing techniques to solve combinatorial optimization problems in
graphs [38], such as key player identification [39], influence
maximization [40], and routing problems [41], [42].

While GNNs have been demonstrated to yield significant per-
formance improvement in many applications, such performance
can be impacted by the graph structures to a large degree. When
sufficiently utilizing the graph structural information, general
GNN models, such as GCN [1], GAT [3], and GraphSAGE [2],
can risk over-emphasizing the network’s structure and detri-
mentally affect performance. This can happen either 1) when
neighbour interference becomes serious on graphs with rich
node features, or 2) when the graph is disassortative. A graph is
assortative when links in the graph are mostly likely joining
similar nodes. It is called disassortative otherwise. Informa-
tion aggregation at a node draws heavily from its neighbours
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Fig. 1. Accuracy comparison of different models on different datasets.

assuming they are similar to itself and can be of referential
values. While such an assumption about graph assortativity may
be valid for the majority of networks, disassortative networks
cannot be disregarded. When the graph is not sufficiently as-
sortative [43] or nodes are feature-rich, such undiscriminating
message passing in GNN can result in destructive aggregation of
neighbour information rather than constructive. Naturally, when
augmenting node features with graph structural information, one
would expect better performance in a reasoning task. However,
net performance loss may be possible in the scenarios discussed
above.

Fig. 1 illustrates the loss of performance when the existing
GNNs are presented with feature-rich datasets. An experiment
was conducted that compares the accuracy of node classification
among Multilayer perceptron (MLP), GCN, GAT, and Graph-
SAGE on seven datasets. MLP depends on pure node features,
while GCN, GAT, and GraphSAGE utilize both node features
and network structure. The detailed setup about the experiment
is provided in the Section of Methods. It can be seen that GCN,
GAT, and GraphSAGE do not always perform better than MLP
(e.g., on the datasets of PubMed, Coauthor CS and Coauthor
Physics), even though they use information from neighbours in
the network in addition to features of individual nodes. That
is, MLP is not enclosed by the graph models in the radar plot,
even though more information is available to GCN, GAT, and
GraphSAGE.

GNNs generally adopt set aggregation functions, such as
sum aggregator and mean aggregator, when collecting informa-
tion from neighbouring nodes and maintaining order-invariance
among them. Meanwhile, these aggregators do not fully leverage
the structural information in nodes’ neighbourhoods, and the
local structure could facilitate more than a simple aggregation.
Some approaches, such as GEOM-GCN [43] and Non-local
GNN [44], have been designed for disassortative graphs and
achieve better performance on those graphs, but they struggle to
get a significant improvement on graphs with rich node features,
where neighbour interference is serious. Moreover, many graphs

are intermediate and do not have an explicit assortativity or
disassortativity, so it is difficult to determine whether regular
GNNs or disassortative-specific methods should be applied.

In this work, a generic and robust GNN model is proposed
that has no requirements for graph assortativity or node feature
richness. This GNN model is called Ego-Aware Graph Neural
Network (EA-GNN). It uses a structure-aware aggregation with
adaptive importance and an ego-awareness mechanism to help
the model better utilize structural information of nodes’ ego
networks. This guards against noise interjected from a node’s
neighbourhood in the aggregation process.

The main contributions are listed below:
1) EA-GNN includes a structure-aware aggregation with

adaptive importance by using a modified Jaccard simi-
larity coefficient within the ego network of a node. This
ego aggregation utilizes the second-order structural infor-
mation to calculate weights.

2) EA-GNN uses an ego-awareness index, r, as the critical
parameter that controls the balance between node features
and graph structure. A greater value of r allows the model
to focus more on node features, while a smaller r value
makes the model place more weight on the graph struc-
ture. This allows EA-GNN to be more expressive than
some of the existing GNN models (e.g., GCN, GAT, and
GraphSAGE), which use the sum or mean aggregator.

3) The efficacy of EA-GNN is validated on eleven real-world
networks through comparison to GCN, GAT, Graph-
SAGE, and non-local GNNs, along with MLP. The exper-
imental results demonstrate that the proposed approach
can reject noise introduced from graph structure, and that
it maintains the performance for datasets with rich node
features. On the other hand, it can also improve the per-
formance in “typical” datasets where the graph structure
is informative.

4) EA-GNN shows more robustness than its counterparts
against network structure perturbations and node fea-
ture absence, making it more applicable to datasets with
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different characteristics. Compared with its counterparts,
EA-GNN is generic in the sense that it can reliably achieve
better performance compared to MLP on not only assorta-
tive and feature-insufficient graphs, but also disassortative
and feature-rich graphs.

II. RELATED WORK

Graph Neural Networks (GNNs) serve as a general framework
for constructing deep neural networks on graph data. GNNs
can be categorized into two main streams: spectral-based and
spatial-based approaches [17]. Spectral-based methods apply
convolution operations in the spectral domain, achieved by
computing the eigendecomposition of the Laplacian matrix of
the input graph [45], [46], [47]. While these methods are compu-
tationally efficient, they heavily rely on the specific structure of
the input graph, making models trained on one graph less adapt-
able to different graphs. In contrast, spatial-based approaches
establish convolutions directly on the graph itself [2], [3], [48].
In this approach, node representations are updated iteratively
by aggregating information from neighbouring nodes, allowing
for the spatial propagation of node information throughout the
graph. Compared to spectral approaches, spatial approaches
receive more attention for their higher flexibility, generality, and
efficiency [17].

Neural message passing is the key of spatial-based GNNs,
which allows vector messages to be exchanged between nodes. It
includes two steps: neighborhood aggregation and feature trans-
formation. Most existing GNNs improve the task performance
by designing better neighborhood aggregation operators. For
example, GCN employs a weighted sum aggregator that assigns
weights based on the degrees of neighboring nodes [1]. GAT
is the first GNN model to apply an attention mechanism [3].
This mechanism computes attention weights for each neighbour,
allowing for the weighting of each neighbour’s influence during
the aggregation process. GraphSAGE offers various aggrega-
tors such as mean aggregator, LSTM aggregator, and pooling
aggregator, enabling adaptability to different datasets [2]. Deep
GNNs, such as JKnet [49], GCNII [50], and RevGNNDeep [51],
maintain the local information of node representations by in-
corporating the output from shallow layers into deeper layers,
following a residual-style design approach.

Although GNNs have proven to be effective in a wide range of
applications, their performance can deteriorate when confronted
with unfavorable graph structures. For instance, conventional
GNN models like GCN and GAT may exhibit reduced per-
formance on graphs characterized by abundant node features
and disassortative structures, which can introduce noise into
the learning process. Several approaches have been developed
to address this issue. GEOM-GCN uses a novel geometric
aggregation scheme to capture long-range dependencies by
computing the distance between every pair of nodes [43]. Due
to its computational complexity, this model is challenging to
run on large-scale graphs. Non-local GNN provides a simple
yet effective aggregation framework, which applies attention-
guided sorting and non-local aggregation to gather information
from distant but informative nodes [44]. SimP-GCN introduces a

feature similarity-preserving aggregation method to harmonize
the information derived from both the graph structure and node
features [52]. These methods can help to extract the informative
message and mitigate noises from their neighbourhood to a
certain degree, but they cannot handle graphs with rich features
well, where neighbour interference is more likely to appear.

Recent research has been leveraging the structural in-
formation within local neighbourhoods to develop effective
message-passing aggregation techniques, thereby enhancing the
expressive capabilities of GNNs. For example, SHADOW-GNN
involves the extraction of a localized subgraph, upon which
a GNN of arbitrary depth is applied to bolster the GNN’s
expressive power [53]. NGNN, on the other hand, focuses on
extracting a local subgraph surrounding each node and subse-
quently applies a base GNN to each subgraph to learn subgraph
representations [54]. GraphSNN introduces a novel approach
for injecting structural information into message-passing aggre-
gation by establishing a new hierarchy of local isomorphism on
neighbourhood subgraphs [55]. LAGNN incorporates a straight-
forward yet effective data augmentation strategy known as local
augmentation. This strategy is designed to learn the distribution
of node representations among neighbours based on the central
node’s representation, thereby enhancing GNN expressiveness
with generated features [56]. These studies collectively highlight
the pivotal role of local information in training GNN models and
devising robust, high-performance GNNs.

III. EA-GNN: EGO-AWARE GRAPH NEURAL NETWORK

We present a generic Ego-Aware Graph Neural Network (EA-
GNN). This proposed GNN introduces a local structural weight-
ing mechanism, which computes amplification coefficients for
local neighbouring messages based on the structure of the
ego-network. This mechanism gives high importance to the
neighbours that are structurally similar to the ego nodes, so
it can balance the feature weights between ego nodes and their
neighbours during message passing.

A. Structure-Aware Aggregation in Ego-Networks

Messages aggregation is essential for spatial GNNs [16]. Most
previous studies [1], [2], [3] use simple aggregation functions.
For example, GCN weights node features based on node degrees,
GAT uses a self-attention mechanism to weight neighbourhood
messages, and GraphSAGE adopts a mean aggregation to extract
information from neighbourhood features. These aggregation
schemes only use the simple structural information, such as local
connection and node degree. However, there is more structural
information that can be exploited for structure-aware aggre-
gation. Here, we consider leveraging the structural similarity
between neighbours of an ego node to modulate messages from
them with different weights during the aggregation.

Structural similarity is a fundamental approach to measuring
node similarity in a network. That is, two nodes are structurally
similar if they are situated comparably in the network con-
text [14]. There are a number of metrics of structural similarity,
such as the number of common neighbours, cosine similarity,
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Fig. 2. Structural similarity of node u and node v when performing feature
aggregation of node u.

Pearson correlation coefficient, and Jaccard similarity coeffi-
cient [57]. The number of common neighbours is the most
simple similarity index, but it is too coarse and not normalized,
making it difficult to compare the similarity of nodes with a
massive difference in degrees. Cosine similarity and Pearson
correlation coefficient are two efficient and widely used mea-
sures for capturing similarity between two sets of data. However,
they are not very suitable for capturing structural similarity
between set-based data, and their calculation load is relatively
considerable. Cosine similarity is an angle-based measure and
is particularly suitable for capturing similarity in the direction
or orientation of vectors. The Pearson correlation coefficient is
particularly useful for quantifying linear relationships.

Considering its efficiency, simplicity, and interpretability,
EA-GNN uses a variant of the Jaccard similarity coefficient
to capture the structural similarity. The Jaccard similarity is
well-suited for this scenario, i.e., set-based comparison, where
the order or frequency of elements in the sets does not matter.
Given a graph G = (V,E), the Jaccard similarity coefficient
between nodes u and v is defined by

Juv =
|N(u) ∩N(v)|
|N(u) ∪N(v)| , (1)

where N(u) and N(v) are the neighbourhoods (i.e. set of
neighbours) of u and v, and |N(u)| and |N(v)| are their de-
grees. In addition, the closed neighbourhood of given node
u is denoted N [u], i.e. N [u] = N(u) ∪ {u}. In particular
for Juv , if nodes u and v share all the same neighbours,
we have N(u) = N(v). Thus, |N(u)| = |N(v)| = |N(u) ∩
N(v)| = |N(u) ∪N(v)|, yielding Juv = 1. When the two
nodes have no common neighbours, i.e. |N(u) ∩N(v)| = 0,
yielding Juv = 0. Generally, Juv ∈ [0, 1] and it is symmetric.

Although the Jaccard similarity coefficient is a good index
to measure the structural similarity between a node pair, it
cannot be directly applied for re-weighting messages because
the mutual influence between two nodes is often asymmetric. If
a node has a small degree and a neighbour has a very large degree,
the Jaccard similarity coefficient between them will always be
small even if the neighbourhood of the low-degree node is mostly
covered by that of the high-degree node. For example, consider
neighbouring nodes u and v in the scenario in Fig. 2, where

N [u] ⊂ N [v] and N [u] � N [v]. As the model performs feature
aggregation atu, we should acknowledge that v should influence
u more than the other way round because v has a significantly
more diverse neighbourhood than u. However, the calculated
Juv with (1) will be very small due to the high degree difference
between node u and node v. Therefore, the Jaccard similarity
coefficient cannot be directly used to measure the similarity
between node and neighbours. To address this problem, we
propose to calculate Jaccard similarity coefficient within the ego
network of a given node because a node’s ego network is more
relevant with regard to the ego node than further structures of the
network. In this way, the modified Jaccard similarity coefficient
in node u’s ego network is defined as

Juv =

∣∣N(v)
∣∣

|N(u)| , (2)

where |N(v)| is the degree of node v in node u’s ego network.
Note thatJuv �= Jvu here to signify the asymmetry of the mutual
influence between u and v.

Our proposed aggregation scheme considers information flow
within the ego network. It allows ego nodes to receive weighted
information from their neighbours regulated by the local ego
network structure. Specifically, the aggregated information for
node u can be calculated as

zu =
1∑

v∈N(u) Juv

∑
v∈N(u)

Juvzv

=
1∑

v∈N(u)

∣∣N(v)
∣∣

∑
v∈N(u)

∣∣N(v)
∣∣ zv, (3)

where zu ∈ Rd and zv ∈ Rd are the embedding of nodes u and
v in a specific layer, respectively.

Fig. 3(a) shows an example of the proposed ego aggregation
scheme. Consider that the model is performing information
aggregation at node u. Here, node u’s ego network includes
the node set {u, v, a, b, c}. Then, the weight for each node can
be calculated using its degree within the ego network. In partic-
ular, the weights for nodes 〈u, v, a, b, c〉 are 〈 4

14 ,
4
14 ,

2
14 ,

2
14 ,

2
14 〉,

respectively. Note that node v has the same weight as the ego
node u in this example, and this weight is the greatest in the ego
network. This is reasonable because nodes v and u are directly
joined and have similar local structures, i.e., they have the same
common neighbours. In essence, this ego aggregation utilizes
the second-order structural information to calculate weights for
the neighbourhood messages within one aggregation step.

To give greater importance to the ego node than any of its
neighbours, a self-loop to the ego node is added to ensure it
always has the greatest weight. Fig. 3(b)) shows an example of
this self-loop. In this case, the weights for nodes 〈u, v, a, b, c〉
become 〈 5

15 ,
4
15 ,

2
15 ,

2
15 ,

2
15 〉, respectively. As such, aggregator

will pay more attention to the ego node than any other nodes
within its neighbourhood. The aggregation function we adopt is

zu =
1∑

v∈N [u]

∣∣N(v)
∣∣

∑
v∈N [u]

∣∣N(v)
∣∣ zv, (4)
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Fig. 3. Illustration of the ego aggregation scheme with adaptive importance.

where N [u] = N(u) ∪ {u}. The relative contribution among
neighbours can be further adjusted using a power function, as
discussed next.

B. Ego Awareness

In graph learning, the network structure and node features are
the two factors contributing to the performance of a machine
learning task. However, when indiscriminately compounded,
they do not always yield better performance than using node
features alone. This is especially true for disassortative graphs,
where neighbhouring nodes are often dissimilar. In this case,
a node’s neighbourhood often contains a considerable amount
of misinformation with respect to the ego node, undermining
the quality of the aggregated information. The richness of node
features is also relevant here because a feature-rich node should
be less reliant on information coming from neighbours. For
networks with very rich node features, such as the two coau-
thorship networks (Fig. 1), even a simple MLP can achieve
great accuracy. Somewhat surprisingly, the example GNNs do
not perform very well on these datasets in the comparative
experiments. This occurs because, during the aggregation in
a GNN, the ego node is dependent on information from the
neighbourhood. However, a node with rich features should be
more confident in its own information, and the information from
neighbours should be referred to with more caution. Therefore,
in this case, the ego node needs a balance mechanism when
node features and network structures compete with, rather than
reinforce, each other.

An ego-aware aggregation is proposed within EA-GNN to
strengthen the desired information and weaken the unexpected
noises. This mechanism introduces a power function to the
aggregation to flexibly adjust the contribution of each neighbour
relative to the ego node. The aggregated feature at node u can
be calculated by

zu =
1∑

v∈N [u]

∣∣N(v)
∣∣r

∑
v∈N [u]

∣∣N(v)
∣∣r zv, (5)

where the hyperparameter r is essentially an ego-awareness
index that enables the model to guard against useless infor-
mation. When r = 0, the model is similar to GraphSAGE
because it gives the ego node and each neighbour the same
importance. In this case, the model aggregates information
from the neighbourhood with full trust so that the ego node’s
representation is heavily influenced by its neighbours, leading
to a performance degradation for some disassortative networks
or networks with rich node features. To avoid this problem, r can
be increased to make the model focus more on its own features
as well as those from structurally similar neighbours, with lesser
importance on structurally dissimilar neighbours. In the extreme
condition, with a large r, the model becomes similar to MLP
in that no consideration is given to the graph structure. This
hyperparameter r can be tuned via cross-validation.

C. Graph Convolution With Adaptive Weighting

A graph neural network could have multiple convolutional
layers. The model generates node representations in each layer
using its previous layer’s node embeddings. Specifically, a con-
volutional layer in graph neural networks normally contains a
feature aggregation step and an update step. The update of the
l-th layer can be expressed as

h(l)
u = UPDATE(l−1)

(
AGGREGATE(l−1)

(
{h(l−1)

v , ∀v ∈ N(u)} ∪ h(l−1)
u

))
, (6)

where h(l)
u ∈ Rd is the representation at node u in the l-th layer.

In each layer, the aggregation function takes the representations
of the nodes in the neighbourhood N(u) of node u as input and
computes an aggregated representation from them. Then, the
update function generates a new representation at node u with
the aggregated representation and its own representation in the
previous layer. Formally, the representation update equation is
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written as

h(l)
u = σ

⎛
⎝ ∑

v∈N [u]

W(l)h(l−1)
v

⎞
⎠ , (7)

where W(l) is the learnable transformation matrix for the l-
th layer, and σ is the activation function, e.g., ReLU. The
re-weighting matrix Er is introduced to incorporate structural
information of ego networks, which has dimension the same
as the adjacency matrix of a network. The elements of Er are
defined as

Er
uv =

∣∣N(v)
∣∣r∑

v∈N [u]

∣∣N(v)
∣∣r . (8)

That is, the elementEr
uv is the reweighting coefficient indicating

the importance of node v to node u within u’s ego network
adjusted by the exponent r. Note that Er

uv �= Er
vu even in an

undirected network since nodes u and v may not have mutually
symmetric influence. Therefore, the final representation update
equation is

h(l)
u = σ

⎛
⎝ ∑

v∈N [u]

Er
uvW

(l)h(l−1)
v

⎞
⎠ . (9)

D. Model Analysis

Both node features and graph structure are determinant factors
of the performance of GNN models. For example, if node
features are very rich, which means a model can already achieve
a high performance using node features only, aggregated mes-
sages from neighbours may contain more noise than useful
information. Thus, GNN models with message passing, such as
GraphSAGE, hit a performance ceiling compared to a simple
MLP in graphs with rich node features. Unfavourable graph
structure is another problem with vanilla GNN models. In real-
world applications, it is impossible to collect the entirely faithful
interrelationship between nodes for intended or unintended rea-
sons. For example, fraudsters pretend to connect to many benign
users in financial networks. As a result, the graph indicating the
relationship between nodes is not always accurately built. In such
cases, the messages from neighbours also include interference
that caps the performance of GNN models. The proposed EA-
GNN model can solve this interference problem and maintain
the advantages of vanilla GNNs by adjusting the ego-awareness
index r. Here, a proof is presented that shows EA-GNN bridges
the MLP model and GraphSAGE.

Starting with (8), when r → ∞, we have

E∞
uv =

∣∣N(v)
∣∣∞∑

v∈N [u]

∣∣N(v)
∣∣∞

=

{
0 , v �= u,
1 , v = u.

(10)

Inserting (10) into (9) yields

h(l)
u = σ

⎛
⎝ ∑

v∈N [u]

E∞
uvW

(l)h(l−1)
v

⎞
⎠

= σ

⎛
⎝ ∑

v∈N(u)

E∞
uvW

(l)h(l−1)
v +E∞

uuW
(l)h(l−1)

u

⎞
⎠

= σ
(
W(l)h(l−1)

u

)
. (11)

Therefore, when r → ∞, EA-GNN only utilizes node features
without considering the graph structure, becoming equivalent to
MLP.

Next, consider the case for EA-GNN when r = 0. The re-
weighting matrix Er becomes

E0
uv =

∣∣N(v)
∣∣0∑

v∈N [u]

∣∣N(v)
∣∣0

=
1∣∣N(u)

∣∣ . (12)

Substituting (12) into (9) yields

h(l)
u = σ

⎛
⎝ ∑

v∈N [u]

Er
uvW

(l)h(l−1)
v

⎞
⎠

= σ

⎛
⎝ ∑

v∈N [u]

1∣∣N(u)
∣∣W(l)h(l−1)

v

⎞
⎠ . (13)

Equation (13) shows that for EA-GNN with r = 0, each neigh-
bour has the same weight 1

|N(u)| in the node embedding update

step, which is equivalent to GraphSAGE.
Therefore, MLP and GraphSAGE are two special cases of

EA-GNN. EA-GNN is a generic GNN model that can be tuned
to sit between MLP and vanilla GNNs, such as GraphSAGE,
through adjusting the ego-awareness index, r. As a result, EA-
GNN can adapt to datasets with different characteristics. For
example, EA-GNN can increase r when running on the datasets
with very rich features, emulating MLP to make full use of node
features. On the other hand, when the graph is well built and
node features are not informative enough, decreasing index r
will make the model pay more attention to the messages from
the neighbours.

E. Time Complexity Analysis

The additive cost of EA-GNN in comparison to conventional
GNNs like GCN and GAT arises from the computation of the
reweighting matrix Er (8). The time complexity of computing
reweighting elements for a single node may be expressed as
O(k) where k is the average degree of the network since the
degree of each neighbour of this node needs to be calculated
in its ego network. Then, the time complexity of computing
reweighting elements for all nodes can be O(|N |k), where

|N | is the node number of the network. Since |E| = |N |k
2 , the

computational complexity of calculating the reweighting matrix
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TABLE I
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS

is O(|E|), where |E| is the edge number of the network. The
calculation of the reweighting matrix only needs to be done
once during the training process as part of data preprocessing.
It has been reported that the time complexity of the typical
GNNs, such as GCN and GAT, is O(|E|)[1], [3]. Therefore, the
time complexity of the proposed EA-GNN is O(|E|) +O(|E|),
which is also O(|E|). Although determining the optimal r for
a specific dataset by cross validation requires extra time, this
complexity is still on par with the popular methods.

IV. EXPERIMENTS

The effectiveness of EA-GNN is evaluated on a variety of
open graph datasets. In particular, the aim is to confirm that
EA-GNN can improve performance and adaptability compared
to MLP, GCN, GAT, GraphSAGE, and non-local GNNs.

A. Datasets

The proposed EA-GNN is evaluated using eleven open graph
datasets. Table I provides a summary of the statistics for these
datasets. The homophily metric can be an effective method for
distinguishing assortative and disassortative graph datasets. The
homophily of a graph G is defined as

H(G) = 1

|V |
∑
v∈V

| {u : u ∈ N (v) and l(u) = l(v)} |
|N (v)| , (14)

where | {u : u ∈ N (v) and l(u) = l(v)} | represents the count
of nodes directly connected to node v that share the same label
as node v and N (v) denotes the set of node v’s direct neigh-
bours [43]. Cora, CiteSeer, and PubMed are well-established
benchmark citation network datasets [58]. In these networks,
nodes represent research papers, while edges are citation re-
lationships between the papers. Node features in this context
represent the bag-of-words representations of papers, while the
node labels signify the topics associated with each paper. Ama-
zon Computer and Amazon Photo are subsets of the Amazon
co-purchase network [59]. Within these datasets, nodes repre-
sent products, and the presence of edges between two products
implies a frequent co-purchasing pattern. Node features are de-
rived from the bag-of-words representations of product reviews,
and the node label indicates a product’s category. Coauthor CS
and Coauthor Physics are two co-authorship networks sourced
from the Microsoft Academic Graph, originally used in the
KDD Cup 2016 challenge [59]. In these networks, authors are
represented as nodes, and an edge between two authors signifies
their collaboration on a research paper. Node features are derived

from the keywords associated with an author’s papers, while
the node label categorizes the author’s primary area of research
expertise. Cornell, Texas, and Wisconsin datasets are part of the
WebKB dataset collection gathered by Carnegie Mellon Uni-
versity [43]. Within these datasets, nodes represent web pages,
and edges signify hyperlinks between them. Node features are
derived from the bag-of-words representations of the web pages,
and node labels encompass categories such as student, project,
course, staff, and faculty. The Actor dataset constitutes an actor
relation network, where nodes correspond to actors and edges
denote their co-occurrence on the same web page sourced from
Wikipedia [60]. Node features are constructed from the bag-of-
words extracted from keywords found in the actors’ Wikipedia
pages. The node labels encompass five categories derived from
the topics of the actors’ Wikipedia pages.

B. Experimental Settings

To demonstrate the effectiveness of the proposed model,
EA-GNN is compared with MLP, GCN, GAT, GraphSAGE,
non-local GCN, and non-local GAT on inductive node label
classification tasks. MLP, GCN, GAT, GraphSAGE, and the
proposed EA-GNN are implemented using Pytorch [61] and
Pytorch Geometric [62]. For the non-local GCN and non-local
GAT, an implementation provided by the authors [44] is used.
All the latent representations are 128-dimension. The activation
function σ is ReLU, and the Adam optimizer with a learning
rate 0.005 is used to minimize the cross entropy losses. Note
that the index r, which controls the ego-awareness mechanism,
is distinct between different datasets as it is determined by a
hyper-parameter search for each model using the validation set.
An early stopping policy is used that is based on the validation
accuracy within 500 epochs, with the patience set to 5. All the
experiments are conducted on an Ubuntu 20.04.4 LTS system
with Lenovo ThinkStation, Xeon 5118, 256 GB RAM and
NVIDIA RTX 2080 Ti with 12 GB memory size. The software
used for the experiments is Python 3.8.5, PyTorch 1.10.0, PyG
2.0.2, NumPy 1.19.1, CUDA 11.3.1, and CUDNN 8.2.0.

For all graph datasets, the nodes are randomly split into 60%,
20%, and 20% for the training, validation, and testing sets. In
the training phase, only nodes in the training set and edges
between the training nodes are used to train the model. The edges
between training nodes and validation nodes or testing nodes are
omitted. In the validation and testing phases, new nodes from
the validation set or testing set are added to the existing network.
The model then utilizes the existing network in combination with
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Fig. 4. Accuracy comparison of different models on different datasets.

new nodes’ features and connection information to predict new
nodes’ classes. This experiment mimics the evolving nature of
information networks in reality. Networks grow with introduc-
tion of new unseen nodes, and often these new nodes need to
be classified. Ten different random splits with the same training,
validation, and testing sizes are used to mitigate the effect of
different splits on the performance.

C. Results

Four experiments are conducted to demonstrate EA-GNN’s
effectiveness. First, a comparison is made of the classification
accuracy between EA-GNN and other existing GNNs, as well as
MLP. Second, it is demonstrated that the optimal r is different
for different datasets by cross validation. The third and fourth
experiments test the robustness of EA-GNN and other baselines
by rewiring parts of the networks and ignoring subsets of node
feature dimensions.

1) Comparison of Classification Accuracy Among ML Meth-
ods: EA-GNN is compared to popular GNN models to show
the general effectiveness of the proposed model, in addition to
MLP, which only uses on the node features.

Fig. 4 shows the classification accuracy comparisons of differ-
ent models on seven assortative datasets. It can be observed that
EA-GNN outperforms all other models on the seven datasets.
It is worth noting that MLP outperforms some of the existing
GNN models, such as GraphSAGE and GAT, especially on the
PubMed, Coauthor CS, and Coauthor Physics datasets. That oc-
curs because the information aggregated from neighbourhoods
in these three networks contributes negatively to the performance
of the GNN models.

There are several reasons that may lead to the loss of per-
formance. First, the network is feature-rich, which means node
features are abundant and of high quality so that label prediction
using only node features can achieve relatively high accuracy.
In these kind of networks, node features are strong indicators of
node labels. The aggregated information from neighbourhood

will conversely interfere with the model’s judgement. The other
reason that may cause this problem is that the network is not
well-built or too noisy so that the message passing mechanisms
are unreliable. Thus, these reasons lead to the same effect: the
aggregated neighbourhood information brings more interference
than utility. Our proposed EA-GNN method, however, can ef-
fectively avoid this neighbourhood interference problem.

The accuracy of our approach is consistently the highest even
for the three feature-rich datasets. Fig. 4 presents visual com-
parisons of these methods, while Table II provides a summary
of the detailed classification accuracy of the models. It can be
noticed that for the four disassortative datasets (i.e., Cornell,
Wisconsin, Texas, and Actor), EA-GNN performs better than
other GNNs, including NLGCN and NLGAT, even though its
accuracy is slightly lower than MLP on Cornell, Wisconsin,
and Texas. A possible explanation is that these three datasets
are small-scale, only containing about 200 nodes and less than
500 edges, which creates uncertainty in the experiment. For the
normal-scale Actor dataset, EA-GNN still outperforms all other
models though it is disassortative.

2) Changes of Classification Accuracy With Ego-Awareness
Index r: Fig. 5 shows how the class prediction accuracy changes
with different index r on different datasets. All the experiments
are repeated 10 times. Shaded regions denote the standard de-
viation. Grid search is used to find the optimal value of r that
yields the model with the highest accuracy for each dataset.

Recall that r is an exponent that can adjust the contribution
of each neighbour in the local aggregation step. Higher r means
the model pays more attention to high degree nodes in the ego
network. Note that the ego node always holds the highest degree
in the ego network. Therefore, as the value of r approaches 0,
the distinctions in importance among the ego node’s neighbours
diminish, causing the model to exhibit a behavior akin to that
of GraphSAGE. With a large enough r, the model will assign
the ego node with the highest degree in its ego network the
largest weight, and the neighbours’ weights can be ignored to
some degree. In this way, the model degenerates to MLP. By
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TABLE II
MEAN CLASSIFICATION ACCURACY ON BENCHMARK DATASETS

Fig. 5. Trend of accuracy with the change of r in different datasets.

adjusting r, EA-GNN has a high tolerance of datasets with
different characteristics, making it widely applicable.

Fig. 5 shows that the curves for the Cora, CiteSeer, Amazon
Computer, and Amazon Photo datasets have the same approx-
imate trend – the accuracy at first increases with increasing r,
then reaches a peak and subsequently decreases. In these four
datasets, when r equals 0, corresponding to the GraghSAGE,
the accuracy is relatively low. The reason is that the neighbour-
hood provides both useful information and interference. With
the growth of r, the model pays more attention to the high
degree nodes and less attention to the low degree nodes in the
ego networks. This process can be viewed as an information
distillation. Finding the best r means the model find a balance
between nodes’ own features and their neighbourhood influ-
ence. After that, continuing increasing r can help reject useless
information, but the model also ignores useful information from
the neighbourhood. That is why the model shows a decreasing
accuracy.

The curve in the PubMed dataset is similar to those in the
previous four datasets, with the only difference that the ac-
curacy decreases to a stable level after the peak. This means
the model degrades to MLP when r exceeds 3.5. The curves
in the two Coauthor datasets do not experience a noticeable
decrease. This is caused by the characteristics of the datasets,
where nodes’ neighbours provide little useful information and
node-specific features dominate the prediction task. Overall, this
experiment demonstrates that our model is widely applicable
and can achieve a better performance regardless of whether the
network is dominated by node-specific features or needs more
information from nodes’ neighbourhood.

3) Robustness Against Perturbations of Network Structure:
In the real world, it is impossible to capture the entire network
structure accurately due to intentional or unintentional reasons.
For example, fraudsters can make some connections with high-
credit accounts to avoid detection in credit card fraud detection,
or edges in the network might be added or lost by mistake
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Fig. 6. Trend of accuracy by different approaches with the increasing ratio of shuffled edges on eleven datasets.

during the the data collection process. Therefore, the model’s
robustness against perturbations of the network structure is
essential to avoid severe consequences in critical applications.

In this experiment, the node classification accuracy of differ-
ent methods is evaluated with respect to perturbations of the net-
work structure. These perturbations are simulated by shuffling
a fraction of edges of the network. The edge shuffling replaces
two randomly chosen edges u-v and x-y with the new edges
u-x and v-y, so that noise is introduced to the network structure.
Specifically, the ratio of shuffled edges is varied between 0 to
60% with a step of 10% for all the datasets. All the experiments
are repeated 10 times with different random seeds for dataset
split.

Fig. 6 shows the trend of accuracy by different models with
the increasing ratio of shuffled edges on datasets. MLP ignores
all relational information, thus the edge shuffling perturbations
are irrelevant. The first seven datasets are assortative and the last
four are disassortative. It can be observed that the classification
performance of EA-GNN and the baselines drop at different rates

with respect to the increasing ratio of shuffled edges for all of the
assortative datasets. Specifically, the performance degradation
rate of the baselines is much higher than EA-GNN. For example,
in the Cora dataset, the performance gap between GraphSAGE
and EA-GNN becomes more significant with the increasing
shuffled edges. In the original unshuffled dataset, EA-GNN
outperforms GraphSAGE by 1%, but the gap becomes about
16% when we randomly shuffle 40% edges. This demonstrates
that EA-GNN is more robust to the change of edges. It should
also be noted that the EA-GNN accuracy converges to the MLP
accuracy when the network structure changes considerably. In
contrast, the baseline accuracy decreases to be lower than the
MLP accuracy. This convergence property allows EA-GNN
to be applied with confidence, without worry that the graph
structure quality will deteriorate the performance below MLP.
For the disassortative datasets, both EA-GNN and the baselines
do not show a noticeable performance change with the increase
of shuffled edges, but EA-GNN still performs better than the
baselines.
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Fig. 7. Trend of accuracy of different approaches with the descending ratio of node feature sampling on eleven datasets.

The red line in Fig. 6 shows the trend of the optimal r with the
increasing shuffled edges. It can be observed that the optimal r
increases with the growth of shuffled edges in Cora, CiteSeer,
and PubMed datasets. This occurs because increasing the ratio
of shuffled edges introduces more disturbance to the network
structure, leading to more noise in the aggregation step of GNNs.
To mitigate the impact of noises from nodes’ neighbourhood,
the optimal r can be increased to make the model pay more
attention to nodes’ own features. During this process, the EA-
GNN model approaches MLP (11). Therefore, as the ratio of
shuffed edges increases, the performance curves of EA-GNN
converges to that of MLP in all datasets in Fig. 6. This property
of EA-GNN guarantees that EA-GNN performs better than MLP
on any dataset regardless whether the graph structure is well built
or not. Therefore, EA-GNN can solve the negative aggregation
problem that the vanilla GNN encounters.

4) Robustness Against Missing Node Feature Dimensions:
The richness of node features is another factor besides the graph
structure that can influence the performance of the GNN models.

To investigate the robustness of the proposed model to different
richness levels of node features, different ratios of node feature
dimensions are sampled from 100% down to 20% for each
dataset, with a step size of 20%. The graph structure remains
the same. In this experiment, EA-GNN and the baseline models
are trained and tested for the node classification task. All the
experiments are repeated 10 times with different random seeds
for dataset split.

Fig. 7 shows the trend of accuracy of different approaches with
the descending ratio of node feature sampling. The first seven
datasets are assortative and the last four are disassortative. It is
found that all methods experience performance degradation with
the decrease of feature dimensions sampling, but the proposed
EA-GNN sees a slower performance degradation in each dataset.
For example, with the feature sampling ratio declining from
100% to 20% in Cora dataset, the accuracy of EA-GNN de-
creases from 88.1% to 80.8%, while the accuracy of GraphSAGE
decreases from 86.9% to 79.25%. This performance degra-
dation is reasonable since the models cannot acquire enough
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Fig. 8. Trend of Pea-gnn, Pgnn, Pmlp, P+, and P− with the increase of I .

information from the data to perform the task with insufficient
node features. However, our method performs better than the
baselines in all the cases, thus demonstrating a stronger ro-
bustness against node features partially missing. The red line
refers to the change of the optimal r of EA-GNN. Its overall
trend is declining with the decreasing of feature sampling ratio
because with less node feature information, EA-GNN is able to
improve the importance of nodes’ neighbours to aggregate more
useful information from the neighbourhood. When optimal r
goes down to close to 0, the performance of EA-GNN is close to
that of GraphSAGE. That is, when r equals 0, EA-GNN behaves
more like GraphSAGE.

V. DISCUSSION

Node features and graph structure are two factors that can
influence the performance of GNNs, and they usually reinforce
each other. Generally speaking, GNN models can effectively
improve performance on datasets where node features are mod-
erate and similar nodes tend to connect to each other. However,
as demonstrated in this work, when node features are very
rich or graph structure is unfavourable, GNN models do not
necessarily yield a significant performance gain compared to
the MLP model, which only leverages node features. Rich node
features often contain sufficient information for the model to
make a fairly good decision, leaving little room for GNN models
to further distill useful information from nearby nodes. If a
graph is not well built, for example, when most nodes connect
to nodes with different class labels, the aggregated information
from neighbourhood may even interfere with the ego node’s
information representations, leading to a performance loss.

Fig. 8 illustrates how the richness of node features affect the
performance gain of GNN models. Consider the situation of
a static graph structure with no features, The x-axis in Fig. 8
reflects the amount of information carried by node features
as new features are added to the graph. Here, the “amount of
information” is governed by both the quantity and quality of
node features. The y-axis is the estimated performance of MLP,
GNN, and EA-GNN in a machine learning task at each point

of feature richness. Given a reasonably strong MLP, its perfor-
mance can be used as a reliable indicator of the node feature
richness. For MLP to achieve a perfect performance, it requires
a certain level of node feature richness, denoted Is for saturated
information. Therefore, MLP has a performance curve of the
45-degree line in [0, Is]. In comparison, the aggregation process
in a GNN allows an ego node to gather information from its
neighbours to combine with its own. The information collected
from neighbours, however, can include both positive, useful
information and what turns out to be noisy. These two forces
both contribute to the performance of GNN but cancel each
other. In essence, the performance of GNN, denoted Pgnn(I)
as a function of I , is a compound of three factors:

Pgnn(I) = Pmlp(I) + P+(I) + P−(I). (15)

where P+(I) is the performance contributed by the useful in-
formation from neighbours, and P−(I) is the performance loss
due to neighbour interference.

As illustrated in Fig. 8, P+(I) increases with I when I is
relatively small and decreases in a high-I region. This is because
when I is small, which means node features are not informative,
GNN can help nodes acquire useful information from their
neighbourhood, so the room for performance improvement is
large. As I increases towards near Is, i.e. features are informa-
tive, the room for such a performance gain becomes less. On the
other hand, |P−(I)| grows monotonically with I because a large
I means node features already contain a great deal of useful in-
formation for the task, rendering the information gathered from
neighbours useless. An extreme case is when the node features
are saturated, i.e. I = Is, none of the gathered information could
help the model to do better. Thus, the performance curve of Pgnn

has a peak when it makes the best use of neighbours information,
denoted I = Ia. Note for the major of the I domain, GNN
outforms MLP because the node features and network structure
are synergetic. However, in a high I region, Pgnn drops below
Pmlp, and we denote the crossover point Ib.

The region to the right of Ib was what our preliminary exper-
iments demonstrated for the feature-rich datasets (Fig. 1). That
is, the domain of [0, Is] is divided three regions by Ia and Ib.
In the first region, where I < Ia, adding node features helps
GNN perform better. Thus, GNN always outperforms MLP, i.e.
Pgnn(I) > Pmlp(I). In the second region, where Ia < I < Ib,
Pgnn(I) declines with the increase of I but is still greater
than Pmlp(I). Thus, GNN still performs better than MLP in
this region although the improvement becomes less with the
increase of I . There is also a gap, PΔ, between Pgnn(Ia) and the
saturated information, Ps. This gap is determined by the graph
structure quality and the design of GNN model. In the third
region, where I > Ib, we have |P+(Ib)| < |P−(Ib)|, resulting
in Pgnn(I) < Pmlp(I), where GNN underperforms MLP. In this
case, when node features are extremely rich, a naïve application
of GNN models can lead to a lower performance than MLP due to
the acquired negative information outweighting useful informa-
tion. To address this issue, the proposed EA-GNN judiciously
shields the neighbour interference when the node features are
rich. In reference to (8), EA-GNN can balance the importance
between the ego node and its neighbours through changing the

Authorized licensed use limited to: Memorial University. Downloaded on February 24,2024 at 12:43:29 UTC from IEEE Xplore.  Restrictions apply. 



1768 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

ego-awareness index r. For example, when the node features are
not rich, such as the Cora and CiteSeer datasets, EA-GNN can
use a relatively small r to utilize more useful information from
neighbours, as shown in Fig. 5. When the node features are very
rich, such as the two Coauthor datasets, EA-GNN can apply a
relative large r to resist noisy information from neighbours. In
general, EA-GNN outperforms the better of GNN and MLP in
the entire domain of [0, Is] and monotonically increases with
I thanks to its ability in resisting the noisy information in the
aggregation. As a result, on one hand at the low-I region, it does
better than GNN while in the high-I region, its performance
does not drop below that of MLP. In summary, node feature
richness should be taken into consideration to avoid performance
degradation when designing or applying GNN models.

VI. CONCLUSION

We have proposed a novel GNN leveraging structural in-
formation of nodes’ ego networks called Ego-Aware Graph
Neural Network (EA-GNN). This model paves the way for in-
corporating ego networks’ structural information to the learned
graph representations, which helps GNNs achieve a stable and
greater performance. We argue that existing GNNs are somewhat
specialized. They can achieve a considerable performance gain
with graphs with moderate node features and assortative graphs.
However, for graphs with rich node features and disassortative
graphs, existing GNNs often do not introduce noticeable im-
provement, or even experience a performance loss when com-
pared to MLP. The proposed EA-GNN can solve this problem
by using a structure-aware aggregation with adaptive importance
and an ego-awareness mechanism to help the model better utilize
structural information of nodes’ ego networks. This guards
against noise interjected from a node’s neighbourhood in the
aggregation process. Therefore, EA-GNN can reliably achieve
better performance compared to MLP on not only assortative and
feature-insufficient graphs, but also disassortative and feature-
rich graphs.

We anticipate that EA-GNN could be generalized to other
machine learning tasks in graphs, such as link prediction and
graph classification. The core function of GNNs is to generate
representation vectors accurately. A GNN model performs well
in node classification, meaning it is able to generate high-quality
representation vectors. As a result, it is also expected to per-
form well in link prediction and graph classification. Thus, the
proposed method can be used to improve the task performance
by learning more accurate representations of nodes and graphs
in many other fields, such as predicting cancer genes [35],
detecting financial frauds [36], [37], and solving combinatorial
optimization problems in graphs [38]. In the proposed model,
the ego-awareness index, denoted as r, is regarded as a hyper-
parameter whose value is determined through cross-validation.
As a result, the artificially selected value of r might not com-
prehensively capture the essence of adaptation characteristics.
Therefore, one potential area of improvement would be building
r into the graph neural network itself rather than having it as
a hyperparameter to enable the model to capture the intrinsic
adaptation essence and avoid the extra computation cost of cross
validation.
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