
AI Classnotes #4, John Shieh, 2011 1

Structures and Strategies For Space 

State Search

3.0 Introduction

3.1 Graph Theory

3.2 Strategies for Space State Search

3.3 Using Space State to Represent 

Reasoning with the Predicate 

Calculus



AI Classnotes #4, John Shieh, 2011 2

Figure 3.1: The city of Königsberg.



AI Classnotes #4, John Shieh, 2011 3

Figure 3.2: Graph of the Königsberg bridge system.



AI Classnotes #4, John Shieh, 2011 4

Figure 3.3: A labeled directed graph.



AI Classnotes #4, John Shieh, 2011 5

Figure 3.4: A rooted tree, exemplifying family relationships.



AI Classnotes #4, John Shieh, 2011 6

In the state space representation

• nodes -- states representing partial problem 
solutions 

• arcs -- steps in a problem-solving process 

• solution -- a goal state or a path from the start state 
to a goal state

By representing a problem as a state space graph, we 
can use graph theory to analyze the structure and 
complexity of the problem and the search 
algorithms. 



AI Classnotes #4, John Shieh, 2011 7

The goal states are described by

• a measurable property of the states, or

• a property of the path developed in the 

search. 



AI Classnotes #4, John Shieh, 2011 8



AI Classnotes #4, John Shieh, 2011 9

To design a search algorithm, we 

must consider

• Is it guaranteed to find a solution? 

• Is it guaranteed to find an optimal solution? 

• What is its complexity? 

• Whether the complexity can be reduced?

Search algorithms must detect and eliminate 

loops from potential solution paths. 



AI Classnotes #4, John Shieh, 2011 10

Strategies for state space search

• By the search directions:

– data-driven search (forward chaining) 

– goal-driven search (backward chaining)

– bidirectional search 

• By whether using domain-specific 

information:

– Blind search methods

– Heuristic search



AI Classnotes #4, John Shieh, 2011 11



AI Classnotes #4, John Shieh, 2011 12

Fig 3.8 State space of the 8-puzzle generated by “move blank” operations



AI Classnotes #4, John Shieh, 2011 13

Fig 3.9 An instance of the travelling salesperson problem



AI Classnotes #4, John Shieh, 2011 14

Fig 3.10 Search for the travelling salesperson problem. Each arc is marked with 

the total weight of all paths from the start node (A) to its endpoint.



AI Classnotes #4, John Shieh, 2011 15

Fig 3.11 An instance of the travelling salesperson problem with the nearest 

neighbour path in bold. Note this path (A, E, D, B, C, A), at a cost of 550, 

is not the shortest path. The comparatively high cost of arc (C, A) 

defeated the heuristic.



AI Classnotes #4, John Shieh, 2011 16

Fig 3.12 State space in which goal-directed search effectively prunes 

extraneous search paths.



AI Classnotes #4, John Shieh, 2011 17

Fig 3.13 State space in which data-directed search prunes irrelevant data and 

their consequents and determines one of a number of possible goals.



AI Classnotes #4, John Shieh, 2011 18

• Data-driven and goal-driven searches search 

the same state space graph; but, the order 

and actual number of state searched can be 

differ.

• The preferred strategy is determined by the 

properties of the problem itself: 

– the complexity of the rules used for changing 

states

– the shape of the state space

– the nature and availability of the data



AI Classnotes #4, John Shieh, 2011 19

• Backtracking is a technique for systematically 

trying all different paths through a state space

– For a data-driven search, it begins at the start state and 

pursues a path until it reaches either a goal or a "dead 

end". 

• If it finds a goal, it quits and returns the solution path. 

• Otherwise, it "backtracks" to the most recent node on the path 

having unexamined siblings and continues down one of these 

branches.

– For a goal-driven search, it takes a goal be the root and 

evaluates descendants back in an attempt to find a start 

state.

– The depth-first and breadth-first searches exploit the 

ideas used in backtrack. 



AI Classnotes #4, John Shieh, 2011 20

Function backtrack algorithm



AI Classnotes #4, John Shieh, 2011 21

A trace of backtrack on the graph of figure 3.12



AI Classnotes #4, John Shieh, 2011 22

Fig 3.14 Backtracking search of a hypothetical state space space.



AI Classnotes #4, John Shieh, 2011 23

Fig 3.15 Graph for breadth - and depth - first search examples.



AI Classnotes #4, John Shieh, 2011 24

Function breadth_first search algorithm



AI Classnotes #4, John Shieh, 2011 25

A trace of breadth_first_search on the graph of Figure 3.13



AI Classnotes #4, John Shieh, 2011 26

Fig 3.16 Graph of Fig 3.15 at iteration 6 of breadth-first search. States on 

open and closed are highlighted.



AI Classnotes #4, John Shieh, 2011 27

Function depth_first_search algorithm



AI Classnotes #4, John Shieh, 2011 28

A trace of depth_first_search on the graph of Figure 3.13



AI Classnotes #4, John Shieh, 2011 29

Fig 3.17 Breadth-first search of the 8-puzzle, showing order in which states 

were removed from open.



AI Classnotes #4, John Shieh, 2011 30

Fig 3.18 Graph of fig 3.15 at iteration 6 of depth-first search. States on

open and closed are highlighted.



AI Classnotes #4, John Shieh, 2011 31

Fig 3.19 Depth-first search of the 8-puzzle with a depth bound of 5.



AI Classnotes #4, John Shieh, 2011 32

• Besides the names of states, other 

information may be stored in OPEN and 

CLOSE lists

– In breadth-first search, if the path is required 

for a solution, the ancestor information needs to 

be stored with each state. 

– In depth-first search, if path length matters in a 

problem solver, each state should be stored as a 

triple (state, parent, length-of-path). 



AI Classnotes #4, John Shieh, 2011 33

The choice of depth-first or breadth-first 

search depends on the problem

• the importance of finding the optimal path 

to a goal

• the branching of the state space

• the available time and space resources

• the average length of paths to a goal node 



AI Classnotes #4, John Shieh, 2011 34

A trade-off –

Depth-first search with a depth bound

• The depth bound forces a failure on a search path 

once it gets below a certain level. This causes a 

breadth like sweep of the space at that depth level.

• It is preferred when time constraints exist or a 

solution is known within a certain depth.

• It is guaranteed to find a shortest path to a goal.

• Depth-first iterative deepening (Korf 1987) --

depth bound increases one at each iteration 



AI Classnotes #4, John Shieh, 2011 35

• For all uniformed search algorithms, the 

worst-case time complexity is exponential. 


