Topics discussed

the history and applications of Al,
logical reasoning

State space searching

heuristic searching

game playing

expert systems

problem solving methods
Reasoning with uncertainty

CS3754 Class Notes, John Shieh,
2012

Introduction to Al

Intelligence means:

a system can adapt itself to novel situations,
has the capacity to reason, to understand the
relationships between facts, to discover
meanings, to recognize truth, and to learn.

Artificial intelligence is:

the science of making machines do things
that would require intelligence if done by
men.

CS3754 Class Notes, John Shieh, 2
2012

THE
INTERROGATOR

Two most fundamental problems of
Al

« knowledge representation
 problem-solving technique, such as search

CS3754 Class Notes, John Shieh,
2012

Important Research and Application Areas

1.2.1 Game Playing

1.2.2 Automated Reasoning and Theorem Proving

1.2.3 Expert Systems

1.2.4 Natural Language Understanding and Semantic Modelling
1.2.5 Modelling Human Performance

1.2.6 Planning and Robotics

1.2.7 Languages and Environments for Al

1.2.8 Machine Learning

1.2.9 Alternative Representations: Neural Nets and Genetic Algorithms

CS3754 Class Notes, John Shieh, 5
2012

A representation scheme should:

a) Be adequate to express all of the necessary
Information.

b) Support efficient execution of the
resulting code.

c) Provide a natural scheme for expressing
the required knowledge.

CS3754 Class Notes, John Shieh, 6
2012

For propositional expressions P, Q and R:

—(—P)=P

(PvQ=(P—Q)

The contrapositive law: (P — Q)= (—Q — -P)

De Morgan’s law: = (Pv Q)=("Pv-Q)and -(PA Q)= (—P v -Q)
The commutative laws: (PAQ)=(Q AP)and (Pv Q)=(Q v P)

The associative law: (P A Q) AR)=(P A (Q A R))

The associative law: (P v Q) vVR)=(P v (Q v R))

The distributive law: Pv (QAR)=(Pv Q) A (P Vv R)

The distributive law: PA(QVR)=(PAQ) v (P AR)

CS3754 Class Notes, John Shieh,
2012

DEFINITION
PREDICATE CALCULUS SYMBOLS

The alphabet that makes up the symbols of the predicate calculus consists of:

1. The set of letters, both upper- and lowercase, of the English alphabet.
2. The set of digits, 0, 1, ..., 9.

3. The underscore, .

Symbols in the predicate calculus begin with a letter and are followed by any
sequence of these legal characters.

Legitimate characters in the alphabet of predicate calculus symbols include
aR69p_z

Examples of characters not in the alphabet include
#% @/ &""

Legitimate predicate calculus symbols include
George fire3 tom_and_jerry bill XXXX friends_of

Examples of strings that are not legal symbols are

3jack “no blanks allowed” ab%ecd ***71 duck!!!

DEFINITION
SYMBOLS and TERMS

Predicate calculus svmbols include:
Truth symbols true and false (these are reserved symbols).
Constant symbols are symbol expressions having the first character lowercase.

Variable symbols are symbol expressions beginning with an uppercase
character.

Function symbols are svmbol expressions having the first character lowercase.
Functions have an attached arity indicating the number of elements of the
domain mapped onto each element of the range.

A function expression consists of a function constant of aritv n, followed by n terms,
iy, b, 1,, enclosed in parentheses and separated by commas.

A predicate calculus term 1s either a constant, variable, or function expression.

DEFINITION
PREDICATES and ATOMIC SENTENCES
Predicate symbols are svmbols beginning with a lowercase letter.

Predicates have an associated positive integer referred to as the arity or “argument

number™ for the predicate. Predicates with the same name but different arities are
considered distinct.

An atomic sentence 1s a predicate constant of arity n, followed by n terms,
ty, I, ... t,, enclosed 1n parentheses and separated by commas.

The truth values, true and false, are also atomic sentences.

DEFINITION

PREDICATE CALCULUS SENTENCES

Everv atomic sentence is a sentence.
1. It s 1s a sentence, then so 1s its negation, — s.
2. If' s, and s, are sentences, then so 1s their conjunction, s, A s,.
3. If's, and s, are sentences, then so is their disjunction, s, v s,.

4. If' s, and s, are sentences, then so is their implication, s, — ..

J. If's, and s, are sentences. then so is their equivalence, s, = s,.

6. If X 1s a variable and s a sentence, then ¥V X s is a sentence.

7. If X is a variable and s a sentence, then 3 X s is a sentence.

DEFINITION
INTERPRETATION

Let the domain D be a nonempty set.

An interpretation over D is an assignment of the entities of D to each of the constant,
variable, predicate, and function svmbols of a predicate calculus expression, such
that:

Each constant is assigned an element of D.

Each variable is assigned to a nonemptv subset of D; these are the allowable
substitutions for that variable.

Each function f of arity m is defined on m arguments of D and defines a mapping
from D™ into D.

Each predicate p of arity n 1s defined on n arguments from D and defines a
mapping from D" into {T, F}.

DEFINITION
TRUTH VALUE OF PREDICATE CALCULUS EXPRESSIONS

Assume an expression E and an interpretation | for E over a nonempty domain D. The
truth value for E is determined by:

The value of a constant 1s the element of D it 1s assigned to by 1.
The value of a variable is the set of elements of D it i1s assigned to by L.

The value of a function expression is that element of D obtained by
evaluating the function for the parameter values assigned by the interpre-
tation.

The value of truth symbol “true™ is T and “false™ 1s F.
The value of an atomic sentence 1s either T or F. as determined byv the

The value of the negation of a sentence is T if the value of the sentence is
F and is F if the value of the sentence is T.

The value of the conjunction of two sentences 1s T if the value of both
sentences 1s T and 1s F otherwise.

The truth value of expressions using v, —, and = is determined from the
value of their operands as defined in Section 2.1.2.

Finallv, for a variable X and a sentence S containing X:

I1. Thevalue of ¥ XS i1s Tif Sis T for all assignments to X under |, and it 1s
F otherwise.

12. The value of 3 X S is T if there is an assignment to X in the interpretation
under which S 1s T; otherwise it 1s E

 First-order predicate calculus allows
quantified variables to refer to objects in the
domain of discourse, and not to predicate or
functions.

» Almost any grammatically correct English
sentence may be represented in first-order
predicate calculus.

 The limitation of the predicate calculus Is
that 1t is difficult to represent possibility,
time, and belief.

CS3754 Class Notes, John Shieh, 14
2012

DEFINITION
PROOF PROCEDURE

A proof procedure 1s a combination of an inference rule and an algorithm for
applving that rule to a set of logical expressions to generate new sentences.

We present proof procedures for the resolution interence rule m Chapter 12.

DEFINITION
LOGICALLY FOLLOWS, SOUND, and COMPLETE

A predicate calculus expression X logically follows from a set S of predicate calculus
expressions 1f every interpretation and variable assignment that satisties S also

safisfies X.

An inference rule 1s sound it every predicate calculus expression produced bv the
rule from a set S of predicate calculus expressions also logically follows from S.

An inference rule is complete if, given a set S of predicate calculus expressions, the
rule can infer every expression that logically follows from S.

DEFINITION

MODUS PONENS, MODUS TOLLENS, AND ELIMINATION, AND
INTRODUCTION, and UNIVERSAL INSTANTIATION

If the sentences P and P — Q are known to be true, then modus ponens lets us

infer Q.

Under the inference rule modus tollens, it P — Q 1s known to be true and Q 1s
known to be false, we can infer = P.

And elimination allows us to infer the truth of either of the conjuncts from the
truth of a conjunctive sentence. For instance, P A Q lets us conclude P and Q are
true.

And introduction lets us infer the truth of a conjunction from the truth of its
conjuncts. For instance, if P and Q are true. then P A Q is frue.

Universal instantiation states that if any universallv quantified variable n a true
sentence 1s replaced by any appropriate term from the domain, the result 1s a
true sentence. Thus, if a is from the domain of X, ¥ X p(X) lets us infer p(a).

Unification

* Itis an algorithm for determining the
substitutions needed to make two predicate
calculus expressions match.

e A varilable cannot be unified with a term
containing that variable. The test for it is
called the occurs check.

CS3754 Class Notes, John Shieh,
2012

18

function unify(E1, E2);
begin
case
both E1 and E2 are constants or the empty list: %recursion stops
if E1 = E2 then return {}
else return FAIL;
E1 is a variable:
if E1 occurs in E2 then return FAIL
else return {E2/E1};
E2 is a variable:
if E2 occurs in E1 then return FAIL
else return {E1/E2}
either E1 or E2 are empty then return FAIL %the lists are of different sizes
otherwise: %both E1 and E2 are lists
begin
HE1 := first element of E1;
HEZ2 := first element of E2;
SUBS1 := unify(HE1,HE2);
if SUBS1 : = FAIL then return FAIL;
TE1 = apply(SUBS1, rest of E1);
TEZ2 : = apply (SUBSH1, rest of E2);
SUBS2 : = unify(TE1, TE2);
if SUBS2 = FAIL then return FAIL;
else return composition(SUBS1,SUBS2)

%end case

Put the premises or axioms into clause form (13.2.2).
Add the negation of what is to be proved, in clause form, to the set of axioms.

Resolve these clauses together, producing new clauses that logically follow from
them (13.2.3).

Produce a contradiction by generating the empty clause.

The substitutions used to produce the empty clause are those under which the
opposite of the negated goal is true (13.2.4).

Algorithm to convert to clausal form (1)

1. Eliminate conditionals —, using the equivalence
P-Q==-PVvQ
e.g, AX) (p(X) A(VY) (f(Y) — h(X,Y))) becomes
(3X) (P(X) A(VY) (=f(Y) vh(X,Y)))
2. Eliminate negations or reduce the scope of negation to one atom.
e.g., - P=P
“(PAQ)=-PVv-Q
= (3 X) p(X) = (VX) = p(X)
= (VX) p(X) = (3 X) = p(X)

3. Standardize variables within a WFF so that the bound or dummy
variables of each quantifier have unique names.

e.g., (3 X) = p(X) v (V X) p(X) is replaced by
(3X)=p(X) v (YY) p(Y)

CS3754 Class Notes, John Shieh, 21
2012

Algorithm to convert to clausal form (2)

4. Eliminate existential quantifiers, by using Skolem functions, named after the Norwegian
logician Thoralf Skolem.

e.g., (3 X) m(X) is replaced by m(a)
(V X) (3 Y) k(X, Y) is replaced by
(V X) k(X, f(X))
5. Convert the WFF to prenex form which is a sequence of quantifiers followed by a matrix.
e.g., @X) (p(X) A(VY) (-f(Y) vh(X,Y))) becomes
(VY) (p(@) A (=f(Y) vh(a,Y)))

6. Convert the matrix to conjunctive normal form, which is a conjunctive of clauses. Each
clause is a disjunction.

e.d,PV(QAR)=(PVvQ)A(PVR)
7. Drop the universal quantifiers.
e.g.,WFF(*) becomes p(a) A (=f(Y) vh(a,Y))
8. Eliminate the conjunctive signs by writing the WFF as a set of clauses
e.g., WFF(*) becomes p(a)
(=f(Y) vh(a,Y))
9. Rename variables in clauses, if necessary, so that the same variable name is only used in
one clause.
e.g., p(X) v q(X) v k(X,Y) and =p(X) v q(Y) become
p(X) v q(X) v k(X,Y) and -p(X1) v q(Y1)

CS3754 Class Notes, John Shieh, 22
2012

= dog(X) v animal(X) - animal(Y) v die(Y)

-~ dog(Y) v die(Y)

- die(fido)

Anyone passing his history exams and winning the lottery is happy.
Vv X (pass (X,history) A win (X,lottery) — happy (X))
Anyone who studies or is lucky can pass all his exams.

Vv XVY (study (X) v lucky (X) — pass (X,Y))

John did not study but he is lucky.

— study (john) A lucky (john)

Anyone who is lucky wins the lottery.
Vv X (lucky (X) — win (X,lottery))
These four predicate statements are now changed to clause form (Section 12.2.2):

1. — pass (X, history) v — win (X, lottery) v happy (X)
— study (Y) v pass (Y, Z)
— lucky (W) v pass (W, V)
— study (john)
lucky (john)
— lucky (U) v win (U, lottery)

Into these clauses is entered, in clause form, the negation of the conclusion:

7. — happy (john)

- pass(X, history) v - win(X, lottery) v happy(X) = lucky(U) + win(U, lottery)

T~

- pass(U, history) + happy(U) v = lucky(U) - happy(john)

{johW

lucky(john) = pass(john, history) v = lucky(john)

e

= pass(john, history) = lucky(V) v pass(V, W)

{iohn/V, histow

= lucky(john) lucky(john)

\/

{}
[]

State Space Search

The goal states are described by
» a measurable property of the states, or

* a property of the path developed in the
search.

CS3754 Class Notes, John Shieh,
2012

26

To design a search algorithm, we
must consider

* |s it guaranteed to find a solution?

« Is it guaranteed to find an optimal solution?
« What Is its complexity?

* Whether the complexity can be reduced?

Search algorithms must detect and eliminate
loops from potential solution paths.

CS3754 Class Notes, John Shieh, 27
2012

Direction of
reasoning

 Data-driven and goal-driven searches search
the same state space graph; but, the order
and actual number of state searched can be
differ.

» The preferred strategy Is determined by the
properties of the problem itself:

— the complexity of the rules used for changing
states

— the shape of the state space
— the nature and availability of the data

CS3754 Class Notes, John Shieh, 30
2012

O
N

o
»{@‘

o
i ‘ ; M

» Backtracking is a technique for systematically
trying all different paths through a state space

— For a data-driven search, it begins at the start state and
pursues a path until it reaches either a goal or a "dead
end".

o If it finds a goal, it quits and returns the solution path.

 Otherwise, it "backtracks" to the most recent node on the path
having unexamined siblings and continues down one of these
branches.

— For a goal-driven search, it takes a goal be the root and
evaluates descendants back in an attempt to find a start
state.

— The depth-first and breadth-first searches exploit the
Ideas used in backtrack.

CS3754 Class Notes, John Shieh, 32
2012

function backtrack;

begin
SL :=[Start]; NSL :=[Start]; DE :=[]; CS := Start; % initialize:
while NSL =[] do % while there are states to be tried
begin
if CS = goal (or meets goal description)
then return SL; % on success, return list of states in path.
if CS has no children (excluding nodes already on DE, SL, and NSL)
then begin
while SL is not empty and CS = the first element of SL do
begin
add CS to DE; % record state as dead end
remove first element from SL; %backtrack
remove first element from NSL;
CS := first element of NSL;
end
add CS to SL;
end
else begin
place children of CS (except nodes already on DE, SL, or NSL) on NSL;
CS :=first element of NSL;
add CS to SL
end
end;
return FAIL;
end.

begin
open := [Start];
closed :=[];
while open =[] do
begin
remove leftmost state from open, call it X;
if X is a goal then return SUCCESS
else begin
generate children of X;
put X on closed;
discard children of X if already on open or closed;
put remaining children on left end of open
end
end;
return FAIL
end.

% initialize

% states remain

% goal found

% loop check
% stack

% no states left

The choice of depth-first or breadth-first
search depends on the problem

to a goal
ne branching of the state space

° 1
° 1
° 1

ne available time anc

ne average length of

the importance of finding the optimal path

Space resources

paths to a goal node

CS3754 Class Notes, John Shieh, 37
2012

A trade-off —
Depth-first search with a depth bound

The depth bound forces a failure on a search path
once It gets below a certain level. This causes a
breadth like sweep of the space at that depth level.

It is preferred when time constraints exist or a
solution is known within a certain depth.

It Is guaranteed to find a shortest path to a goal.

Depth-first iterative deepening (Korf 1987) --
depth bound increases one at each iteration

CS3754 Class Notes, John Shieh, 38
2012

 For all uniformed search algorithms, the
worst-case time complexity Is exponential.

« The reasoning with the predicate calculus
can be represented by and/or graphs.

— The and/or graph is an extension of the basic
state space model.

— They are used for many Al problems, such as
theorem proving and expert systems.

CS3754 Class Notes, John Shieh,
2012

39

function best_first_search;

begin
open = [Start]; % initialize
closed =[]
while open =[] do % states remain
begin
remaove the leftmost state from open, call it X;
if X = goal then return the path from Start to X
else begin
generate children of X;
for each child of X do

case
the child is not on open or closed:
begin
assign the child a heuristic value;
add the child to open

end:;
the child is already on open:
it the child was reached by a shorter path
then give the state on open the shorter path
the child is already on closed:
it the child was reached by a shorter path then
begin
remove the state from closed;
add the child to open
end;
end;
put X on closed;
re-order states on open by heuristic merit (best leftmost)
end:
return FAIL % open is empty
end.

Stata g

Oipen list

DEFINITION

ALGORITHM A, ADMISSIBILITY, ALGORITHM A*
Consider the evaluation function f(n) = g(n) + h(n), where

n i1s any state encountered in the search.
g(n) is the cost of n from the start state.
h(n) is the heuristic estimate of the cost of going from n to a goal.

[f this evaluation function is used with the best first search algorithm of Section
4.1, the result is called algorithm A.

A search algorithm 1s admissible if, for any graph, it always terminates in the optimal
solution path whenever a path from the start to a goal state exists.

[t algorithm A is used with an evaluation function in which h(n) is less than or equal
to the cost of the minimal path from n to the goal, the resulting search algorithm 1s
called algorithm A* (pronounced “A STAR™).

[t 1s now possible to state a property of A* algorithms:
All A* algorithms are admissible.

DEFINITION
INFORMEDNESS

For two A* heuristics h, and h,, if h,(n) < hy(n), for all states n in the search space,
heuristic h, is said to be more informed than h,.

Ahas P =3 (A will be no larger than 3)
Bis P pruned, since 5= 3

C has o« = 3 (C will be no smaller than 3)
Dis o pruned, since 0 <3

Eis o pruned, since2 <3

Cis3

Working
Memory
Pattern

Cq— Aq
Co— Ao
Cq— Ag

Pattern — Action

Cn—:r An

Production set:

Condition Action

goal state in working memory — halt

blank is not on the left edge — move the blank left
blank is not on the top edge — move the blank up
blank is not on the right edge — move the blank right
blank is not on the bottomedge — move the blank down

Working memory is the present board state and goal state.

Control regime:

1. Try each production in order.
2. Do not allow loops.
. Stop when goal is found.

User interface
may employ:

question-and-
answer,

menu-driven,

natural
language, or

graphics
interface

Knowledge-base

Inference engine

General
knowledge base

Case-specific
data

Explanation
subsystem

Guidelines to determine whether a problem is appropriate for expert system
solution:

1. The need for the solution justifies the cost and effort of building an
expert system.

2. Human expertise is not available in all situations where it is needed.
3. The problem may be solved using symbolic reasoning.

4. The problem domain is well structured and does not require
commonsense reasoning.

5. The problem may not be solved using traditional computing methods.
6. Cooperative and articulate experts exist.
7. The problem is of proper size and scope.

CS3754 Class Notes, John Shieh, 52
2012

A small expert system for analysis of automotive problems.

Rule 1:

Rule 2:

Rule 3:

Rule 4:

if

the engine is getting gas, and

the engine will turn over,

then

the problem is spark plugs.

if

the engine does not turn over, and
the lights do not come on

then

the problem is battery or cables.

if

the engine does not turn over, and
the lights do come on

then

the problem is the starter motor.

if

there is gas in the fuel tank, and
there is gas in the carburetor

then

the engine is getting gas.

CS3754 Class Notes, John Shieh,
2012

53

Rule 1:
the problem is

spark plugs

the engine
will turn
over

the engine is
getting gas

Rule 4:
the engine is
getting gas

the problem is X

Rule 2:
the problem is battery
or cables

the engine
does not
turn over

the lights
do not
come on

Rule 3:
the problem is
the starter motor

the engine the lights
does not do come
furn over on

The following dialogue begins with the computer asking the user about the goals
present in working memory.

Gas in fuel tank?

Yes

Gas in carburetor?
Yes

Engine will turn over?
Why

It has been established that:
1. The engine is getting gas,
2. The engine will turn over,
Then the problem is the spark plugs.

How the engine is getting gas

This follows from rule 4:

if

gas in fuel tank, and

gas in carburetor

then

engine is getting gas.

gas in fuel tank was given by the user

gas in carburetor was given by the user
CS3754 Class Notes, John Shieh, 55

2012

Heuristic and control in expert systems

* the Iinference engine

» the structure of the rules in the knowledge
base, e.g., the order of the premises

e the contents of the rules

CS3754 Class Notes, John Shieh,
2012

56

~_ Problem Solver
Problem Solving is the process of developing a sequence of

actions to achieve a goal.

This broad definition admits all goal directed Al programs to
the ranks of problem solvers.

Some more problem solving methods:
— Generate and Test

— Means-Ends Analysis

— Problem Reduction

— Decision Table

— Decision Tree

Few real problems can be solved by a single problem-solving
method. Accordingly, it is often seen that problem-solving
methods are working together.

CS3754 Class Notes, John Shieh, 57
2012

Possible Correct

Generator solutions
v ¥\ '

solution

O <«— Incorrect

/ solutions

|

To perform generate and test,

> Until a satisfactory solution is found or no more candidate
solutions can be generated.
> Generate a candidate solution.
> Test the candidate solution.

o If an acceptable solution is found. announce it: otherwise,
announce failure.

Figure 3.3 Means-ends
analysis involves states and
procedures for reducing) y j
differences between states. The Currentstate Goal state
current state and goal state are

shown solid; other states, not @ Q
yet encountered, are shown _—

dotted.
o SRR, SRS i 3 2 A S

Figure 3.4 Means—-ends
analysis produces a path
through state space. The

current statq, the goal state, Initial state Goal state
and a description of their

difference determine which Q
procedure to try next. Note that Bl

the procedures are expected, Current state K

but not guaranteed, to cause P2 O Difference

a transition to a state that is
nearer the goal state than is the A Ps5

current state.
[ek LN SRR B S N S T PRA R s ieinng 5
/PS

(
P4

Difference-Procedure Tables Often Determine the Means

Whenever the description of the difference between the current state and
the goal state is the key to which procedure to try next, a simple difference-
procedure table may suffice to connect difference descriptions to pre-
ferred procedures.'

Consider, for example, a travel situation in which the problem is to
find a way to get from one city to another. One traveler’s preferences
might link the preferred transportation procedure to the difference between
states, described in terms of the distance between the cities involved, via
the following difference-procedure table:

Distance Airplane Train Car

More than 300 miles Vi
Between 100 and 300 miles o

Less than 100 miles

Problem reduction tries to convert difficult goals into easier-
to-achieve subgoals. Each subgoal, in turn, may be divided into
lower-level subgoals.

Goal tree is a kind of And-Or tree, in which nodes represent
goals and branches indicate how you can achieve goals by solv-

ing one or more subgoals. Each node’s children correspond to
immediate subgoals; each node’s parant corresponds to the im-
mediate supergoal. Some goals are satlsﬁed directly, they are
called leaf goals.

Goal trees may be used to answer how and why questions.

Planning

 Planning means deciding on a course of actions
pefore acting.

» Failure to plan can result in less than optimal problem
solving.
« Common-used approaches to planning:
— Nonhierarchical planning
— Hierarchical planning
— Script-based planning
— Opportunistic planning

CS3754 Class Notes, John Shieh, 62
2012

Global
blackboard

- \

e
G

Reasoning Iin Uncertain Situations

 Uncertainty results from:
 the use of abductive inference,

e attempts to reason with missing or
unreliable data.

CS3754 Class Notes, John Shieh,
2012

64

= W NN =

Some ways of managing the
uncertainty

Bayesian probability theory
Stanford certainty theory
Zadeh's fuzzy set theory
nonmonotonic reasoning

CS3754 Class Notes, John Shieh,
2012

65

