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Uncertainty

« Uncertainty can be considered as the lack
of adequate information to make a
decision.

» Uncertainty is a problem because it may
prevent us from making the best decision
and may even cause a bad decision.



Unsound Inference

» INn expert systems, correct conclusions
must often be drawn from poorly
formed and uncertain evidence using
unsound inference rules.

» Unsound inference rules, such as
abduction, are often used to solving
problems.

Abduction rule:

From P =2 Q and Q, it is possible to infer
P.



ory, and

TYPES OF ERRORS

Many different types of errors can contributes to uncertainty. Different theories of
uncertainty attempt to resolve some or all of these errors to provide the most reliable
inference. Figure 4-1 illustrates a simplified classification scheme for errors.
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Figure 4-1
Types of Errors

Random Systematic




Example

Error

Reason

Tum the valve off

Ambiguous

What valve?

Tum valve-1

Incomplete

Which way?

Tum valve-1 off

Incorrect

Correct is on

Valve is stuck

False positive

Valve is not stuck

Valve is not stuck

False negative

Valve is stuck

Tum valve-1to §.

Imprecise

Correct is 5.4

Turn valve-1 to 5.4

Inaccurate

Correct is 9.2

Tum valve-1to 5.4 or 6 or 0

Unreliable

Equipment error

Valve-1 setting is 5.4
or 5.5 or 5.1

Random Error

Statistical
Fluctuation

Valve-1 setting is 7.5

Systematic Error

Miscalibration

Valve-1 is not stuck because
its never been stuck before

Invalid Induction

Valve is stuck

Output is normal and so
valve-1 is in good condition

Invalid deduction

Valve is stuck
in open position

Table 4-1




Some ways of managing the
uncertainty

Bayesian probability theory
Stanford certainty theory
Zadeh's fuzzy set theory

Dempster/Shafer theory of evidential
reasoning

nonmonotonic reasoning



Bayesian probability theory

Assuming random distribution of events,
probability theory allows the calculation of
more complex probabllities from
previously known results.

Based on the following assumptions:

all the statistical data on the right are
known

all P(E|Hk) are independent



Names

Formula

Characteristics

a priori

(classical,
theoretical,
mathematical,
symmetric
equiprobable
equal-likelihood)

w
P(E) = 7
where W is the number of
outcomes of event E for a
total of N possible outcomes

Repeatable events
Equally likely outcomes
Exact math form known
Not based on experiment
All possible events and
outcomes known

a posteriori

(experimental,
empirical,
scientific,

relative frequency,
statistical)

PE -

lim
PE) = Ny N
where f(E) is the frequency, f,
that event, E, is observed for
N total outcomes

Repeatable events
based on experiments
Approximated by a finite
number of experiments
Exact math form unknown

subjective

(personal)

Nonrepeatable events
Exact math form unknown
Relative frequency
method not possible
Based on expert's experience
judgement, opinion, or
belief

Table 4-5

Types of Probabilities




Classical probability

Theory of Probability
A formal theory of probability can made using three axioms:
axiom 1: 0 < P(E) £1
This axiom defines the range of probability to be the real numbers from 0 to 1. Nega-

tive probabilities are not allowed. A certain event is assigned probability 1 and an
impossible event assigned probability 0.

axiom 2: 3, P(E) =1
i

This axiom states that the sum of all events which do not affect each other, called
mutually exclusive events, is 1. Mutually exclusive events have no sample point
in common. For example, a computer cannot be both working correctly and not
working correctly at the same time.




As a corollary of this axiom

P(E) + P(E') =1

where E' is the complement of event E. This corollary means that the probability of an
event occurring plus the probability of it not occurring is 1. That is, the occurrence and
nonoccurrence of an event is a mutually exclusive and complete sample space.

axiom 3: P(E; U E;) = P(E;) + P(E)

where E; and E, are mutually exclusive events. This axiom means that if E; and E,
cannot both occur simultaneously (mutually exclusive events) then the probability of
one or the other occurring is the sum of their probabilities.

From these axioms, theorems can be deduced concerning the calculation of proba-
bilities under other situations, such as nonmutually exclusive events,




Compound Probabillities

P(AMNB)=P(A) * P(B) IfA, B are pairwise

Independent

P(AUB) = P(A) +P(B) —P(A NB)

Conditional probabillities:

P(AIB)=P(ANB)/P(B) forP(B)#0

Generalized Multiplicative Law:

P(A1 NA2 N... N An)= P(A1|A2 N...NAn) *
P(A2|A3 N... NAn)* ...* P(An-1|An) *

P(An)



Bayes' Theorem

The conditional probability, P(A|B), states the
probability of event A given that B occurred.

The inverse problem is to find the inverse
probability which states the probability of an
earlier event given that a later one occurred.

This type of probability occurs often, as in the
medical or equipment diagnosis where
symptoms appear and the problem is to find the
most likely cause.

The solution is Bayes’s Theorem:
P(HI|E) = P(E|H)*P(Hi) / P(E)



heorem

decision tree analysis

OSPECTOR expert system
s for mineral exploration



Probabilities

No Oil Oil Prior

P(O") =04 P(0)=0.6 Subjective Opinion
of Site - P (H1)

+ Test Conditional
P(+10) Seismic Test Result
=0.8 P(EIH1)

P-n0O) PH+NO) Joint- P(ENH)
=0.12 =0.48 =P(E| Hi)P(H 1)

Figure 4-9
Initial Probability Tree for Oil Exploration




Probabilities
Unconditional
P(E)

No Oil Oil Posterior
P(O’l+) POl +) of Site—P(H1!| E)
= (1)(.4) =(.8).6) =P(EIHi)PHI)

0.52 0.52 P(E)
=1/13 = 12/13
P(+ N O) P(+ N O) Joint- P(ENH)
=0.04 =0.48 =P(H | E) P(E)

Figure 4-10
Revised Probability Tree for Oil Exploration




Limitations of the Bayesian
approach:

« Correct conclusions require complete and up-to-
date probabilities

» I'he independence of the relationships between
evidence and hypotheses requires a justification

« Where these assumptions are met, Bayesian
approaches offer the benefit of a well-founded
and statistically correct handling of uncertainty.
But, iIn many domains, such extensive data
collection and justification are not possible.
Human experts do not use the Bayesian model
for problem solving.



Stanford certainty theory

» Stanford certainty theory Is based on
the following assumptions:

» The sum of confidence for a
relationship and confidence against the
same relationship must add to 1.

» The knowledge content of the rules Is
much more important than the algebra
of confidences that holds the system
together.



Call MB(H | E) the measure of belief of a hypothesis H given evidence E.
Call MD(H | E) the measure of disbelief of a hypothesis H given evidence E.

Now either:

1>MB(H | E) >0 while MD(H | E) = 0, or
1>MD(H | E) > 0 while MB(H | E) = 0.

These two measures constrain each other in that a given piece of evidence is either for or
against a particular hypothesis, an important difference between certainty theory and

probability theory. Once the link between measures of belief and disbelief has been
established, they may be tied together again, by:

CF(H | E) = MB(H| E) - MD(H | E).




The premises for each rule are formed of ands and ors of a number of facts. When a
production rule is used, the certainty factors associated with each condition of the premise
are combined to produce a certainty measure for the overall premise as follows. For P1 and
P2, premises of the rule:

CF(P1 and P2) = MIN(CF(P1), CF(P2)), and
CF(P1 or P2) = MAX(CF(P1), CF(P2))

The combined CF of the premises, using the above rules, is then multiplied by the CF

of the rule itself to get the CF for the conclusions of the rule. For example, consider the
rule in a knowledge base:

(P1 and P2) or P3 — R1 (.7) and R2 (.3)

where P1, P2, and P3 are premises and R1 and R2 are the conclusions of the rule, having
CFs 0.7 and 0.3, respectively. These numbers are added to the rule when it is designed and
represent the expert’s confidence in the conclusion if all the premises are known with
complete certainty. If the running program has produced P1, P2, and P3 with CFs of 0.6.




the running program has produced P1, P2, and P3 with CFs of 0.6,
04, and 0.2, respectively, then R1 and R2 may be added to the collected case-specific
fesults with CFs 0.28 and 0.12, respectively. Here are the calculations for this example:

CF(P1(0.6) and P2(0.4)) = MIN(0.6,0.4) = 0.4.
CF((0.4) or P3(0.2)) = MAX(0.4,0.2) = 0.4.

The CF for R1 is 0.7 in the rule, so R1 is added to the set of case-specific knowledge
with the associated CF of (0.7) x (0.4) = 0.28.

The CF for R2 is 0.3 in the rule, so R2 is added to the set of case-specific knowledge
with the associated CF of (0.3) x (0.4) =0.12.

One further measure is required: how to combine multiple CFs when two or more rules
support the same result R. This rule reflects the certainty theory analog of the probability
theory procedure of multiplying probability measures to combine independent evidence.
By using this rule repeatedly one can combine the results of any number of rules that are
used for determining a result R. Suppose CF(R1) is the present certainty factor associated
with result R and a previously unused rule produces result R (again) with CF(R2); then the
new CF of R is calculated by:

CF(R1) + CF(R2) — (CF(R1) x CF(R2)) when CF(R1) and CF(R2) are positive,
CF(R1) + CF(R2) + (CF(R1) x CF(R2)) when CF(R1) and CF(R2) are negative,

and

CF(R1)+ CF(R2)
1—MIN( |CF(R1)|,| CF(R2)|)

otherwise, where | X | is the absolute value of X.




CF(P1(0.6) and P2(0.4)) = MIN(0.6,0.4) = 0.4.
CF((0.4) or P3(0.2)) = MAX(0.4,0.2) = 0.4.

The CF for R1 is 0.7 in the rule, so R1 is added to the set of case-specific knowledge
with the associated CF of (0.7) x (0.4) = 0.28.

The CF for R2 is 0.3 in the rule, so R2 is added to the set of case-specific knowledge
with the associated CF of (0.3) x (0.4) = 0.12.

One further measure is required: how to combine multiple CFs when two or more rules
support the same result R. This rule reflects the certainty theory analog of the probability
theory procedure of multiplying probability measures to combine independent evidence.
By using this rule repeatedly one can combine the results of any number of rules that are

used for determining a result R. Suppose CF(R1) is the present certainty factor associated
with result R and a previously unused rule produces result R (again) with CF(R2); then the
new CF of R is calculated by:

CF(R1) + CF(R2) — (CF(R1) x CF(R2)) when CF(R1) and CF(R2) are positive,
CF(R1) + CF(R2) + (CF(R1) x CF(R2)) when CF(R1) and CF(R2) are negative,

and

____CF(RH+CFR2) ____
1 —MIN( | CF(R1) |, | CF(R2)|)

otherwise, where | X | is the absolute value of X.



MY CIN

« MYCIN was designed to solve the problem of
diagnosing and recommending treatment for
meningitis and bacteremia.

« MYCIN (Middle and late 1970s, Stanford
Univ.)
- arule-based expert system
- goal-drive depth-first search
— using certainty theory for heuristic inference
- representing facts as attribute-object-value triples
- explaining why and how questions
- having a knowledge base editor
- written in INTERLISP by 50 person-years
- EMYCIN is its corresponding expert system shell.



Stanford certainty theory

» Certainty theory Is excessively ad hoc.
The meaning of the certainty measures
IS not rigorously founded.

« However, the CF Is used in the heuristic
search to give a priority for goals to be
attempted and for cutting searching

oranches off in order to keep the

porogram running, the power of the
orogram Is in the content of the rules
themselves.




roaches of handling
IN reasoning

e problem of changing

by humans



Monotonic reasoning systems

» Monotonic reasoning systems assume
that axioms do not change and the
conclusions drawn from them remain true,

thus knowledge can only be added when
we already know or through the
reasoning process.




Non-monotonic logic

« Non-monotonic logic (McDermott and Doyle,
1980) Is an extension to the predicate calculus,
which allows statements to change their truth-
values In the process of reasoning.

« When there Is no information to the contrary, we
may assert some fact to be true. Only later does
evidence appear to the contrary, the fact must
be negated.



Nonmonotonic reasoning

» Nonmonotonic reasoning systems
handle uncertainty by making the most
reasonable assumptions in light of
uncertain information.

» It proceeds with its reasoning as if
these assumptions were true.

« When inconsistencies occurs, the
system change both the assumptions
and all of the conclusions that depend
on them.



onotonicity

S an important feature
solving and common



Fuzzy Terms

low
medium
high
L very low
not
more or less more or less low
little approximately low
several not low
few not very low
mlg not more or less low
most medium to sort of high
about higher than slightly low
approximately low to sort of medium

sort of most high
a great deal

Table 5-8 Table 5-9
Some Fuzzy Terms of Natural Language Compound Fuzzy Natural Language Terms




Fuzzy Membership Functions
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Fuzzy Membership Functions

Membership 1.0
Funclion 0.9

Height in Feet










Universe of discourse Universe of discourse







Fuzzy Membership Functions

The hierarchy of the linguistic variable Appetite is illustrated in Figure 5-16. The
LIGHT and HEAVY fuzzy sets are assumed to be S-functions while the MODERATE
set is taken as a []-function.

Appetite Linguistic Variable

//]\

Calories Eaten Per Day

Figure 5-16
The Linguistic Variable Appetite and Its Values




x(A") =x(NOTA) =1-pa(x)
x(A) AX(B) =x(A AND B) =min (Ha(x), Hs(X))
x(A) vx(B) =x(A OR B) max ([a(x), ps(x))

x(A) = x(B

Table 5-15
Some Fuzzy Logic Operators




Another definition for the CHOCOLATE fuzzy set may involve hedges to modify the
meaning of a set. For example, a CHOCOLATE fuzzy set of one type of chocolate
could be defined as follows.

CHOCOLATE = Very CHOCOLATE + Very Very CHOCOLATE +
More Or Less CHOCOLATE +
Slightly CHOCOLATE +
Plus CHOCOLATE + Not Very CHOCOLATE + ...

Standard hedges can be defined in terms of some fuzzy set operators and a fuzzy set, F,
as shown in Table 5-13.

Hedge Operator Definition
Very F CON(F) = F;
More Or Less F DIL(F) = F

1.23

Plus F F
Not F 1-F

Not Very F 1 - CON(F)

Slightly F INT [NORM (PLUS F And NOT (VERY F))]

Table 5-13
Some Linguistic Hedges and Operators







