
CS3754 Class Notes, John Shieh,

2012

1

Topics discussed

the history and applications of AI,

logical reasoning

state space searching

heuristic searching

game playing

expert systems

problem solving methods

Reasoning with uncertainty

CS3754 Class Notes, John Shieh,

2012

2

Introduction to AI

Intelligence means:

a system can adapt itself to novel situations,
has the capacity to reason, to understand the
relationships between facts, to discover
meanings, to recognize truth, and to learn.

Artificial intelligence is:

the science of making machines do things
that would require intelligence if done by
men.

CS3754 Class Notes, John Shieh,

2012

3

Fig 1.1 The Turing test.

CS3754 Class Notes, John Shieh,

2012

4

Two most fundamental problems of

AI

• knowledge representation

• problem-solving technique, such as search

CS3754 Class Notes, John Shieh,

2012

5

Important Research and Application Areas

1.2.1 Game Playing

1.2.2 Automated Reasoning and Theorem Proving

1.2.3 Expert Systems

1.2.4 Natural Language Understanding and Semantic Modelling

1.2.5 Modelling Human Performance

1.2.6 Planning and Robotics

1.2.7 Languages and Environments for AI

1.2.8 Machine Learning

1.2.9 Alternative Representations: Neural Nets and Genetic Algorithms

CS3754 Class Notes, John Shieh,

2012

6

A representation scheme should:

a) Be adequate to express all of the necessary

information.

b) Support efficient execution of the

resulting code.

c) Provide a natural scheme for expressing

the required knowledge.

CS3754 Class Notes, John Shieh,

2012

7

For propositional expressions P, Q and R:

¬ (¬ P) ≡ P

(P  Q) ≡ (¬P → Q)

The contrapositive law: (P → Q) ≡ (¬Q → ¬P)

De Morgan’s law: ¬ (P  Q) ≡ (¬P  ¬Q) and ¬(P  Q) ≡ (¬P  ¬Q)

The commutative laws: (P  Q) ≡ (Q  P) and (P  Q) ≡ (Q  P)

The associative law: ((P  Q)  R) ≡ (P  (Q  R))

The associative law: ((P  Q)  R) ≡ (P  (Q  R))

The distributive law: P  (Q  R) ≡ (P  Q)  (P  R)

The distributive law: P  (Q  R) ≡ (P  Q)  (P  R)

CS3754 Class Notes, John Shieh,

2012

8

CS3754 Class Notes, John Shieh,

2012

9

CS3754 Class Notes, John Shieh,

2012

10

CS3754 Class Notes, John Shieh,

2012

11

CS3754 Class Notes, John Shieh,

2012

12

CS3754 Class Notes, John Shieh,

2012

13

CS3754 Class Notes, John Shieh,

2012

14

• First-order predicate calculus allows

quantified variables to refer to objects in the

domain of discourse, and not to predicate or

functions.

• Almost any grammatically correct English

sentence may be represented in first-order

predicate calculus.

• The limitation of the predicate calculus is

that it is difficult to represent possibility,

time, and belief.

CS3754 Class Notes, John Shieh,

2012

15

CS3754 Class Notes, John Shieh,

2012

16

CS3754 Class Notes, John Shieh,

2012

17

CS3754 Class Notes, John Shieh,

2012

18

Unification

• It is an algorithm for determining the

substitutions needed to make two predicate

calculus expressions match.

• A variable cannot be unified with a term

containing that variable. The test for it is

called the occurs check.

CS3754 Class Notes, John Shieh,

2012

19

CS3754 Class Notes, John Shieh,

2012

20

Resolution refutation proofs involve the following steps:

CS3754 Class Notes, John Shieh,

2012

21

Algorithm to convert to clausal form (1)
1. Eliminate conditionals →, using the equivalence

P → Q = ¬P  Q

e.g, (X) (p(X) (Y) (f(Y) → h(X,Y))) becomes

(X) (p(X) (Y) (¬f(Y) h(X,Y)))
2. Eliminate negations or reduce the scope of negation to one atom.

e.g., ¬ ¬ P = P

¬(P  Q) = ¬P  ¬Q

¬ ( X) p(X) = (X) ¬ p(X)

¬ (X) p(X) = ( X) ¬ p(X)

3. Standardize variables within a WFF so that the bound or dummy
variables of each quantifier have unique names.

e.g., ( X) ¬ p(X)  ( X) p(X) is replaced by

( X) ¬ p(X)  (Y) p(Y)

CS3754 Class Notes, John Shieh,

2012

22

Algorithm to convert to clausal form (2)
4. Eliminate existential quantifiers, by using Skolem functions, named after the Norwegian

logician Thoralf Skolem.

e.g., ( X) m(X) is replaced by m(a)

( X) ( Y) k(X, Y) is replaced by

( X) k(X, f(X))

5. Convert the WFF to prenex form which is a sequence of quantifiers followed by a matrix.

e.g., (X) (p(X) (Y) (¬f(Y) h(X,Y))) becomes

(Y) (p(a)  (¬f(Y) h(a,Y)))

6. Convert the matrix to conjunctive normal form, which is a conjunctive of clauses. Each
clause is a disjunction.

e.g., P (Q R) = (P  Q)  (P  R)
7. Drop the universal quantifiers.

e.g.,WFF(*) becomes p(a)  (¬f(Y) h(a,Y))
8. Eliminate the conjunctive signs by writing the WFF as a set of clauses

e.g., WFF(*) becomes p(a)

(¬f(Y) h(a,Y))
9. Rename variables in clauses, if necessary, so that the same variable name is only used in

one clause.

e.g., p(X)  q(X)  k(X,Y) and ¬p(X)  q(Y) become

p(X)  q(X)  k(X,Y) and ¬p(X1)  q(Y1)

CS3754 Class Notes, John Shieh,

2012

23

Fig 13.3 Resolution proof for the “dead dog” problem.

CS3754 Class Notes, John Shieh,

2012

24

CS3754 Class Notes, John Shieh,

2012

25

Fig 13.5 One refutation for the “happy student” problem.

CS3754 Class Notes, John Shieh,

2012

26

State Space Search

The goal states are described by

• a measurable property of the states, or

• a property of the path developed in the

search.

CS3754 Class Notes, John Shieh,

2012

27

To design a search algorithm, we

must consider

• Is it guaranteed to find a solution?

• Is it guaranteed to find an optimal solution?

• What is its complexity?

• Whether the complexity can be reduced?

Search algorithms must detect and eliminate

loops from potential solution paths.

CS3754 Class Notes, John Shieh,

2012

28

Fig 3.12 State space in which goal-directed search effectively prunes

extraneous search paths.

CS3754 Class Notes, John Shieh,

2012

29

Fig 3.13 State space in which data-directed search prunes irrelevant data and

their consequents and determines one of a number of possible goals.

CS3754 Class Notes, John Shieh,

2012

30

• Data-driven and goal-driven searches search

the same state space graph; but, the order

and actual number of state searched can be

differ.

• The preferred strategy is determined by the

properties of the problem itself:

– the complexity of the rules used for changing

states

– the shape of the state space

– the nature and availability of the data

CS3754 Class Notes, John Shieh,

2012

31

Fig 6.12 Bidirectional search meeting in the middle, eliminating much of the space

examined by unidirectional search.

CS3754 Class Notes, John Shieh,

2012

32

• Backtracking is a technique for systematically

trying all different paths through a state space

– For a data-driven search, it begins at the start state and

pursues a path until it reaches either a goal or a "dead

end".

• If it finds a goal, it quits and returns the solution path.

• Otherwise, it "backtracks" to the most recent node on the path

having unexamined siblings and continues down one of these

branches.

– For a goal-driven search, it takes a goal be the root and

evaluates descendants back in an attempt to find a start

state.

– The depth-first and breadth-first searches exploit the

ideas used in backtrack.

CS3754 Class Notes, John Shieh,

2012

33

Function backtrack algorithm

CS3754 Class Notes, John Shieh,

2012

34

Fig 3.14 Backtracking search of a hypothetical state space space.

CS3754 Class Notes, John Shieh,

2012

35

Fig 3.15 Graph for breadth - first search example

CS3754 Class Notes, John Shieh,

2012

36

Function depth_first_search algorithm

CS3754 Class Notes, John Shieh,

2012

37

The choice of depth-first or breadth-first

search depends on the problem

• the importance of finding the optimal path

to a goal

• the branching of the state space

• the available time and space resources

• the average length of paths to a goal node

CS3754 Class Notes, John Shieh,

2012

38

A trade-off –

Depth-first search with a depth bound

• The depth bound forces a failure on a search path

once it gets below a certain level. This causes a

breadth like sweep of the space at that depth level.

• It is preferred when time constraints exist or a

solution is known within a certain depth.

• It is guaranteed to find a shortest path to a goal.

• Depth-first iterative deepening (Korf 1987) --

depth bound increases one at each iteration

CS3754 Class Notes, John Shieh,

2012

39

• For all uniformed search algorithms, the

worst-case time complexity is exponential.

• The reasoning with the predicate calculus

can be represented by and/or graphs.

– The and/or graph is an extension of the basic

state space model.

– They are used for many AI problems, such as

theorem proving and expert systems.

CS3754 Class Notes, John Shieh,

2012

40

Fig 3.23 And/or graph of a set of propositional calculus expressions.

CS3754 Class Notes, John Shieh,

2012

41

CS3754 Class Notes, John Shieh,

2012

42

Fig 4.17 Open and closed as they appear after the 3rd iteration of heuristic

search

CS3754 Class Notes, John Shieh,

2012

43

CS3754 Class Notes, John Shieh,

2012

44

CS3754 Class Notes, John Shieh,

2012

45

Fig 4.18 Comparison of state space searched using heuristic search with space searched by

breadth-first search. The proportion of the graph searched heuristically is shaded.

The optimal search selection is in bold. Heuristic used is f(n) = g(n) + h(n) where

h(n) is tiles out of place.

CS3754 Class Notes, John Shieh,

2012

46

Fig 4.20 Exhaustive minimax for the game of nim. Bold lines indicate

forced win for MAX. Each node is marked with its derived value

(0 or 1) under minimax.

CS3754 Class Notes, John Shieh,

2012

47

Fig 4.21 Minimax to a hypothetical state space. Leafstates show heuristic

values; internal states show backed-up values.

CS3754 Class Notes, John Shieh,

2012

48

Fig 4.26 Alpha-beta pruning applied to state space of Fig 4.21. States without

numbers are not evaluated.

CS3754 Class Notes, John Shieh,

2012

49

Fig 6.1 A production system. Control loops until working memory pattern no

longer matches the conditions of any productions.

CS3754 Class Notes, John Shieh,

2012

50

Fig 6.3 The 8-puzzle as a production system.

CS3754 Class Notes, John Shieh,

2012

51

Fig 8.1 architecture of a typical expert system for a particular problem domain.

CS3754 Class Notes, John Shieh,

2012

52

1. The need for the solution justifies the cost and effort of building an

expert system.

2. Human expertise is not available in all situations where it is needed.

3. The problem may be solved using symbolic reasoning.

4. The problem domain is well structured and does not require

commonsense reasoning.

5. The problem may not be solved using traditional computing methods.

6. Cooperative and articulate experts exist.

7. The problem is of proper size and scope.

Guidelines to determine whether a problem is appropriate for expert system

solution:

CS3754 Class Notes, John Shieh,

2012

53

A small expert system for analysis of automotive problems.

Rule 1: if

the engine is getting gas, and

the engine will turn over,

then

the problem is spark plugs.

Rule 2: if

the engine does not turn over, and

the lights do not come on

then

the problem is battery or cables.

Rule 3: if

the engine does not turn over, and

the lights do come on

then

the problem is the starter motor.

Rule 4: if

there is gas in the fuel tank, and

there is gas in the carburetor

then

the engine is getting gas.

CS3754 Class Notes, John Shieh,

2012

54

Fig 8.8 The and/or graph searched in the car diagnosis example, with the

conclusion of Rule 4 matching the first premise of Rule 1.

CS3754 Class Notes, John Shieh,

2012

55

The following dialogue begins with the computer asking the user about the goals

present in working memory.

Gas in fuel tank?

Yes

Gas in carburetor?

Yes

Engine will turn over?

Why

It has been established that:

1. The engine is getting gas,

2. The engine will turn over,

Then the problem is the spark plugs.

How the engine is getting gas

This follows from rule 4:

if

gas in fuel tank, and

gas in carburetor

then

engine is getting gas.

gas in fuel tank was given by the user

gas in carburetor was given by the user

CS3754 Class Notes, John Shieh,

2012

56

Heuristic and control in expert systems

• the inference engine

• the structure of the rules in the knowledge

base, e.g., the order of the premises

• the contents of the rules

CS3754 Class Notes, John Shieh,

2012

57

Problem Solver
• Problem Solving is the process of developing a sequence of

actions to achieve a goal.

• This broad definition admits all goal directed AI programs to

the ranks of problem solvers.

• Some more problem solving methods:

– Generate and Test

– Means-Ends Analysis

– Problem Reduction

– Decision Table

– Decision Tree

• Few real problems can be solved by a single problem-solving

method. Accordingly, it is often seen that problem-solving

methods are working together.

CS3754 Class Notes, John Shieh,

2012

58

Generate and Test

CS3754 Class Notes, John Shieh,

2012

59

CS3754 Class Notes, John Shieh,

2012

60

CS3754 Class Notes, John Shieh,

2012

61

CS3754 Class Notes, John Shieh,

2012

62

Planning

• Planning means deciding on a course of actions

before acting.

• Failure to plan can result in less than optimal problem

solving.

• Common-used approaches to planning:

– Nonhierarchical planning

– Hierarchical planning

– Script-based planning

– Opportunistic planning

CS3754 Class Notes, John Shieh,

2012

63

Fig 6.13 Blackboard architecture

CS3754 Class Notes, John Shieh,

2012

64

Reasoning in Uncertain Situations

• Uncertainty results from:

• the use of abductive inference,

• attempts to reason with missing or

unreliable data.

CS3754 Class Notes, John Shieh,

2012

65

Some ways of managing the

uncertainty

1. Bayesian probability theory

2. Stanford certainty theory

3. Zadeh's fuzzy set theory

4. nonmonotonic reasoning

