Production Systems

function depthsearch (current_state);

begin
if current_state is a goal
then return SUCCESS;
add current_state to closed:;
while current_state has unexamined children
begin

child := next unexamined child;
if child not member of closed
then if depthsearch(child) = SUCCESS
then return SUCCESS
end;
return FAIL
end

% closed is global

% search exhausted

function pattern_search (current_goal);

begin
if current_goal is a member of closed % test for loops
then return FAIL
else add current_goal to closed;
while there remain in data base unifying facts or rules do
begin
case
current_goal unifies with a fact:
return SUCCESS;
current_goal is a conjunction (p A ...):
begin
for each conjunct do
call pattern_search on conjunct;
if pattern_search succeeds for all conjuncts
then return SUCCESS
else return FAIL
end;
current_goal unifies with rule conclusion (p in g — p):
begin
apply goal unifying substitutions to premise (q);
call pattern_search on premise;
if pattern_search succeeds
then return SUCCESS
else return FAIL
end;
end:; % end case
end:;
return FAIL
end.

PRODUCTION SYSTEM
A production system 1s defined by:

The set of production rules. These are often simply called productions. A
production 15 a condition—action pair and defines a single chunk of problem-
solving knowledge. The condition part of the rule 15 a pattern that determines
when that rule may be applled to a problem instance. The action part defines
the associated problem-solving step.

reasoning proc .

condition part o oduction to selen appropriate pmb-lem solving actions,
When the condition element of a rule 1z matched by the contents of work
memory, the action associated with that condition may then be performe
The actions of production rules are specifically designed to alter the contents
of working memory.

The recognize—act cyde. The control structure for a production system 1s
simple: working memory is intialized ﬂnth the beginning problem description.
The current state of the problem s maintained as a set of patterns in
working memory. These patterns are matched against the conditions of the pro-
duction rules; this produces a subset of the plududmn rules, called the
conflict set, whose conditions match the patterns i working memory. The
productions in the conflict zet are 2-.1Ld to be enabled. One of the productions
in the conflict set 15 then selected (conflict resolution) and the production 1s

Jired. To fire a rule, its action is performed. changing the contents of working
memory. After the selected production rule is fired, the control cycle repeats
with the modified working memorv. The process terminates when the
contents of working memory do not match any rule conditions.

Conflict resolution chooses a rule from the confhiet set for firmg. Conflict rezolution
strategies may be simple, such as selecting the first rule whose condition matches the
state of the world, or may nvolve u-mple:t: rule selection heuristics. This 1s an
important way in which a production system allows the addition of heunstic control
to a search algonthm.

The pure production system model has no mechanism for recovering from dead ends
in the search; it ‘-l]t'lpl"p’ continues until no meore productions are enabled and halts.
Manv practical implementations of production systems allow backtracking to a
previous state of working memory in such situations.

A schematic drawing of a production systemn 1s presented in Figure 6.1.

Fig 6.1 A production system. Control loops until working memory pattern no
longer matches the conditions of any productions.

Cq— Ayq
Co— Ao
Working Cq— Ag

Memory
Pattern .
Pattern — Action

Cn—:»An

Fig 6.2 Trace of a simple production system.

Production set:

1. ba — ab
2. ca — ac
3.cbh — bc

lteration # Working memory Conflictset Rule fired

Fig 6.3 The 8-puzzle as a production system.

Production set:

Condition Action

goal state in working memory > halt
blank is not on the left edge > move the blank left

blank is not on the top edge > move the blank up
blank is not on the right edge > move the blank right
blank is not on the bottomedge — move the blank down

Working memory is the present board state and goal state.

Control regime:

1. Try each production in order.
2. Do not allow loops.
. Stop when goal is found.

Fig 6.4 The 8-puzzle searched by a production system with loop detection and
depth-bound , from Nilsson (1971).

B EINEl| HEE K EE BB ENE BEE B EE

[2]]
[6]4] (2lifalfr]i]a | afaliifafmfi{afa]1{4]s i 6]
L7 5] EIEE]| N A Y Y E Y

[a]a]Bls]ela | e]a]la] oMl o] e[|2 a]a|[2]ala]l2]a]a]la]a]Mla]]a][2]a]a][a]a]a]l1] a]a] 1] o] 4]
l2[elalla]Plallslalallalalsllalalollalals]le]7{allaa]a]lalo]allallallz P allz{+]alla[Plallz]ald]
NEHENEHNEANEEREANENNOEREN EEE EAE AN REN RRE NEE

Fig 6.5 Legal moves of a chess knight.

Fig 6.6 a3 x 3 chessboard with move rules for the simplified knight tour
problem.

move(1,8)
move(1,6)
move(2,9)
move(2,7)
move(3,4)

move(3,8)

move(4,9)

move(4,3)

10

knight on square 1
knight on square 1
knight on square 2
knight on square 2
knight on square 3
knight on square 3
knight on square 4
knight on square 4
knight on square 6
knight on square 6
knight on square 7
knight on square 7
knight on square 8
knight on square 8

knight on square 9

knight on square 9

Table 6.1 Production rules for the 3 x 3 knight problem.

ACTION

move knight to square 8
move knight to square 6
move knight to square 9
move knight to square 7
move knight to square 4
move knight to square 8
move knight to square 9
move knight to square 3
move knight to square 1
move knight to square 7
move knight to square 2
move knight to square 6
move knight to square 3
move knight to square 1

move knight to square 2

move knight to square 4

Fig6.7 A production system solution to the 3 x 3 knight’s tour problem.

lteration # Working memory Conflict set | Fire rule
I (rule #'s)
Current square | Goal square

12

Fig 6.8 The recursive path algorithm as production system.

RHecursive call to path(X,Y) causes iteration.

Match move(X,Z)
Try to unify working against
memaory with productions.
path(X.X).

Productlons

Working memory move(1.8).
move(1,6).

path(X,Y) move(2,7).
move(2,9).

Set Xequalto Z in
working memaory .
(i.e., call path(Z,Y)). move (9,2).

Conflict Resolutlon:

Use first match that does
not lead to a loop.

Al CLEASS NOTLES 46, JORIN SillE] 2010

Fig 6.9 Data-driven search in a production system.

Production set: Trace of execution:

» goal

:: S lteration # | Working memory | Conflict set| Rule fired

* q

1.
2.
3.
4,
5.
6.

Space searched by execution:

start

/q}\ Direction
v r q

of search

14

Fig 6.10 Goal-driven search in a production system.

Production set: Trace of execution:
— goal

1,2,3,4,56

1,2,3,4,56

Direction
of search

Fig 6.11 Bidirectional search missing in both directions, resulting in excessive
search.

States examined by
forward search

States examined by
backward search

16

Fig 6.12 Bidirectional search meeting in the middle, eliminating much of the space

examined by unidirectional search.

forward search only

" ~ States examined by

States examined by
combination of
forward and
backward search

AL

Major advantages of production systems for artificial intelligence

Separation of Knowledge and Control

A Natural Mapping onto State Space Search
Modularity of Production Rules
Pattern-Directed Control

Opportunities for Heuristic Control of Search
Tracing and Explanation

Language Independence

A Plausible Model of Human Problem-Solving

18

Fig 6.13 Blackboard architecture

Global
blackboard

- . A

i)

