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Structures and Strategies For Space 

State Search

3.0 Introduction

3.1 Graph Theory

3.2 Strategies for Space State Search

3.3 Using Space State to Represent 

Reasoning with the Predicate 

Calculus
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Figure 3.1: The city of Königsberg.
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Figure 3.2: Graph of the Königsberg bridge system.
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Figure 3.3: A labeled directed graph.
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Figure 3.4: A rooted tree, exemplifying family relationships.
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In the state space representation

• nodes -- states representing partial problem 
solutions 

• arcs -- steps in a problem-solving process 

• solution -- a goal state or a path from the start state 
to a goal state

By representing a problem as a state space graph, we 
can use graph theory to analyze the structure and 
complexity of the problem and the search 
algorithms. 
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The goal states are described by

• a measurable property of the states, or

• a property of the path developed in the 

search. 
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To design a search algorithm, we 

must consider

• Is it guaranteed to find a solution? 

• Is it guaranteed to find an optimal solution? 

• What is its complexity? 

• Whether the complexity can be reduced?

Search algorithms must detect and eliminate 

loops from potential solution paths. 



AI Classnotes #4, John Shieh, 2011 10

Strategies for state space search

• By the search directions:

– data-driven search (forward chaining) 

– goal-driven search (backward chaining)

– bidirectional search 

• By whether using domain-specific 

information:

– Blind search methods

– Heuristic search
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Fig 3.8 State space of the 8-puzzle generated by “move blank” operations
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Fig 3.9 An instance of the travelling salesperson problem
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Fig 3.10 Search for the travelling salesperson problem. Each arc is marked with 

the total weight of all paths from the start node (A) to its endpoint.
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Fig 3.11 An instance of the travelling salesperson problem with the nearest 

neighbour path in bold. Note this path (A, E, D, B, C, A), at a cost of 550, 

is not the shortest path. The comparatively high cost of arc (C, A) 

defeated the heuristic.
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Fig 3.12 State space in which goal-directed search effectively prunes 

extraneous search paths.
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Fig 3.13 State space in which data-directed search prunes irrelevant data and 

their consequents and determines one of a number of possible goals.
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• Data-driven and goal-driven searches search 

the same state space graph; but, the order 

and actual number of state searched can be 

differ.

• The preferred strategy is determined by the 

properties of the problem itself: 

– the complexity of the rules used for changing 

states

– the shape of the state space

– the nature and availability of the data
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• Backtracking is a technique for systematically 

trying all different paths through a state space

– For a data-driven search, it begins at the start state and 

pursues a path until it reaches either a goal or a "dead 

end". 

• If it finds a goal, it quits and returns the solution path. 

• Otherwise, it "backtracks" to the most recent node on the path 

having unexamined siblings and continues down one of these 

branches.

– For a goal-driven search, it takes a goal be the root and 

evaluates descendants back in an attempt to find a start 

state.

– The depth-first and breadth-first searches exploit the 

ideas used in backtrack. 
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Function backtrack algorithm
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A trace of backtrack on the graph of figure 3.12
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Fig 3.14 Backtracking search of a hypothetical state space space.
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Fig 3.15 Graph for breadth - and depth - first search examples.
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Function breadth_first search algorithm
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A trace of breadth_first_search on the graph of Figure 3.13
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Fig 3.16 Graph of Fig 3.15 at iteration 6 of breadth-first search. States on 

open and closed are highlighted.
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Function depth_first_search algorithm
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A trace of depth_first_search on the graph of Figure 3.13
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Fig 3.17 Breadth-first search of the 8-puzzle, showing order in which states 

were removed from open.
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Fig 3.18 Graph of fig 3.15 at iteration 6 of depth-first search. States on

open and closed are highlighted.
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Fig 3.19 Depth-first search of the 8-puzzle with a depth bound of 5.
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• Besides the names of states, other 

information may be stored in OPEN and 

CLOSE lists

– In breadth-first search, if the path is required 

for a solution, the ancestor information needs to 

be stored with each state. 

– In depth-first search, if path length matters in a 

problem solver, each state should be stored as a 

triple (state, parent, length-of-path). 
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The choice of depth-first or breadth-first 

search depends on the problem

• the importance of finding the optimal path 

to a goal

• the branching of the state space

• the available time and space resources

• the average length of paths to a goal node 
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A trade-off –

Depth-first search with a depth bound

• The depth bound forces a failure on a search path 

once it gets below a certain level. This causes a 

breadth like sweep of the space at that depth level.

• It is preferred when time constraints exist or a 

solution is known within a certain depth.

• It is guaranteed to find a shortest path to a goal.

• Depth-first iterative deepening (Korf 1987) --

depth bound increases one at each iteration 
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• For all uniformed search algorithms, the 

worst-case time complexity is exponential. 


