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Topics discussed

the history and applications of AI, 

logical reasoning 

state space searching 

heuristic searching 

game playing 

expert systems

problem solving methods 

Reasoning with uncertainty
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Introduction to AI

Intelligence means: 

a system can adapt itself to novel situations, 
has the capacity to reason, to understand the 
relationships between facts, to discover 
meanings, to recognize truth, and to learn. 

Artificial intelligence is:

the science of making machines do things 
that would require intelligence if done by 
men. 
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Fig 1.1 The Turing test.
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Two most fundamental problems of 

AI

• knowledge representation

• problem-solving technique, such as search 
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Important Research and Application Areas

1.2.1 Game Playing

1.2.2 Automated Reasoning and Theorem Proving

1.2.3 Expert Systems

1.2.4 Natural Language Understanding and Semantic Modelling

1.2.5 Modelling Human Performance

1.2.6 Planning and Robotics

1.2.7 Languages and Environments for AI

1.2.8 Machine Learning

1.2.9 Alternative Representations: Neural Nets and Genetic Algorithms
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A representation scheme should:

a) Be adequate to express all of the necessary 

information.

b) Support efficient execution of the 

resulting code.

c) Provide a natural scheme for expressing 

the required knowledge.
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For propositional expressions P, Q and R:

¬ (¬ P) ≡  P

(P  Q) ≡ (¬P → Q)   

The contrapositive law: (P → Q) ≡ (¬Q → ¬P )

De Morgan’s law: ¬ (P  Q) ≡ (¬P  ¬Q) and ¬(P  Q) ≡  (¬P  ¬Q )

The commutative laws: (P  Q) ≡ (Q  P) and (P  Q) ≡ (Q  P)

The associative law: ((P  Q)  R) ≡ (P  (Q  R))

The associative law: ((P  Q)  R) ≡ (P  (Q  R))

The distributive law: P  (Q  R) ≡ (P  Q)  (P  R)

The distributive law: P  (Q  R) ≡ (P  Q)  (P  R) 
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• First-order predicate calculus allows 

quantified variables to refer to objects in the 

domain of discourse, and not to predicate or 

functions.

• Almost any grammatically correct English 

sentence may be represented in first-order 

predicate calculus.

• The limitation of the predicate calculus is 

that it is difficult to represent possibility, 

time, and belief.
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Unification

• It is an algorithm for determining the 

substitutions needed to make two predicate 

calculus expressions match.

• A variable cannot be unified with a term 

containing that variable. The test for it is 

called the occurs check.
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Resolution refutation proofs involve the following steps: 
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Algorithm to convert to clausal form (1)
1. Eliminate conditionals →, using the equivalence 

P → Q = ¬P  Q

e.g, (X) (p(X) (Y) (f(Y) → h(X,Y))) becomes

(X) (p(X) (Y) (¬f(Y) h(X,Y)))
2.    Eliminate negations or reduce the scope of negation to one atom.

e.g., ¬ ¬ P = P

¬(P  Q) = ¬P  ¬Q

¬ ( X) p(X) = (X) ¬ p(X)

¬ (X) p(X) = ( X) ¬ p(X)

3. Standardize variables within a WFF so that the bound or dummy 
variables of each quantifier have unique names.

e.g., ( X) ¬ p(X)  ( X) p(X) is replaced by

( X) ¬ p(X)  (Y) p(Y)
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Algorithm to convert to clausal form (2)  
4. Eliminate existential quantifiers, by using Skolem functions, named after the Norwegian 

logician Thoralf Skolem.

e.g., ( X) m(X) is replaced by m(a)

( X) ( Y) k(X, Y) is replaced by 

( X) k(X, f(X))

5. Convert the WFF to prenex form which is a sequence of quantifiers followed by a matrix.

e.g., (X) (p(X) (Y) (¬f(Y) h(X,Y))) becomes

(Y) (p(a)  (¬f(Y) h(a,Y)))

6. Convert the matrix to conjunctive normal form, which is a conjunctive of clauses. Each 
clause is a disjunction.

e.g., P (Q R) = (P  Q)  (P  R)
7. Drop the universal quantifiers.

e.g.,WFF(*) becomes p(a)  (¬f(Y) h(a,Y))
8. Eliminate the conjunctive signs by writing the WFF as a set of clauses

e.g., WFF(*) becomes p(a) 

(¬f(Y) h(a,Y))
9. Rename variables in clauses, if necessary, so that the same variable name is only used in 

one clause.

e.g., p(X)  q(X)  k(X,Y)  and ¬p(X)  q(Y)  become

p(X)  q(X)  k(X,Y)  and ¬p(X1)  q(Y1) 
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Fig 13.3 Resolution proof for the “dead dog” problem.
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Fig 13.5 One refutation for the “happy student” problem. 
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State Space Search

The goal states are described by 

• a measurable property of the states, or

• a property of the path developed in the 

search. 
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To design a search algorithm, we 

must consider

• Is it guaranteed to find a solution? 

• Is it guaranteed to find an optimal solution? 

• What is its complexity? 

• Whether the complexity can be reduced?

Search algorithms must detect and eliminate 

loops from potential solution paths. 
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Fig 3.12 State space in which goal-directed search effectively prunes 

extraneous search paths.
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Fig 3.13 State space in which data-directed search prunes irrelevant data and 

their consequents and determines one of a number of possible goals.
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• Data-driven and goal-driven searches search 

the same state space graph; but, the order 

and actual number of state searched can be 

differ.

• The preferred strategy is determined by the 

properties of the problem itself: 

– the complexity of the rules used for changing 

states

– the shape of the state space

– the nature and availability of the data
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Fig 6.12 Bidirectional search meeting in the middle, eliminating much of the space 

examined by unidirectional search.
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• Backtracking is a technique for systematically 

trying all different paths through a state space

– For a data-driven search, it begins at the start state and 

pursues a path until it reaches either a goal or a "dead 

end". 

• If it finds a goal, it quits and returns the solution path. 

• Otherwise, it "backtracks" to the most recent node on the path 

having unexamined siblings and continues down one of these 

branches.

– For a goal-driven search, it takes a goal be the root and 

evaluates descendants back in an attempt to find a start 

state.

– The depth-first and breadth-first searches exploit the 

ideas used in backtrack. 
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Function backtrack algorithm
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Fig 3.14 Backtracking search of a hypothetical state space space.
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Fig 3.15 Graph for breadth - first search example
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Function depth_first_search algorithm
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The choice of depth-first or breadth-first 

search depends on the problem

• the importance of finding the optimal path 

to a goal

• the branching of the state space

• the available time and space resources

• the average length of paths to a goal node 
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A trade-off –

Depth-first search with a depth bound

• The depth bound forces a failure on a search path 

once it gets below a certain level. This causes a 

breadth like sweep of the space at that depth level.

• It is preferred when time constraints exist or a 

solution is known within a certain depth.

• It is guaranteed to find a shortest path to a goal.

• Depth-first iterative deepening (Korf 1987) --

depth bound increases one at each iteration 
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• For all uniformed search algorithms, the 

worst-case time complexity is exponential. 

• The reasoning with the predicate calculus 

can be represented by and/or graphs.

– The and/or graph is an extension of the basic 

state space model. 

– They are used for many AI problems, such as 

theorem proving and expert systems.
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Fig 3.23 And/or graph of a set of propositional calculus expressions.
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Fig 4.17 Open and closed as they appear after the 3rd iteration of heuristic 

search
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Fig 4.18 Comparison of state space searched using heuristic search with space searched by 

breadth-first search. The proportion of the graph searched heuristically is shaded. 

The optimal search selection is in bold. Heuristic used is f(n) = g(n) + h(n) where

h(n) is tiles out of place.
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Fig 4.20 Exhaustive minimax for the game of nim. Bold lines indicate 

forced win for MAX. Each node is marked with its derived value 

(0 or 1) under minimax.
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Fig 4.21 Minimax to a hypothetical state space. Leafstates show heuristic 

values; internal states show backed-up values.
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Fig 4.26 Alpha-beta pruning applied to state space of Fig 4.21. States without 

numbers are not evaluated.
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Fig 6.1 A production system. Control loops until working memory pattern no 

longer matches the conditions of any productions.
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Fig 6.3 The 8-puzzle as a production system.
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Fig 8.1 architecture of a typical expert system for a particular problem domain.
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1. The need for the solution justifies the cost and effort of building an 

expert system.

2. Human expertise is not available in all situations where it is needed.

3. The problem may be solved using symbolic reasoning.

4. The problem domain is well structured and does not require 

commonsense reasoning.

5. The problem may not be solved using traditional computing methods.

6. Cooperative and articulate experts exist.

7. The problem is of proper size and scope.

Guidelines to determine whether a problem is appropriate for expert system 

solution:
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A small expert system for analysis of automotive problems.

Rule 1: if

the engine is getting gas, and

the engine will turn over,

then

the problem is spark plugs.

Rule 2: if

the engine does not turn over, and

the lights do not come on

then

the problem is battery or cables.

Rule 3: if

the engine does not turn over, and

the lights do come on

then 

the problem is the starter motor.

Rule 4: if

there is gas in the fuel tank, and

there is gas in the carburetor

then

the engine is getting gas.
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Fig 8.8 The and/or graph searched in the car diagnosis example, with the 

conclusion of Rule 4 matching the first premise of Rule 1.
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The following dialogue begins with the computer asking the user about the goals 

present in working memory. 

Gas in fuel tank?

Yes

Gas in carburetor?

Yes

Engine will turn over?

Why

It has been established that:

1. The engine is getting gas, 

2. The engine will turn over,

Then the problem is the spark plugs.

How the engine is getting gas

This follows from rule 4:

if

gas in fuel tank, and

gas in carburetor

then

engine is getting gas.

gas in fuel tank was given by the user

gas in carburetor was given by the user
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Heuristic and control in expert systems

• the inference engine 

• the structure of the rules in the knowledge 

base, e.g., the order of the premises

• the contents of the rules
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Problem Solver
• Problem Solving is the process of developing a sequence of 

actions to achieve a goal. 

• This broad definition admits all goal directed AI programs to 

the ranks of problem solvers.

• Some more problem solving methods:

– Generate and Test

– Means-Ends Analysis

– Problem Reduction

– Decision Table

– Decision Tree

• Few real problems can be solved by a single problem-solving 

method. Accordingly, it is often seen that problem-solving 

methods are working together.



CS3754 Class Notes, John Shieh, 

2012

58

Generate and Test
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Planning

• Planning means deciding on a course of actions 

before acting.

• Failure to plan can result in less than optimal problem 

solving.

• Common-used approaches to planning:

– Nonhierarchical planning

– Hierarchical planning

– Script-based planning

– Opportunistic planning
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Fig 6.13 Blackboard architecture
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Reasoning in Uncertain Situations

• Uncertainty results from:

• the use of abductive inference,

• attempts to reason with missing or 

unreliable data.
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Some ways of managing the 

uncertainty

1. Bayesian probability theory

2. Stanford certainty theory

3. Zadeh's fuzzy set theory

4. nonmonotonic reasoning


