Problem Solver

Problem Solving is the process of developing a sequence of
actions to achieve a goal.

This broad definition admits all goal directed Al programs to
the ranks of problem solvers.

Some more problem solving methods:

Generate and Test
Means-Ends Analysis
Problem Reduction
Planning

Decision Table
Decision Tree

Few real problems can be solved by a single problem-solving
method. Accordingly, it is often seen that problem-solving
methods are working together.

Al Note #8, John Shieh, 2012

Generate and Test

P ible
DRI Tester

Correct

Generator solutions ’ ‘ solution
/ /
¥ N ‘ v

7 S) \ "l ()
S (\/ 4 N’ -

Incorrect
solutions

To perform generate and test,

> Until a satisfactory solution is found or no more candidate
solutions can be generated.
> Generate a candidate solution.
> Test the candidate solution.

> If an acceptable solution is found. announce it: otherwise,

announce failure.
Al Note #8, John Shieh, 2012

Good Generators Are Complete, Nonredundant, and Informed
It is obvious that good generators have three properties:

Good generators are complete: They eventually produce all possible
solutions.

Good generators are nonredundant: They never compromise efficiency
by proposing the same solution twice.

Good generators are informed: They use possibility-limiting informe-
tion, restricting the solutions that they propose accordingly

Informability is important, because otherwise there are often too many
solutions to go through.

Al Note #8, John Shieh, 2012

Generate-and-Test Systems Often Do Identification

To use the generate-and-test paradigm to identify, say, a tree, you can
reach for a tree book, then thumb through it page by page, stopping when
you find a picture that looks like the tree to be identified. Thumbing
through the book is the generation procedure: matching the pictures to

the tree is the testing procedure.
To use generate and test to burgle a three-number, two-digit safe, you

can start with the combination 00-00-00, move to 00-00-01, and continue
on through all possible combinations until the door opens. Of course, the
counting is the generation procedure, and the twist of the safe handle is
the testing procedure.

The burglar in figure 3.2 may take some time to crack the safe with
this approach, however, for there are 100° = 1 million combinations. At
three per minute, figuring that he will have to go through half of the com-
binations, on average, to succeed, the job will take about 16 weeks. if he

works 24 hours per day.

Means-Ends Analysis

The purpose of means-ends analysis is to 1dentify a procedure
(operator) for a selected transition which reduce the difference

between the current state and the goal state.

The procedure selected 1s believed to reduce the difference,
but there is no built-in mechanism preventing backward steps
in the most general form of mens-ends analysis,

Al Note #8, John Shieh, 2012

Figure 3.3 Means-ends
analysis involves states and
procedures for reducing
differences between states. The : Current state Goil stite
current state and goal state are ’ pors
shown solid; other states, not C

yet encountered, are shown ‘

dotted.
L SRR Y, S E 23 i A T WA S T

Figure 3.4 Means—ends

analysis produces a path

through state space. The ‘

current state, the goal state, Initial state Goal state
and a description of their -
difference determine which
procedure to try next. Note that
the procedures are expected,
but not guaranteed, to cause

a transition to a state that is
nearer the goal state than is the

current state.

Current state._—__ "%
Difference

To perform means-ends analysis,
> Until the goal is reached or no more procedures are avail-
able,
> Describe the current state, the goal state, and the dif-
ference between the two.

> Use the difference between the current state and goal
state, possibly with the description of the current state
or goal state, to select a promising procedure.

> Use the promising procedure and update the current
state.

> If the goal is reached, announce success; otherwise, an-

nounce failure.

Al Note #8, John Shieh, 2012

Difference-Procedure Tables Often Determine the Means

Whenever the description of the difference between the current state and
the goal state is the key to which procedure to try next, a simple difference-
procedure table may suffice to connect difference descriptions to pre-
ferred procedures.!

Consider, for example, a travel situation in which the problem is to
find a way to get from one city to another. One traveler’s preferences
might link the preferred transportation procedure to the difference between

states, described in terms of the distance between the cities involved, via
the following difference-procedure table:

Distance Airplane Train Car

More than 300 miles Vv
Between 100 and 300 miles

Less than 100 miles

Al Note #8, John Shieh, 2012

Problem Reduction

Problem reduction tries to convert difficult goals into easier-
to-achieve subgoals. Each subgoal, in turn, may be divided into
lower-level subgoals.

Goal tree is a kind of And-Or tree, in which nodes represent
goals and branches indicate how you can achieve goals by solv-
ing one or more subgoals. Each node’s children correspond to
immediate subgoals; each node’s parant corresponds to the im-
mediate supergoal. Some goals are satisfied directly, they are
called leaf goals.

Goal trees may be used to answer how and why questions.

Al Note #8, John Shieh, 2012

Figure 3.5 MOVER is a
procedure for planning motion
saquences in the world of
bricks, pyramids, balls, and a
robot hand.

Al Note #8, John Shieh, 2012

PUT-ONAB

GET-SPACEAB GRASP A

v \4
MAKE-SPACE AB CLEAR-TOP A

v ¥
GET-RID-OF D GET-RID-OF C
Y Y
PUT-ON D Table PUT-ON C Table

/ // ,r/ \
N
el

/ [|
/ J/ |
/

/

GET.SPACEDTable / | | GET-SPACECTable / | |
. ¥ ||

GRASP D GRASP C,/
Y | |4

MOVE D Table | MOVE C Table |

Y \4
UNGRASP D UNGRASP C

Al Note #8, John Shieh, 2012

MOVE A B

UNGRASP A

To determine whether a goal has been achieved, you need a testing
procedure. The key procedure, REDUCE, channels action into the REDUCE-
AND and the REDUCE-OR procedures:

ey

To determine, using REDUCE, whether a goal is achieved,

> Determine whether the goal is satisfied without recourse
to subgoals:
> If it is, announce that the goal is satisfied.
> Otherwise. determine whether the goal corresponds to
an And goal:
> If it does. use the REDUCE-AND procedure to deter-
mine whether the goal is satisfied.
> Otherwise. use the REDUCE-OR procedure to deter-
mine whether the goal is satisfied.

Al Note #8, John Shieh, 2012

REDUCE uses two subprocedures: one deals with And goals, and the other
deals with Or goals:

To determine, using REDUCE-AND, whether a goal has been

satisfied,

> Use REDUCE on each immediate subgoal until there are
no more subgoals, or until REDUCE finds a subgoal that is
not satisfied.
If REDUCE has found a subgoal that is not satisfied, an-
nounce that the goal is not satisfied; otherwise, announce
that the goal is satisfied.

To determine, using REDUCE-OR, whether a goal has been

satisfied,

> Use REDUCE on each subgoal until REDUCE finds a subgoal
that is satisfied.

If REDUCE has found a subgoal that is satisfied, announce
that the goal is satisfied; otherwise, announce that the

goal is not satisfied.

With REDUCE, REDUCE-AND, and REDUCE-OR in hand, it is a simple matter
to test an entire And-Or tree,
Al Note #8, John Shieh, 2012

Planning

e Planning means deciding on a course of actions
before acting.

e Failure to plan can result in less than optimal problem
solving.

e Common-used approaches to planning:
e Nonhierarchical planning
e Hierarchical planning
e Script-based planning
e Opportunistic planning

Al Note #8, John Shieh, 2012 14

Fig 8.18 The blocks world.

Al Note #8, John Shieh, 2012

15

The blocks world of figure 8.18 may now be represented by the following

set of predicates.

ontable(a).
ontable(c).

ontable(d).

(@).

ontable(c).

(d).

STATE 1

gripping().
STATE 2
on(b,a).

clear(c).

gripping(e).

Al Note #8, John Shieh, 2012

16

A number of truth relations or rules for performance are created for the
clear (X), ontable (X), and gripping ().

X) (clear(X) <~ — (3 Y) (on(Y,X)))
) (V X) = (on(Y,X) < ontable(Y))
)

Y
Y) gripping() <> — (gripping(Y))

X) (pickup(X) — (gripping(X) < (gripping() A clear(X) A ontable(X)))).
X) (putdown(X) — ((gripping() A ontable(X) A clear(X)) <— gripping(X))).
X)

(V'Y) (stack(X,Y) = ((on(X,Y) A gripping() A clear(X)) < (clear(Y) A
gripping(X)))).
(V X)(V'Y) (unstack(X,Y) — ((clear(Y) A gripping(X)) <~ (on(X,Y) A
clear(X) A gripping())).
(V X) (V Y) (V Z) (unstack(Y,Z) — (ontable(X) < ontable(X))).

X)
(V X) (V Y) (V Z) (stack(Y,Z) — (ontable(X) < ontable(X))).

Al Note #8, John Shieh, 2012

Fig 8.19 Portion of the state space for a portion of the blocks world.

Al Note #8, John Shieh, 2012

Using blocks example, the four operators pickup, putdown, stack, and
unstack are represented as triples of descriptions.

putdown(X)

stack(X,Y)

unstack(X,Y)

P: gripping() A clear(X) A ontable(X)

A: gripping(X)
D: ontable(X) A gripping()

gripping(X)
ontable(X) A gripping() A clear(X)

. gripping(X)

clear(Y) A gripping(X)
on(X,Y) A gripping() A clear(X)
: clear(Y) A gripping(X)

: clear(X) A gripping() A on(X,Y)
: gripping(X) A clear(Y)
: gripping() A on(X,Y)

Al Note #8, John Shieh, 2012

P:
A:
D
P:
A:
D
P
A
D

19

Fig 8.20 Goal state for the blocks world.

Al Note #8, John Shieh, 2012

Fig 8.21 Atriangle table, adapted from Nilsson (1971).

For goals of stack(X,Y) * Stack(Y,2)

gripping()
clear(X)

on(X.Y) unstack(X,Y)

gripping(X)
putdown(X)

ontable(Y) | clear(Y) gripping()
pickup(Y)

clear(Z) gripping(Y)

stack(Y,Z)

clear(X) DD
gripping()
ontable(X) pickup(X)

clear(Y) gripping(X)
stack(X,Y)

on(X,Y)

clear(X)

gripping()
7

Al Note #8, John Shieh, 2012

Al Note #8, John Shieh, 2012

22

In a decision table, the decision rules are exhaustive in that
they must cover every possible combination of conditions. Thus
the creation of a decision table must concern its completeness, ac-
curacy, redundancy, inconsistency, endless loops, and size. Some

decision table languages, such as Detab/65, provide a check on
the completeness and consistency of the design.

Decision tables are rarely used in the situations which can be
clearly described in mathematical terms,

Al Note #8, John Shieh, 2012

23

DECISION TABLE STRUCTURE

DECISION[DECISION|DECISION|DECISION|DECISION|DECISION
RULE 1 | RULE 2 RULE 4 | RULE 5 | RULE 6

RULE ENTRY

Figure 2-1 Decision table structure.

Limited Entry Rows

In the condition area (above the hori-
zontal line) note the following:

‘““Y’’ prescribes that the condition in the
stub must be satisfied;

‘“N’’ prescribes that the condition in the
stub must not be satisfied;

‘“—’’ prescribes that it is immaterial
whether the condition in the stub is satisfied
or not.

In the action area (below the horizontal
double line) note the following:

‘X’ prescribes the action in the stub
that is to be executed if all the conditions of
that rule are satisfied.

¢“~?? prescribes that the action in the
stub is to be ignored, whether or not all the
conditions of that rule are satisfied.

The rules described in the decision table
of Figure 2-2 are read as follows:

Deciston Rule 1: If a customer’s credit
limit is satisfactory, approve his order.

Decision Rule 2: If the customer’s credit
limit is not satisfactory and his pay experi-

ence is favorable, approve his order.

Decision Rule 3: 1f the customer’s credit
limit is not satisfactory and his pay experi-
ence is not favorable and special clearance is
obtained, approve his order.

Decision Rule 4: If the customer’s credit
limit is not satisfactory and his pay experi-
ence is not favorable and special clearance
is not obtained, return his order to the sales
department.

Al Note #8, John Shieh, 2012

CREDIT LIMIT
IS SATISFACTORY

PAY EXPERIENCE
IS FAVORABLE

SPECIAL CLEARANCE
IS OBTAINED

APPROVE ORDER

RETURN ORDER
TO SALES

DECISION DECISION
RULE1 | RULE2 | RULE3 | RULE4
Ly x| x
L

Figure 2.2 Credit Policy.

Al Note #8, John Shieh, 2012

25

In a decision tree[2], each chance node is represented by a cir-
cle, and each decision node by a square. Events fan out from
circles, and decisions fan out from squares. By convention, the
tree extends from left to right. At the tips of the tree (the right-
most nodes) are outcomes that describe where a specific act-event
sequence will lead.

Any path from left to right through the tree constitutes a sce-
nario. Any path through a decision tree can be thought of as an
alternating sequence of actions by a decision maker and events in
the environment.

By specifying an (in principle) exhaustive set of scenarios conse-
quent to each possible action, a decision tree facilitates evaluation
of actions.

Al Note #8, John Shieh, 2012

Decision trees are very efficient for selection and classification.

Another useful feature of decision trees is that they can be made
self-learning. If the guess is wrong, a procedure can be called to
query the user for a new, correct classification question and the
answers to the ”yes” and ”no” responses. A new node, branches
and leaves can then be dynamically created and added to the tree.

Problems suitable for decision trees are typified by two primary
characteristics:

1. They provide the answer to a problem from a predetermined
set of possible answers. Taxonomy and diagnosis problems
generally meet this requirement.

In general, decision trees will not work well for problems which
must generate solutions in addition to selecting them.

. The manner in which decision trees derive a solution is by
reducing the set of possible solutions with a series of decisions
or questions that prune the search space of a decision tree.

Al Note #8, John Shieh, 2012

Decision trees

DECISION EVENT OUTCOME($)

NO ACCIDENT 300

) SMALL ACCIDENT 500

LARGE ACCIDENT 60

NO ACCIDENT

DO NOT | SMALL ACCIDENT
BUY E

LARGE ACCIDENT

Figure 3.1. Decision tree for an insurance example.

Al Note #8, John Shieh, 2012

DRILL

(]
POSITIVE DO NOT DRILL

STRIKE

DRY

OUTCOME

Ny
DO SEISMIC NEGATIVE

OUrCOME | DRILL
Lﬁ DO NOT DRILL

STRIKE

DRY

NO SEISMIC] DRILL
DO NOT DRILL

STRIKE

DRY

DO NOT BID

Figure 3.2. Decision tree for an oil-drilling example.

Al Note #8, John Shieh, 2012

