Fig 13.1a Transformation rules for logic problems, from Newell and Simon
(1961).

R1. A-B =B A Applies to main
AvB—sBvA expression only.

R2 ASDB-Bo-A Applies to main

expression only.

R3. A-Aes A A and B are two main
AvA A expressions.

R4, A-(B-C)«iA-B)-C Aand A = B are two main
Avi(BvCl=i{AvB)vC expressions.

R 5. AvEB e ~(~A-~B) Ao Band B = C are two

main expressions.

Ra. A-DBe~AVE

R7. A-BvwCler (A Biv (A C)
AviB-Cle(AvB)-(AvC)

R&. A-B—A Applies to main
A-B—B expression only.
Ra. A—AvX Applies to main

expression only.

R 10. "5‘}_>A-B A and B are two main
B EXrEssions,

R11 Aand A = B are two main
A . .
ADB expressions.

R12. ADB}—}A:"C A:I:-BandB.:-Caretwc
B=C Main expressions,

Al Class Notes #3, 2012, John Shieh 1

Fig 13.1b A proof of a theorem in propositional calculus, from Newell and
Simon (1961).

1. (R=~P)-(~R=Q) ~(~Q-F)

2. (~Rwv~P)-(RvQ) Rule 6 applied to left and right of 1.
3 (~Rwv~P)-(~R=20Q) | Rule & applied to left of 1.
4. Ro~P Rule & applied to 1.

5. ~Rwv~P Rule 6 applied to 4.

6. ~R=2Q Rule & applied to 1.

7. RvQ Rule 6 applied to 6.

B. (~Rwv~P)-(Rv(Q) Rule I apphed to 5. and 7.
9. Po~R Rule 2 applied to 4.

1., | ~QoR Rule 2 applied to 6.

1. |[P2Q Rule 2 applied to 6. and 9.
12 | ~PwQ Rule 6 applied to 11.

13, | ~(P.-~Q) Rule 5 applied to 12.

4 | ~(~Q-P) Rule [applied to 13. QED.

Al Class Notes #3, 2012, John Shieh

Fig 13.2 Flow chart and difference reduction table for the General Problem
Solver, from Newell and Simon (1963Db).

Goal: Transform objact & into object B

Match A 1o B D Subgoal: A Subgoal: SUCCESS oo
to find differance D Raduce D | Transform A’ ino 2 = SUCCass
lnﬂne lmil fail
Sucoess Fail Fail
Goal: Raducs difference D betwaan abject A and abject B
Search for - ; . Subgoal: .
operator © relevant Q, TEE}IQ:;I‘T'I?F?DS;MB | VeS| applyQto A | wSuccess
1o reducing D P ¥l producing A
rone T no fail
Fail -
Goal: Apply oparator G 1o objact A
Matzh condition - . - .
dowan (O Sbod LA sbgont LA Suocses
find differance D Y
lnﬂne lmil lfﬂil
A" Fail Fail
Produce result | ——s=Success

Faor the logic task of the text:
Faazibility test { praliminary)
Is tha maan connective the samea (2.q., A+B — B fails against P.0)?
|5 the opsrator too big (&.q., (AvB)+Ay C)— A B+C) fails against P+Q)7
I3 the opsrator too sasy (8.9, A—A-A applies to anything)?
Ara the side conditions satisfied (e.g., R2 appies only to main exprassions)?
Table of connections

A1 A2 A2 A4 RS RE R7Y A8 R9A10A11A1Z

Add terms X W X[X[X[X
Delate tems X PRI XX
Change connactiva XXX

Charge sian K

Charge lower sign x x| &

Changea grouping x X

Change position A

X maans some vanant of the rula is relevant. GPS will pick the appropriate variant.

Al Class Notes #3, 2012, John Shieh 3

Resolution refutation proofs involve the following steps:

. Put the premises or axioms into clause form (13.2.2).
2. Add the negation of what is to be proved, in clause form, to the set of axioms.

3. Resolve these clauses together, producing new clauses that logically follow from
them (13.2.3).

4. Produce a contradiction by generating the empty clause.

5. The substitutions used to produce the empty clause are those under which the
opposite of the negated goal is true (13.2.4).

Al Class Notes #3, 2012, John Shieh 4

Clausal Form

 Before resolution can be applied, the WFF must
be in a clausal form. The basic idea of clausal
form Is to express WFFs In a standard form that
uses only the V, and possibly -.

 This conversion Is necessary because resolution is
an operation on pairs of disjuncts which produces
new disjuncts, which simplifies the WFF.

 The full clausal form can express any predicate
logic formula.

Al Class Notes #3, 2012, John Shieh

Algorithm to convert to clausal form (1)

1. Eliminate conditionals —, using the equivalence

P— Q =-PV Q

2. Eliminate negations or reduce the scope of negation to
one atom.
€.g., -—P=P

(P AQ) = =PV -Q
7 (YX) P(X) = (@X) ~P(X)
3. Standardize variables within a WFF so that the bound or
dummy variables of each quantifier have unique names.

e.g.,

Al Class Notes #3, 2012, John Shieh

Algorithm to convert to clausal form (2)

4. Eliminate existential quantifiers, by using Skolem functions, named
after the Norwegian logician Thoralf Skolem.

e.g., (HX) L(X) is replaced by L(a)
(HX) (HY) L(X, Y) is replaced by
(dX) L(X, (X))
5. Convert the WFF to prenex form which is a sequence of quantifiers
followed by a matrix.

6. Convert the matrix to conjunctive normal form, which is a conjunctive
of clauses. Each clause is a disjunction.

7. Drop the universal quantifiers.
8. Eliminate the conjunctive signs by writing the WFF as a set of clauses

9. Rename variables in clauses, if necessary, so that the same variable
name is only used in one clause.

Al Class Notes #3, 2012, John Shieh

Fig 13.3 Resolution proof for the “dead dog” problem.

= dog(X) v.animaI(K] - animal(‘:i’] v die(Y)
{Yix}
dng{f.idn} = dog(Y) v die(Y)
{fido/Y} h
die.(fidnj - die(fido)
[]

Al Class Notes #3, 2012, John Shieh

Fig 13.4 One resolution proof for an example from the propositional calculus.

- a av-bwv-ac
-bwv=c b

=2 Gx_.r—q-dx_.rﬂe

[]

Al Class Notes #3, 2012, John Shieh 9

Anyone passing his history exams and winning the lottery is happy.
Vv X (pass (X,history) A win (X,lottery) — happy (X))
Anyone who studies or 1s lucky can pass all his exams.
vV XYY (study (X) v lucky (X) — pass (X,Y))
John did not study but he 1s lucky.
— study (john) A lucky (john)
Anyone who is lucky wins the lottery.
Vv X (lucky (X) — win (X,lottery))
These four predicate statements are now changed to clause form (Section 12.2.2):

1. — pass (X, history) v — win (X, lottery) v happy (X)
— study (Y) v pass (Y, Z)

— lucky (W) v pass (W, V)

— study (john)

lucky (john)

6. — lucky (U) v win (U, lottery)

o ~ WD

Into these clauses is entered, in clause form, the negation of the conclusion:

7. — happy (john}i Class Notes #3, 2012, John Shieh 10

Fig 13.5 One refutation for the “happy student” problem.

- pass(X, history) v - win(X, lottery) v happy(X) = lucky(U) v win({U, lottery)

- pass(U, history) « happy(U) v = lucky(U - happy(john)
Johw
lucky(john) - pass(john, history) v = lucky(john)
- pass{john, history) - lucky(V) v pass(V, W)
{john/V/, hstow\/
- lucky(john) lucky(john)

\/

()
Al Class Notes #3, 2012, John Shieh [] 11

All people who are not poor and are smart are happy. Those people who read are not stupid.
John can read and is wealthy. Happy people have exciting lives. Can anyone be found with an

exciting life?
We assume VX (smart (X) = — stupid (X)) and VY (wealthy (Y) = - poor (Y)), and get:

VX (= poor (X) A smart (X) — happy (X))
VY (read (Y) — smart (Y))
read (john) A — poor (john)
vVZ (happy (Z) — exciting (Z))
The negation of the conclusion is:
— 3 W (exciting (W))

These predicate calculus expressions for the “exciting life” problem are transformed into
the following clauses:

poor (X) v — smart (X) v happy (X)
— read (Y) v smart (Y)

read (john)

— poor (john)

— happy (Z) v exciting (Z)

— exciting (W
g (W) Al Class Notes #3, 2012, John Shieh 12

Fig 13.6 Resolution proof for the “exciting life” problem.

- exciting(W) - happy(Z) v exciting(Z)
zwy
- happy(Z) poor(X) v = smart(X) v happy(X)
X/}
poor(X) v = smart(X) - read(Y) v smart()
IYrX}
- poor(john) poor(Y) v - read(Y)
{john/Y} |
= read(john) read(john)
.

]
Al Class Notes #3, 2012, John Shieh 13

Fig 13.8 Complete state space for the “exciting life” problem generated by

read(john) - exciting (W)

i

breadth-first search (to two levels).

poor(X) v = smart{X) - read(’Y) - poor(john)
v smart(Y) y

v happy(X)
A —
! . & | - ?-’/-__7 -r.r_-

e ;
S ~ f .
o - - e
" /// .-"/F.-.-"'--. |I h o
S A
[z-"f-"':'--. y
- ~ | -"--.____-Mz.-"'/ ';-‘ — f
- | il ' —_
R e .-f"c(I T IlI J
e, = | |
/= happy(Z)
A

’/"'--..____.. I e e —
ol poor(X) v = sman{}(}\\\

~ f
. - .J/ I|III

L ,}I/
poor{X) v = read(X) yd II - smart{john) “"':?,:.____%

- | v happy(jehn) ’_, { _._s'*""----..H__vsmiting{}{} .

| --'\-__":/i‘ﬁ“’-\.":_ \\ I,'//,x I.'.I ~

-, S = o |

} — .I_."I /7{."‘-.'\-___.\\ .-II

v happy(X) y.

A T | ‘-'W-.--- _.,.:-' — .I

_ f;;,-'__'_.'- . _;;_ S

I L1 _‘ /) B o - ,K-__/ T— _--__'q‘:: :- __J‘,:E :__.-]]

k -.’_’:__..--"- |r.-" "'-._r_.-" :_./ — ___._.--""- -""'--.___,/ o __I-'I -\-"'__‘:“;’:\// T --.'I

- read(john) v poor{X) - read(john) - smart{john) pooriZ) happy(jchn) poorijohn) poor(X) - smart(john)
v-readi{X) vhappyljohn) v exciting(john) v -read(Z) v happy(john) v - smart{X)

happy{john)
v exciting ()

/
%,

Al Class Notes #3, 2012, John Shieh

v exciting(john)

Fig 13.7 another resolution refutation for the example of Fig 13.6.

- happy(Z) v exciting(Z) poor(X) v = smart(X) « happy(X)

{Zf}:-t}' ~ |
= read(Y) v smart(Y) exciting(Z) v”[:;uclrl{Z} v = smart(Z)
{‘A’Z} |
= read(Y) v ex{.:iting(‘r'] v poor(Y) - poor(john)
{jclh.r-ﬁ‘.r}»' : |
read(john) = read(john) v e;ccﬁing{jnh n)
{ __
ex.ci.ting{juhnj = excitihg{W]
{Jahn@}"“---.._ .”
[]

Al Class Notes #3, 2012, John Shieh 15

Fig 13.9 Using the unit preference strategy on the “exciting life” problem.

= exciting(W) - happy(Z) v exciting(Z)

zwy

- happy(Z) poor(X) v = smart(X) +v happy(X)

Xz}

= poor(john) poor(X) v = smart(X)

{iohn/X}

- smart(john) - read(Y) v smari(Y)
{iohnrY}

read(john) - read(john)

{}

[]
Al Class Notes #3, 2012, John Shieh

16

Fig 13.10 Unification substitutions of Fig 13.6 applied to the original query.
exciting(W)

{Z/W}) l
exciting(£)

{Xiz} l

exciting(X)
/X l
exciting(Y)
{lohn/Y} l
exciting(john)

3

exciting(john)
Al Class Notes #3, 2012, John Shieh 17

Fig 13.11 Answer extraction process on the “finding fido” problem.

at(fido, Z) - at(fido, Z) - at(john, X) v at(fido, X)
d
. /
e
{(X/Z} \ .
~
\j N~
at(fido, X) - at(john, X) at(john, library)
™, s
o
{library/X} N) 4
N
Y

at(fido, library)

Al Class Notes #3, 2012, John Shieh

Fig 13.12 Skolemization as part of the answer extraction process.

gp (john, V) - gp (john, V)

N

iohn/W. V/Z
{iohn/W, V/Z} N

Y .
gp (john, V)

",

{iohn/X, pa(X)/Y}

Y
gp (john, V)
{pa(john)/X, pa(X)/V}
Y

gp (john, pa(pa(john)))

Al Class Notes #3, 2012, John Shieh

= p(john, Y) v = p(Y,V)

= p(W,Y) v = p(Y,Z) v gp(W,Z)

A
-
-
-

-

p(X,pa(X))
\ ,
*,
™,
™,
"
= p(pa(john), V) p(X,pa(X))
\ p
\\ A
N, y g
x\ e

19

