3.0
3.1
3.2

Structures and Strategies For Space
State Search

Introduction 3.3 Using Space State to Represent
Reasoning with the Predicate
Graph Theory Calculus

Strategies for Space State Search

Al Classnotes #4, John Shieh, 2011 1

Nodes = {a,b,c.d,e}
Arcs = {(a,b),(a,d),(b,c),(c,b),(c,d),(d,a),(d,e),(e,c),(e,d)}

In the state space representation

* nodes -- states representing partial problem
solutions

e arcs -- steps in a problem-solving process

» solution -- a goal state or a path from the start state
to a goal state

By representing a problem as a state space graph, we
can use graph theory to analyze the structure and
complexity of the problem and the search
algorithms.

Al Classnotes #4, John Shieh, 2011 6

The goal states are described by

» a measurable property of the states, or

* a property of the path developed in the
search.

Al Classnotes #4, John Shieh, 2011

DEFINITION

GRAPH
A graph consists of:
A set of nodes Ny, Ny, Na, ..., N, ..., which need not be finite.
A set of arcs that connect pairs of nodes.

Arcs are ordered pairs of nodes; i.e., the arc (Ns, N,) connects node N; to node
N, This indicates a direct connection from node N, to N, but not from N, to N,
unless (Ny, Na) 1s also an arc, and then the arc joining Ny and N, 1s undirected.

If a directed arc connects N, and N,, then N; is called the parent of N and N,, the
child of N;. If the graph also contains an arc (N;, N}, then N, and N, are called
siblings.

A rooted graph has a unique node Ng from which all paths in the graph originate.
That is, the root has no parent in the graph.

A tip or leaf node is a node that has no children.

An ordered sequence of nodes [Ny, Ny, Ng, ..., N.J. where each pair N, , N, in the
sequence represents an arc, r.e., (N;, Ni;). 1s called a path of length n— 1.

On a path in a rooted graph. a node is said to be an ancesior of all nodes
positioned after it (to its right) as well as a descendant of all nodes before it.

A path that contains any node more than ence (some N; in the definition of path
above is repeated) is said to contain a cvele or loop.

A tree 1s a graph in which there is a unique path between every pair of nodes.
{The paths in a tree, therefore, contain no cycles.)

The edges in a rooted tree are directed away from the root. Each node in a rooted
tree has a unique parent.

Two nodes are said to be connected if a path exists that includes them both.

To design a search algorithm, we
must consider

* |s it guaranteed to find a solution?

« Is it guaranteed to find an optimal solution?
« What Is its complexity?

* Whether the complexity can be reduced?

Search algorithms must detect and eliminate
loops from potential solution paths.

Al Classnotes #4, John Shieh, 2011

Strateglies for state space search

By the search directions:
— data-driven search (forward chaining)
— goal-driven search (backward chaining)
— bidirectional search

» By whether using domain-specific
Information:
— Blind search methods
— Heuristic search

Al Classnotes #4, John Shieh, 2011

10

DEFINITION
STATE SPACE SEARCH
A state space 1s represented by a four-tuple [N,A,S,GD], where:

N is the set of nodes or states of the graph. These correspond to the states in a
problem-solving process.

A is the set of arcs (or links) between nodes. These correspond to the steps in a
problem-solving process.

S, a nonemptv subset of N, contains the start state(s) of the problem.

GD. a nonempty subset of N, contains the goal state(s) of the problem. The states
in GD are described using either:

l. A measurable property of the states encountered in the search.
2. A property of the path developed in the search, for example, the
transition costs for the arcs of the path.

A solution path is a path through this graph from a node in S to a node in GD.

Ae

Path: Path: Path:
ABCDEA ABCEDA ABDCEA

Cost: Cost: Cost:
375 425 475

Direction of
reasoning

 Data-driven and goal-driven searches search
the same state space graph; but, the order
and actual number of state searched can be
differ.

» The preferred strategy Is determined by the
properties of the problem itself:

— the complexity of the rules used for changing
states

— the shape of the state space
— the nature and availability of the data

Al Classnotes #4, John Shieh, 2011 18

» Backtracking is a technique for systematically
trying all different paths through a state space

— For a data-driven search, it begins at the start state and
pursues a path until it reaches either a goal or a "dead
end".

o If it finds a goal, it quits and returns the solution path.

 Otherwise, it "backtracks" to the most recent node on the path
having unexamined siblings and continues down one of these
branches.

— For a goal-driven search, it takes a goal be the root and
evaluates descendants back in an attempt to find a start
state.

— The depth-first and breadth-first searches exploit the
Ideas used in backtrack.

Al Classnotes #4, John Shieh, 2011 19

function backtrack;

begin
SL :=[Start]; NSL :=[Start]; DE :=[]; CS := Start; % initialize:
while NSL =[] do % while there are states to be tried
begin
if CS = goal (or meets goal description)
then return SL; % on success, return list of states in path.
if CS has no children (excluding nodes already on DE, SL, and NSL)
then begin
while SL is not empty and CS = the first element of SL do
begin
add CS to DE; % record state as dead end
remove first element from SL; %backtrack
remove first element from NSL;
CS := first element of NSL;
end
add CS to SL;
end
else begin
place children of CS (except nodes already on DE, SL, or NSL) on NSL;
CS :=first element of NSL;
add CS to SL
end
end;
return FAIL;
end.

[B Al
[E B A]
[HE B A]
[l EBA]
[F B A]
[JF B A]
[C A]
[G CA]

[A]

[BCDA]
[EFBCDA]
[HIEFBCDA]
IEFBCDA]
[FBCDA]

[JFBCDA]

[C D A]

[GCDA]

DE

[]

[]

[]

[]

[H]

[E I H]

[E 1 H]
[BFJEIH]

[BFJEIH]

function breadth_first_search;

begin
open := [Start];
closed :=[];
while open =[] do
begin
remove leftmost state from open, call it X;
if X is a goal then return SUCCESS

else begin
generate children of X;
put X on closed;
discard children of X if already on open or closed;
put remaining children on right end of open

end

end
return FAIL
end.

% initialize

% states remain

% goal found

% loop check
% queue

% no states left

open = [A]; closed =[]

open = [B,C,D]; closed = [A]

open = [C,D,E,F]; closed = [B,A]

open = [D,E,F,G,H]; closed = [C,B,A]

open = [E,F,G,H,l,J]; closed = [D,C,B,A]

open = [F,G,H,l,J,K,L]; closed = [E,D,C,B,A]

open = [G,H,l,J,K,L,M] (as L is already on open); closed = [F,E,D,C,B,A]
open = [H,l,J,K,L,M,N]; closed = [G,F,E,D,C,B,A]

and so on until either U 1s found or o

l.
2.
3.
4.
5.
6.
7.
8.
9.

open = [(D,A), (E,B), (F.B), (G,C), (H,C)]; closed = [(C,A), (B.A), (A,nil)]

A

AN

AN I\If\;_

begin
open := [Start];
closed :=[];
while open =[] do
begin
remove leftmost state from open, call it X;
if X is a goal then return SUCCESS
else begin
generate children of X;
put X on closed;
discard children of X if already on open or closed;
put remaining children on left end of open
end
end;
return FAIL
end.

% initialize

% states remain

% goal found

% loop check
% stack

% no states left

open = [A]; closed =[]

open = [B,C,D]; closed = [A]

open = [E,F,C,D]; closed = [B,A]

open = [K,L,F,C,D]; closed = [E,B,A]

open = [S,L,F,C,D]; closed = [K,E,B,A]

open = [L,F,C,D]; closed = [S,K,E,B,A]

open = [T,F,C,D]; closed = [L,S,K,E,B,A]

open = [F,C,D]; closed =[T,L,S,K,E,B,A]

open = [M,C,D], as L is already on closed; closed = [F,T,L,S,K,E,B,A]
open = [C,D]; closed = [M,F,T,L,S,K,E,B,A]
open = [G,H,D]; closed = [C,M,F,T,L,S,K,E,B,A]

.
2.
3.
4.
5.
6.
7.
8.
9.
0.
l.

1
1

2

a
&

Tla[4(| 7547

112(2
=) 4
71&[5

21afafle

7 e[l

4
.

4

4171

8
1]4{3f[1]4]|5

218faflz|a)a

i

47

z[=s[l

4|12

A

z[s[l

24 2 Ek P'.?\

5

Bl4ff1(|8

&

1]2(2f2)43

"

SNTIE[S)7]6|S|[T|8)5)|7

7

N HE

af[z|e|2

1\ 28 29 30 31

B zlalz[z =Tez]e]=][z]e]2][z]c]z]e[= e] 1]=

2[4 7]1]4

BRI

&

=
2

Glal4|le|al4|(6[d]3)|6]4[5[[e|T|4+||6[T[42)1]4]2

1 z[s |0z sz s 0]z s 0 I sl s 7 el sl el sl 1]5]] s I

Bl&6|3
4

sl
ARAIE

1{7[s

=
2

%
AN
A
™~
%
o
RN

* Besides the names of states, other
Information may be stored in OPEN and
CLOSE lists

— In breadth-first search, if the path Is required
for a solution, the ancestor information needs to
be stored with each state.

— In depth-first search, if path length matters in a
problem solver, each state should be stored as a
triple (state, parent, length-of-path).

Al Classnotes #4, John Shieh, 2011 32

The choice of depth-first or breadth-first
search depends on the problem

to a goal
ne branching of the state space

° 1
° 1
° 1

ne available time anc

ne average length of

the importance of finding the optimal path

Space resources

paths to a goal node

Al Classnotes #4, John Shieh, 2011 33

A trade-off —
Depth-first search with a depth bound

The depth bound forces a failure on a search path
once It gets below a certain level. This causes a
breadth like sweep of the space at that depth level.

It is preferred when time constraints exist or a
solution is known within a certain depth.

It Is guaranteed to find a shortest path to a goal.

Depth-first iterative deepening (Korf 1987) --
depth bound increases one at each iteration

Al Classnotes #4, John Shieh, 2011 34

 For all uniformed search algorithms, the
worst-case time complexity Is exponential.

Al Classnotes #4, John Shieh, 2011

35

