SQL Examples

Edited by John Shieh

CS3754 Classnote #10

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

— qualification

« Comparisons (Attr op const or Attrl op Attr2, where
op is one of <|==—=,=;5%) combined using
AND, OR and NOT.

— DISTINCT

» an optional keyword indicating that the answer
should not contain duplicates. Default is that
duplicates are not eliminated.

CS3754 Classnote #10 2

« Example: Find the names of all branches In
the loan relation.
SELECT branch-name
FROM Loan

Loan Result

armount
scotiaBank

bhranch name

ncotiaBank
FovalBank
scotiaBank

HoyalBank
~cotiaBank

CS3754 Classnote #10

» To remove duplications

SELECT DISTINCT branch-name
FROM Loan

Loan

HoyalBank
~cotiaBank

CS3754 Classnote #10

Result

branch name

~cotiaBank
FaoyalBank

« Example (Q1, p.137): Find the names of sailors
who have reserved boat number 103.

Instance R3 of Reserves

sid bid day sid sname | rating age
22 101 10/10/96 22 dustin 7 45.0
58 103 11/12/96 31 lubber 8 99.5

58 rusty 10 35.0

CS3754 Classnote #10

Instance S4 of Sailors

Find names of the sailors who have reserved boot number 103

Sailors

e

Row remains after
selection.

sid sname | rating age Reserves sid bid day
22 dustin 7 45.0 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103
sid sname rating age sid bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96
S4 X R3
Result

CS3754 Classnote #10

More Examples

 Glven the following schema:

Sailors(sid; integer, sname: string, rating:integer, age: real)

Boats(bid: integer, bname; string, color: string)
Reserves(sid: integer, bid: integer, day: date)

sallors sid | sname | rating | age

Boats bid | bname | color

Reserves| sid | bid | day

CS3754 Classnote #10

sailors sid | sname | rating | age |

I
Boats [bid [bname [color |
Reserves [sid [bid [day |

Example: Find the sids of sailors who have
reserved a red boat.

SELECT R.sid
FROM Boat B, Reserves R
WHERE B.bid = R.bid AND B.color = ‘red’

Example: Find the names of sailors who have
reserved a red boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boat B

WHERE S.sid = R.sid AND R.bid = B.bid AND
B.color = ‘red’

CLO35 /94 LIdssIule #1V 8

sailors sid | sname | rating | age |

I
Boats [bid [bname [color |
Reserves [sid [bid [day |

Example: Find the colors of boats reserved
by Lubber.

SELECT B.color
FROM Sailors S, Reserves R, Boat B
WHERE S.sid = R.sid AND R.bid = B.bid AND

S.name = ‘Lubber’.

(In general, there may be more than one sailor called

Lubber. In this case, it will return the colors of boats
reserved by some Lubber).

CS3754 Classnote #10 9

sailors sid | sname | rating | age |

I
Boats [bid [bname [color |
Reserves [sid [bid [day |

Example: Find the names of sailors who
have reserved at least one boat.

SELECT S.name
FROM Sailors S, Reserves R
WHERE S.sid = R.sid

(If a sailor has not made a reservation, the second step in

the conceptual evaluation strategy would eliminate all rows
In the cross-product that involve this sailor).

CS3754 Classnote #10 10

Expressions and Strings

SELECT S.age, agel=5.age-5, 2*5.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%DB’

« [|llustrates use of arithmetic expressions and string pattern
matching: Find triples (of ages of sailors and two fields
defined by expressions) for sailors whose names begin and
end with B and contain at least three characters.

AS and = are two ways to name fields in result.

LIKE is used for string matching. =’ stands for any one
character and "%’ stands for O or more arbitrary characters.

CS3754 Classnote #10 11

Union, Intersect, and Except

« SQL provides three set-manipulation
constructs that extend the basic query form
presented earlier.

— Union (V)
— Intersection (M)
— Except (-)

(many systems recognize the keyword MINUS for EXCEPT)

CS3754 Classnote #10 12

sailors L _sid [sname | rating [age |
Boats [bid [bname [color |
Reserves [_sid [bid [day |

Example: Find sid’s of sailors who’ve reserved a red or a green

boat

UNION: Can be used to compute
the union of any two union-
compatible sets of tuples (which
are themselves the result of SQL
queries).

If we replace OR by AND in the
first version, what do we get?

Also available: EXCEPT (What
do we get if we replace UNION
by EXCEPT?)

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND (B.color="red” OR B.color="green’)

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="red’

UNION

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green’

CS3754 Classnote #10 13

sailors sid | sname | rating | age |

I
Boats [bid [bname [color |
Reserves [sid [bid [day |

Example: Find sid’s of sailors who’ve reserved a red and a green

boat

INTERSECT: Can be used to
compute the intersection of
any two union-compatible
sets of tuples.

Included in the SQL/92
standard, but some systems
don’t support it.

CS3754 (

SELECT S.sid
FROM GSailors S, Boats B1, Reserves R1,
Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
AND S.sid=R2.sid AND R2.bid=B2.bid
AND (Bl.color="red” AND B2.color="green’)

SELECT S.sid

FROM 6Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="red’

INTERSECT

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green’

sailors sid | sname | rating | age

I
Boats [bid [bname [color |
Reserves [sid [bid [day |

Example: Find sid’s of all sailors who’ve reserved red boat but not

green boat. ,
SELECT S.sid

FROM 6Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="red’

Indeed, since the Reserves
relation contains sid information,
there 1s no need EXCEPT

to look at the Sailors relation. SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color=’green’

SELECT R.sid
FROM Boats B, Reserves R

WHERE R.bid=B.bid AND B.color="red’
EXCEPT

SELECT R.sid
FROM Boats B, Reserves R

WHERE R.bid=B.bid AND B.color="green’
oo/ 04 Liasshote #10 15

sailors L _sid [sname | rating [age |
Boats [bid [bname [color |
Reserves [_sid [bid [day |

Example: Find sid’s of all sailors who have a rating of 10 or reserved
boat 104

SELECT S.sid

FROM Sailor S
WHERE S.rating = 10
UNION

SELECT R.sid

FROM Reserves R
WHERE R.bid=104

CS3754 Classnote #10 16

Nested Queries

« A nested query Is a query that has another
query embedded within It.

* The embedded query is called a subquery.

» The embedded query can be a nested query
itself.

— Queries may have very deeply nested
structures.

CS3754 Classnote #10 17

Example: Find names of sailors whove reserved boat #103:

SELECT S.sname
FROM Sailors S, Reserves R

] WHERE S.sid=R.sid AND R.bid=103
alternative:

SIBECT Staiie A very powerful feature of SQL:
FROM Sailors 5 a WHERE clause can itself contain
WHERE S.sid IN (SELECT R.sid
FROM Reserves R an SQL query! (Actually, so can
WHERE R.bid=103) FROM and HAVING clauses.)
Consider: Find names of sailors who ve not reserved boat #103:
SELECT S.sname correct answer:
FROM Sailors S, Reserves R SELECT S.sname

WHERE S.sid=R.sid AND R.bid#103 FROM Sailors S

WHERE S.sid NOT IN (SELECT R.sid
correct? FROM Reserves R
WHERE R.bid=103)

« To understand semantics of nested queries, think of a nested loops
evaluation: For each Sailors tuple, check the qualification by computing
the subquery. CS3754 Classnote #10 18

Correlated Nested Queries

* In the previous example, the inner subquery
has been completely independent of the

outer query.

* In general, the inner subquery could depend
on the row currently being examined in the

outer query.

CS3754 Classnote #10 19

Example: Find names of sailors whove reserved boat #103:

SELECT S.sname
FROM Sailors S

WHERE EXISTS (SELECT *
FROM Reserves R

WHERE R.bid=103 AND S.sid=R sid)

Sailors
sid sname rating age
S—> | 22 | dustin 7 45.0 R—
S— 31 lubber 8 55.5 R—s
S— 58 rusty 10 35.0 R—
CS3754 Classnote #10

EXISTS is another set
comparison operator,
which allows us to test
whether a set is

nonempty.
Reserves
sid bid day
22 103 10/10/96
31 101 11/12/96
- 103 | 12/12/03
58 105 | 8/21/05

20

Example: Find names of sailors with at most one reservation for boat #103

SELECT S.sname EXIST UNIQUE evaluates
FROM Sailors S to true if the subquery returns
WHERE EXISTS UNIQUE (SELECT R.bid . query

a relation that contains no

FROM Reserves R : _
WHERE R.bid=103 AND duplicated tuples (empty is

S.sid=R.sid) a special case)

« \Why do we have to replace * by R.bid?

CS3754 Classnote #10 21

Set-comparison Operators

We’ve already seen IN, EXISTS and UNIQUE.
We can also use NOT IN, NOT EXISTS and NOT UNIQUE.

Also available: op ANY, op ALL
— Where op is one of the arithmetic comparison operator —ss——s—=
— SOME is also available, but it is just a synonym for ANY.

Example: Find sailors whose rating is greater than that of
some sailor called Horatio:

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname="Horatio")

CS3754 Classnote #10 22

sailors sid | sname | rating |

age |

I
Boats [bid [bname [color |
Reserves [sid [bid [day |

Example: Find sailors whose rating is better than every sailor
called Horatio.

SELECT *
FROM Sailors S
WHERE S.rating > ALL (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname="Horatio")

Example: Find the sailors with the highest rating.

SELECT *

FROM GSailors S

WHERE S.rating >= ALL (SELECT S2.rating
FROM Sailors S2)

LIS 104 LIdSSIIULE #1U 23

» Rewriting INTERSECT queries using IN

Example: Find sid’s of sailors who ve reserved both a red and a
green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red’
AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’)

« Similarly, EXCEPT queries can be re-written using NOT IN.

« To find names (not sid’s) of Sailors who’ve reserved both red
and green boats, just replace S.sid by S.sname in SELECT clause.

CS3754 Classnote #10 24

Division in SQL

Example: Find names of sailors who’ve reserved all boats.

SELECT S.sname sailors [sid | sname [rating | age |
FROM Sailors S Boats [bid T bname [color |
WHERE NOT EXISTS Reserves | sid | bid [day |

((SELECT B.bid |~~~ 7"~

'FROM Boats B) | RN

IEX_C_EIFT ————— = ~ All boats

| (SELECT Rbid ~~~ "1f__

| FROM Reserves R | ~ == All boats reserved by S

| WHERE R.sid=S.sid))

Note that this query is correlated — for each sailor S, we select it if
there does not exist a boat that has not been reserves by him/her.

CS3754 Classnote #10 25

sailors sid | sname [rating | age |

I
Boats [_bid [bname [color |
Reserves [sid [bid [day |

An Alternative way to write the previous query without
using EXCEPT

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R
WHERE R.bid=B.bid
AND R.sid=S.sid))

Again, for each sailor we check that there is no boat that has not
been reserved by him/her:

The 3" level query returns empty set if B.bid is not reserved by S.sid
The 2M level query returns empty set if no such B.bid exists

CS3754 Classnote #10 26

Aggregate Operators

« SQL allows the use of arithmetic expressions.

« SQL supports five aggregate operations, which
can be applied on any column of a relation.

COUNT([DISTINCT] A) The number of (unique) value in the A column,

SUM ([DISTINCT] A) The sum of all (unique) values in the A

column.
AVG ([DISTINCT A) The average of all (unique) values in the A
column.
MAX (A) The maximum value in the A column.
MIN (A) The minimum value in the A column.

CS3754 Classnote #10 27

sailors sid | sname | rating |

age |

I
Boats [bid [bname [color |
Reserves [sid [bid [day |

Example: Count the number of Sailor

SELECT COUNT (*)
FROM Sailors S

Example: Count the number of different sailor names

SELECT COUNT (DISTINCT S.name)
FROM Sailors S

CS3754 Classnote #10 28

sailors sid | sname | rating |

age |

I
Boats [bid [bname [color |
Reserves [sid [bid [day |

Example: Find the average age of all sailors

SELECT AVG (S.age)
FROM Sailors S

Example: Find the average age of sailors with rating of 10

SELECT AVG (S.age)
FROM Gailors S
WHERE S.rating =10

CS3754 Classnote #10 29

sailors sid | sname | rating |

age

I
Boats [bid [bname [color |
Reserves [sid [bid [day |

Example: Find the name and age of the oldest sailor

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age

FROM Sailors S

WHERE S.age =
(SELECT MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age

FROM GSailors S

WHERE (SELECT MAX (S2.age)
FROM Sailors S2)
= S.age

Equivalent to the second
query, and is allowed in the

SQL /92 standard, but is not

supported in some systems.
0 30

sailors sid | sname | rating | age |

I
Boats [_bid [bname [color |
Reserves [sid [bid [day |

Aggregate operations offer an alternative to the ANY
and ALL constructs.

Example: Find the names of sailors who are older
than the oldest sailor with a rating of 10.

SELECT S.name

FROM Sailors S

WHERE S.age > ANY (SELET S2.age
FROM Sailors S2
WHERE S2.rating = 10)

Alternative

SELECT S.name
FROM Sailors S
WHERE S.age > (SELECT MAX (S2.age)
FROM Sailors S2
WHERE S2.rating = 10) 31

Group by and Having

* So far, we’ve applied aggregate operators to all (qualifying)
tuples. Sometimes, we want to apply them to each of several

groups of tuples.
« Consider: Find the age of the youngest sailor for each rating

level.
— In general, we don’t know how many rating levels exist, and what the
rating values for these levels are!
~ Suppose we know that rating values go from 1 to 10; we can write 10
queries that look like this (1):

- . SELECT MIN (S.age)
Fori=1,2,..,10: FROM 6Sailors S
WHERE S.rating =i

CS3754 Classnote #10 32

« To write such gueries, we need a major extension to the
basic SQL query form, namely the Group BY clause.

» The extension also includes an optional HAVING clause
that can be used to specify qualifications over groups.

The query can be expressed as follows

SELECT S.rating, MIN (S.age)
FROM Sailors S
GROUP BY S.rating

CS3754 Classnote #10

33

The general format of GROUP BY and Having

SELECT [DISTINCT] target-list
FROM relation-list

WHERE qualification

GROUP BY grouping-list
HAVING group-qualification

» The target-list contains (i) attribute list (i1) terms with
aggregate operations (e.g., MIN (S.age)).

— The attribute list (i) must be a subset of grouping-list.
Intuitively, each answer tuple corresponds to a group, and these
attributes must have a single value per group. (A group is a set
of tuples that have the same value for all attributes in grouping-
list.)

CS3754 Classnote #10

34

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

ConCe ptual Eval Uati On GROUP BY grouping-list

HAVING group-qualification

» The cross-product of relation-list iIs computed, tuples that
fail qualification are discarded, unnecessary’ fields are
deleted, and the remaining tuples are partitioned into
groups by the value of attributes in grouping-list.

« The group-qualification is then applied to eliminate some
groups. Expressions in group-qualification must have a
single value per group!

— In effect, an attribute in group-qualification that is not an

argument of an aggregate op also appears in grouping-list. (SQL
does not exploit primary key semantics here!)

« One answer tuple is generated per qualifying group.

CS3754 Classnote #10 35

sailors [sid [sname [rating [age |
Boats [_bid [bname [color |
Reserves [_sid [bid [day |

For each red boat, find its bid, and the number of reservations

SELECT B.bid, COUNT (*) AS reservationcount |° ﬁzl)SIEBLbEIg'II? ?:S:é?r;iﬂe'r
FROM Boats B, Reserves R attributes are ‘unne’cessary’.
WHERE R.bid=B.bid AND B.color="red’ . COUNT(*) is renamed
GROUP BY B.bid

alternative?

. , Only columns that appear in the
SELECT B.bid, COUNT (*) AS reservationcount

GROUP BY clause can appear in

FROM Boats B, Reserves R the HAVING clause, unless
WHERE R.bid=B.bid they appear as arguments to an
GROUP BY B.bid aggregate operator in the HAVING
HAVING B.color = ‘red’ clause.

CS3754 Classnote #10 36

Example: Find the average age of sailors for each rating level that
has at least two sailors.

sid | sname rating | age
SELECT S;ating, AVG(S.age) AS avgage 22 | Dustin 7 | 450
FROM Sailor S
GROUP BY S.rating 29 | Brutus 1 33.0
HAVING COUNT (S.sid) > 1 31 | Lubber 8 55 5
OR 32 | Andy 8 |255
SELECT S.rating, AVG(S.age) AS avegage
EROM Sailor & 5 (S-age) 538 58 | Rusty 10 | 35.0
GROUP BY S.rating 64 | Horatio 7 | 35.0
HAVING 1 < (SELECT COUNT (52.sid)
FROM Sailors S2 71| Zorba 101 16.0
WHERE S.rating = S2.rating) 74 | Horatio 9 |350
: \ 85 | Ar 3 25.5
Rating | avgage
3 145 We can use S.rating 95 | Bob 3 63.5
: inside the nested :
7 400 subquery in the HAVING Instance of Sallor
' because it has a single
8 40.5 value for the current group
of sailors
10 25.5

CS3754 Classnote #10 37

Example: Find the average age of sailors who are at least 18 years
old for each rating level that has at least two sailors.

sid | sname rating | age
SELECT S.rating, AVG(S.age) AS avgage)
FROM Sailor S 22 | Dustin 7 45.0
WHERE S.age >=18 29 | Brutus 1 {330
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*) 31 | Lubber 8 | 955
FROM Sailors S2 32 | Andy 8 25 5
WHERE S.rating = S2.rating)
58 | Rusty 10 | 35.0
64 | Horatio 7 35.0
Note that the answer is very Rating | avgage 71 | Zorba 10 | 16.0
similar to the previous one, with the 3 44.5 24 | Horatio 9 35.0
only difference being that for the '
group 10, we now ignore the ! 40.0 85 | Art 3 |255
sailor with age 16 while computing 8 40.5 95 | BoOb 3 63.5
the average. '
10 35.5
Answer %0 r‘l.:srtggge S3-of ??ai!c 232

CS3754 Classnote #10 38

Example: Find the average age of sailors who are at least 18 years
old for each rating level that has at least two such sailors.

SELECT S.rating, AVG(S.age) AS avgage

FROM Sailor S

WHERE S.age >=18
GROUP BY S.rating
HAVING COUNT(S.sid) > 1

It differs from the answer of the
previous question in that there is no
tuple for rating 10, since there

is only one tuple with rating and
age >=18.

Rating

avgage

3
7
8

44.5
40.0
40.5

Answer

CS3754 Classnote #10

sid | sname rating | age
22 | Dustin 7 | 45.0
29 | Brutus 1 33.0
31 | Lubber 8 55.5
32 | Andy 8 |255
58 | Rusty 10 | 35.0
64 | Horatio 7 35.0
71 | Zorba 10 | 16.0
74 | Horatio 9 35.0
85 | Art 3 |255
95 | BoOb 3 |635
%0 r‘l.:srtggge S3-ef-Saile 23>
39

Example: Find the age of the youngest sailor with age >18&, for each
rating with at least 2 such sailors

sid [sane |raling age
SELECT S.rating, MIN (S.age) 2 astin | 7 450
FROM Sailors S 3l |ludoer | 8 565
WHERE S.age >= 13 71 |zoma 10 (160
GROUP BY S.rating &4 horatio | 7 50
HAVING COUNT (*) >1 9 s | 1 30
3 nsty 10 B0
rating |age rating
1 1330 /7 1350
[1450
[1350 Answer relation
8§ 955
10 1350

CS3754 Classnote #10 40

Some other ways to write: Find the average age of the sailors with
age >= 18, for each rating with at least 2 such sailors

SELECT S.rating, AVG(S.age) AS avgage
FROM GSailor S
WHERE S.age >=18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (¥)
FROM Sailor S1
WHERE Sl.age >= 18 AND Sl.rating = S.rating)

alternative

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG(S.age) AS avgage, The nested subquery returns the

COUNT (*) As ratingcount average age of the sailors with
FROM Sailor S age >= 18 and a count of such
WHERE S.age >=18 sailors for each rating level

GROUP BY S.rating) AS Temp
WHERE Temp.ratingcount > 1

CS3754 Classnote #10 41

sailors [sid [sname [rating [age |
Boats [_bid [bname [color |
Reserves [sid [bid [day |

Find those ratings for which the average age Is the minimum
over all ratings

SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age))
FROM Sailors S2
GROUP BY S2.rating)

Aggregate operations cannot be nested!

This query will not work even if the expression MIN(AVG(S2.age)), which is illegal,
Is allowed. In the nested query, Sailors is partitioned into groups by rating, and the
average age is computed for each rating value. For each group, applying MIN to this
average age value for the group will return the same value.

CS3754 Classnote #10 42

Correct solution:

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

15t subquery returns a table contains the average age for each rating value

2nd subquery returns a table contains the rating(s) for which this average age is the minimum.

CS3754 Classnote #10 43

