Chapter 9

Relational Database Design by ERand EER-to-Relational Mapping





**PEARSON** 

#### Chapter 9 Outline

- Relational Database Design Using ER-to-Relational Mapping
- Mapping EER Model Constructs to Relations

# Relational Database Design by ER- and EER-toRelational Mapping

- Design a relational database schema
  - Based on a conceptual schema design
- Seven-step algorithm to convert the basic ER model constructs into relations
- Additional steps for EER model



### Relational Database Design Using ER-to-Relational Mapping





### ER-to-Relational Mapping Algorithm

- COMPANY database example
  - Assume that the mapping will create tables with simple single-valued attributes
- Step 1: Mapping of Regular Entity Types
  - For each regular entity type, create a relation R
    that includes all the simple attributes of E
  - Called entity relations
    - Each tuple represents an entity instance



- Step 2: Mapping of Weak Entity Types
  - For each weak entity type, create a relation R
    and include all simple attributes of the entity
    type as attributes of R
  - Include primary key attribute of owner as foreign key attributes of R

#### Figure 9.3

Illustration of some mapping steps.

- a. Entity relations after step 1.
- b. Additional weak entity relation after step 2.
- c. Relationship relation after step 5.
- d. Relation representing multivalued attribute after step 6.

#### (a) EMPLOYEE



#### DEPARTMENT



#### **PROJECT**



#### (b) DEPENDENT



#### (c) WORKS ON



#### (d) DEPT LOCATIONS



- Step 3: Mapping of Binary 1:1 Relationship
   Types
  - For each binary 1:1 relationship type
    - Identify relations that correspond to entity types participating in R
  - Possible approaches:
    - Foreign key approach- one total participate
    - Merged relationship approach-both total participate
    - Crossreference or relationship relation approach



- Step 4: Mapping of Binary 1:N Relationship Types
  - For each regular binary 1:N relationship type
    - Identify relation that represents participating entity type at N-side of relationship type
    - Include primary key of other entity type as foreign key in S
    - Include simple attributes of 1:N relationship type as attributes of S

- Alternative approach
  - Use the relationship relation (cross-reference) option as in the third option for binary 1:1 relationships



- Step 5: Mapping of Binary M:N Relationship Types
  - For each binary M:N relationship type
    - Create a new relation S
    - Include primary key of participating entity types as foreign key attributes in S
    - Include any simple attributes of M:N relationship type

- Step 6: Mapping of Multivalued Attributes
  - For each multivalued attribute
    - Create a new relation
    - Primary key of R is the combination of A and K
    - If the multivalued attribute is composite, include its simple components



- Step 7: Mapping of N-ary Relationship
   Types
  - For each n-ary relationship type R
    - Create a new relation S to represent R
    - Include primary keys of participating entity types as foreign keys
    - Include any simple attributes as attributes



# Discussion and Summary of Mapping for ER Model Constructs

| Table 9.1 | Correspondence between ER and Relational Models |
|-----------|-------------------------------------------------|
| ER MODEL  | RELATIONAL MODEL                                |

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or *relationship* relation)

M:N relationship type Relationship relation and two foreign keys

*n*-ary relationship type Relationship relation and *n* foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key





# Discussion and Summary of Mapping for ER Model Constructs (cont'd.)

- In a relational schema relationship types are not represented explicitly
  - Represented by having two attributes A and B: one a primary key and the other a foreign key



#### Mapping EER Model Constructs to Relations

 Extending ER-to-relational mapping algorithm



#### Mapping of Specialization or Generalization

- Step 8: Options for Mapping Specialization or Generalization (see pages 294-295)
  - Option 8A: Multiple relations—superclass and subclasses, K for the relations
    - For any specialization (total or partial, disjoint or overlapping)
  - Option 8B: Multiple relations—subclass relations only
    - Subclasses are total
    - Specialization has disjointedness constraint



#### Mapping of Specialization or Generalization (cont'd.)

- Option 8C: Single relation with one type attribute
  - Type or discriminating attribute indicates subclass of tuple
  - Subclasses are disjoint
    - Potential for generating many NULL values if many specific attributes exist in the subclasses
- Option 8D: Single relation with multiple type attributes
  - Subclasses are overlapping
  - Will also work for a disjoint specialization



### Mapping of Shared Subclasses (Multiple Inheritance)

 Apply any of the options discussed in step 8 to a shared subclass





## Mapping of Categories (Union Types)

- Step 9: Mapping of Union Types (Categories)
  - Defining superclasses have different keys
  - Specify a new key attribute
    - Surrogate key



#### Figure 9.7

Mapping the EER categories (union types) in Figure 8.8 to relations.



#### Summary

- Map conceptual schema design in the ER model to a relational database schema
  - Algorithm for ER-to-relational mapping
  - Illustrated by examples from the COMPANY database
- Include additional steps in the algorithm for mapping constructs from EER model into relational model