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Abstract—A major drawback of most Head Mounted Dis-
plays (HMDs) used in immersive Virtual Reality (VR) is the
visual and social isolation of users from their real-world sur-
roundings while wearing these headsets. This partial isolation
of users from the real-world might hinder social interactions
with friends and family. To address this issue, we present a
new method to allow people wearing VR HMDs to use their
smartphones or tablets without removing their HMDs. To do
this, we augment the scene inside the VR HMD with a view
of the user’s device so that the user can interact with the
device without removing the headset. The idea involves the use
of additional cameras, such as the Leap Motion device or a
high-resolution RGB camera to capture the user’s real-world
surrounding and augment the virtual world with the content
displayed on the smartphone screen. This setup allows VR
users to have a window to their smartphone from within the
virtual world and afford all of the functionality provided by
their smartphones, with the potential to reduce undesirable
social isolation users may experience when using immersive
VR.

Keywords-Augmented Virtuality; Virtual Reality; Social Iso-
lation; Smartphone Detection; Head Mounted Displays; Smart-
phones; Logistic Regression; Linear Discriminant Analysis;
Quadratic Discriminant Analysis;

I. INTRODUCTION

Virtual Reality (VR) Head Mounted Displays (HMDs)
have become increasingly popular among a wider segment
of the population [1] thanks to the availability of low-cost
hardware and sophisticated game engine software. A major
part of the credit goes to products such as the Oculus Rift
[2], HTC Vive [3], Samsung Gear VR [4], PlayStation VR
[5], Google Cardboard [6] and similar technologies, which
have extended the accessibility of VR to a wide segment
of the population. These consumer devices provide a rich,
interactive and immersive VR environment by offering low-
cost, high-resolution stereoscopic images, wide field of view
and, in some cases, high graphics quality. In addition, the
use of Virtual Reality Head Mounted Displays (VR HMDs)
is increasingly being applied for gaming, immersive and
collaborative data visualization [7], training [8], and reha-
bilitation medicine [9]. Although VR HMDs are designed

to provide an immersive environment where users feel they
are part of the virtual environment, a major drawback
of most immersive VR HMDs is that users cannot see
and sometimes cannot hear their surrounding environment,
partially becoming isolated from the real world [10]. Even
small tasks like finding the keyboard or picking up a phone
call can become difficult while wearing a VR HMD [11], and
might lead to temporary isolation, where users are not able to
get in touch with their friends and family when immersed in
the VR space. One can argue that the mentioned difficulties
can be avoided by having the users remove their HMDs, but
such an interruption might have a negative effect on the VR
experience or its outcomes, which might not be warranted,
for instance, if a user just needs to check out a message or
talk on the phone.

In the current world of social networks, users have a
strong urge to be in touch with their friends and family
through social media. According to the statistics published
in [12], more than 2.3 billion people are active social media
users. Among them, 1.9 billion users engage with social
media using a mobile device. In the absence of inbuilt
communication software inside the VR, each time a user
needs to use the smartphone to get in touch with friends and
family or check for messages, the user needs to remove the
HMD which might deteriorate the VR experience. Through
Mixed and Augmented Reality, additional devices such as
an RGB camera attached to the HMD can be used as a
window to the real world. However, finding the balance of
Real and Virtual imagery that must be shown to the users
is still hard, and it is might be difficult to read and perceive
the text displayed on a smartphone or tablet’s when it is
captured through an RGB camera and rendered through a
commercial grade VR HMD.

To address the temporary visual isolation of the users from
the real world while wearing a VR HMD, we present a
method that enables users to interact with their smartphone
devices so that they can read messages, place calls, and use
other apps while still being immersed in the VR environ-
ment. Users will no longer have to remove their HMD’s



each time they need to use their smartphone. To provide a
window to the smartphone, our approach uses an infrared
(IR) camera such as the Leap Motion device [13]. The
images captured from the Leap Motion device are processed
to detect the presence of the smartphone in the real-world.
Once the smartphone is accurately detected in the real world,
the scene in the VR world is augmented with the view of
the user’s smartphone, therefore enabling the users to use
their smartphone without removing the headset.

The first step to augment the scene inside the VR HMD
with a view of the user’s device is to accurately detect the
edges of the smartphone in real-time. A smartphone is a
texture-less object, in the sense that it lacks any repeatable
or constant image patterns on its screen and/or surface, that
can be used by existing keypoint-based approaches to detect
and track it. As keypoint-based approaches like SIFT [14],
SURF [15] or ORB [16] could not be used, we decided to
explore edge-based object detection to detect the smartphone
in real-time and designed an algorithm using some basic im-
age processing. The designed algorithm could successfully
detect the smartphone in the Leap Motion images, but with
a cost of high number of incorrect detections (high false
positive rate). We then decided to explore the use of machine
learning approaches to improve the specificity of our system
while maintaining a high recall rate. In sum, we first
processed the images obtained from the Leap Motion device
using standard image processing techniques for smartphone
detection. Then, we identified and extracted several unique
features (attributes) from the processed image, and gave
these features to the statistical model to discriminate be-
tween correctly or incorrectly detected smartphone in the
image. Once the smartphone is detected, the VR scene is
augmented with the view of the user’s smartphone based on
the classifier’s output.

The paper is organized as follows: Section II summarizes
the previous work done in Augmented Virtuality, texture-
less object detection and tracking, and previous instances
of use of machine learning methods in image processing.
Section III describes system setup, devices used and ap-
plications required to make the system work. Section IV
describes the system design and implementation of image-
based smartphone detection system (IBSD) and smartphone
detection system using statistical classifiers (SDSC). Section
V discusses our achievement, presents results and describes
limitations of our system. Section VI lists future enhance-
ments and summarizes our findings.

II. BACKGROUND

A. Never Blind in VR: Augmented Virtuality to the rescue

While wearing an HMD, interacting with real world
objects is still a challenge, as users are partially isolated
from the outside environment. They cannot perceive most of
it because their sight is occluded by the HMD and sometimes
they cannot even hear their surrounding environment if

they are wearing headphones inside the VR. Under these
conditions, interacting with other people and finding objects
like desktops and peripherals or a cup of coffee is difficult
[11]. To address this, solutions usually involve the use
of ‘Augmented Virtuality’, where real world objects are
embedded in the virtual environment. These solutions embed
user’s hands and/or objects that are in close proximity of
user’s interaction space with the help of a head-mounted
RGB camera, a head-mounted RGBD camera, or external
depth sensing devices like Microsofts Kinect.

Among the early work that involved combination of real
and virtual world elements in a scene was the SIMNET
project [17]. The system developed there could overlay real-
world images onto a virtual world scene. With the help of
a head-mounted camera placed on an HMD, the proposed
system was able to provide a window to the outside world
from within the virtual environment. This enabled the users
to perceive real world objects within the virtual world. A
more recent solution that involved the use of ‘Augmented
Virtuality’ was presented in 2009 by Steinicke et al [18].
The solution presented was able to model a user’s hands
and body inside the virtual environment. It was achieved
with the help of a head-mounted RGB camera and chroma-
keying technique. In 2014, [19] demonstrated a system that
allows the users to see and use their hands while interacting
with virtual objects placed around the virtual environment.
The demonstrated system consists of an RGBD camera
that captures users hands in real-time and embeds them
in the virtual world. While in 2015, [11] presented a user
study to help identify challenges faced by the users of
HMD. The study used an external head-mounted camera
to embed peripheral devices like the keyboard in the virtual
environment to examine users ability to interact with real
world objects.

Other researchers have been able to address other aspects
of the isolation issue using Microsoft’s Kinect, a depth
sensing camera which can provide visual feedback of the
objects that surround the user. The Kinect allows room-
wide sensing capabilities, which makes it ideal for user
tracking and gesture identification. One such system was
presented by Dassault Systémes [20]. The system presented
was successfully able to embed 3D point clouds obtained
by the Kinect V2 in the user’s virtual space and display
elements of the real world that are in close proximity to
the user. Although the system was not portable, they were
able to display point clouds that represent people present
in the same room, allowing for people to see each other
in the virtual world and throw and catch virtual objects at
each other, partially addressing the social isolation issue.
Another research conducted by [11] that involved a study
of engagement dependent awareness of other people present
in the same room was presented in 2015. Similar to the
system presented by ‘Dassault Systémes’, the authors used
the Kinect to insert other people’s silhouettes whenever they
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Figure 1. System Setup: (a) Leap Motion device attached to Oculus Rift (b) Cubicle to test IBSD (c) VR application created in Unity

are within a close proximity to the user. In order to make it
engagement-dependent, the other people’s outline is initially
faded in the VR world and then if the user wishes to engage,
the users became visible in full color.

So far, most of the research done in this area has focused
on to make the user aware of other users present in close
proximity, and little research has been done to help the user
stay in touch with the part of the world which is not in
close physical proximity. The main motivation behind this
research is to allow people to stay in touch with others
and their digital life by allowing them to use their personal
computing and communication devices, such as smartphones
and tablets.

B. Texture-less object detection and tracking

Existing keypoint-based object detection and tracking
approaches like SIFT [14], SURF [15] or ORB [16], rely on
matching descriptor features like blobs, corners or patterns
in texture, but may not be effective in detecting featureless
objects [21], [22]. As a smartphone device is a texture-less
object, in the sense that it lacks any repeatable and constant
image patterns on its screen and/or surface, that can be
used to detect and track it using existing keypoint-based
techniques. As keypoint-based approaches like SIFT, SURF
or ORB could not be used, texture-less object detection
techniques were explored. Most of the state-of-the-art tech-
niques present in the area of texture-less detection use edge-
based template matching [21], [23]–[26]. Although, these
techniques perform better than keypoint-based technique
for texture-less object detection, they suffer from problems
related to occlusion, cluttering and scalability of template
library [22]. Also, there have been many instances where
efforts have been made to improve the search time required
for template based matching [23]–[25], while some other
researchers have been able to perform this in real-time [21],
[27]–[29]. In our case, as smartphone’s vary in different
sizes and aspect ratio, existing template-matching texture-
less object detection methods may require a large template
database. Ideally the template database would consist of
every possible 3D position of the smartphone as well as
each variation of aspect ratio, making it inefficient for real-

time tracking. In order to avoid an initial large template
database and real-time smartphone tracking, we decided to
make use of traditional edge based object detection method
as described in Section IV.

C. Machine learning methods in image processing and HCI

There are many instances of the use of machine learning
methods in image processing and human-computer inter-
action (HCI). Artificial Neural Networks (ANNs) and K-
Nearest Neighbors (K-NNs) were used to classify facial ex-
pression to help in assessing user’s feelings, characteristics,
and intentions [30]. In this work, Hai et al. were able to
achieve a classification precision of 92.38%. [31] made use
of ANNs and Support Vector Machines (SVMs) to develop
a hand recognition system. The system designed was able
to recognize seven different gestures with 99% recognition
accuracy. [32] used SVMs to automatically recognize human
postures with an accuracy of 99.14%, while [33] used fea-
tures extracted from images to train classifiers to categorize
personal photos into privacy classes.

Machine learning is also extensively used in medical
applications that involve processing of images captured
from various medical instruments to identify a disease.
For example, in [34], Moreira et al used LDA and SVM
classification models to identify and evaluate Lymphedema
impairments in Breast Cancer Patients. The researchers used
a Kinect to capture and extract features from the upper-limbs
motion of the body to identify lymphedema, which is caused
commonly by the removal or damage of the lymph nodes
in cancer patients, with a misclassification error of 19%. In
another instance, [35] applied SVMs to capture and extract
features from magnetic resonance images (MRIs) to identify
patients suffering from Schizophrenia with 83.33% accuracy.

III. SETUP

Our approach uses an additional camera such as the Leap
Motion [13], to provide a window to the real world inside
VR application. Leap Motion is attached to Oculus Rift DK2
device as shown in the Figure 1(a) using a Universal VR
Dev Mount [36]. The smartphone device used was a One
Plus One with 3 GB of RAM, Qualcomm Snapdragon 801



Quad-core processor, 5.5 inches of display and 1080 x 1920
pixels ( 401 PPI pixel density) screen resolution. We also
designed an Android App that will transfer the screenshots
and orientation data captured from the smartphone device
to the VR application. The Android App is designed to
act as a TCP/IP server and transfer screenshots as well as
smartphone’s orientation data to the VR application. The
VR application was designed using the Unity game engine.
Cubes of different colors were placed at random locations in
the VR space and a Unity Quad object, which changed shape
according to the detected smartphone, was used to display
the smartphone’s screenshots. The images captured from the
Leap Motion device were displayed in the background of
the VR space such that it would occupy the entire VR space
giving a perspective of a see-through window to the real-
world from the VR environment. The VR application also
acts as a TCP/IP client and connects to the Android app via
local LAN to receive screenshots and orientation data. Figure
1(c) shows the designed VR application. In addition, to test
the smartphone detection algorithm, we set up a cubicle as
shown in Figure 1(b) to avoid limited interference from other
objects surrounding the user [11].

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. Image-Based Smartphone Detector (IBSD)

Image from 
Leap Motion

Blur Filter

Thresholding

Blob Detection

Canny Edge 
Detector

Binary 
Image

Hough Line 
Transform

Smoothed 
Image

Edges

Is Speckle 

Present?
Smartphone 

Edge Detector

Straight lines 
& Speckle

No Yes

Figure 2. Flow diagram of the smartphone detector

Steps involved in detecting a smartphone in an image
captured by the Leap Motion device are outlined in Figure
2. All the image processing steps were performed using
OpenCV. An OpenCV wrapper known as EmguCV was used
to access OpenCV API’s in C# language. Detection of any
object in an image involves two steps: locate the region of
interest and then recognize if the desired object is present in

that region or not. In our case, instead of searching the entire
image for the smartphone, we relied on a unique finding
that helped us localize the smartphone: The Leap Motion
device is basically an Infrared (IR) Camera that relies on
the reflected IR light back to its sensors to detect user’s
hands. We noticed that whenever an object which has a
reflective surface such as the smartphone is held in front
of the Leap Motion device, it produces a blob with high
brightness (which we call smartphone’s speckle) as seen
in Figure 3(a). We used this unique property to localize
the smartphone in the Leap Motion image. Also, our IBSD
algorithm assumes that users will position their smartphone
in front of the HMD in such a way that they can read and/or
view the smartphone’s screen correctly, i.e, the smartphone’s
screen is facing the HMD.

The smartphone detection algorithm works as follows: the
VR application first captures grayscale images from the Leap
Motion device through a set of API’s provided by Leap
Motion. We apply a fixed-level threshold (binary threshold
where T=230) on the grayscale image and with the help of
a blob detection algorithm find the smartphone’s speckle.
Once the smartphone is localized, we extract a region of
interest (ROI) (radius of 75 pixels) around the speckle from
the original grayscale image obtained from leap motion.
We apply a normalized box filter (with kernel size = 3x3)
to smooth the extracted image and detect edges with help
of the Canny edge detector. Smartphones have a particular
geometry, i.e, they are a rectangular and have straight
edges. We use a basic principle in perspective projection for
detecting these straight smartphone’s edges, i.e, in perspec-
tive projection straight lines in 3D will project to straight
lines in the 2D image. We apply a Probabilistic Hough
Line Transform algorithm available in OpenCV to detect
these straight lines. Once the straight lines are detected,
we pass these lines (potential smartphone edges) through
the smartphone edge detector module. The smartphone edge
detector module then applies some simple mathematical
functions on the extracted ROI image to detect if a potential
smartphone edge belongs to the smartphone or not. With the
smartphone’s speckle as the center, the smartphone detector
module shoots four straight lines in four different directions
(Edge Detector Lines) with respect to the current orientation
of the smartphone, as shown in Figure 3(a), and extracts
only those potential smartphone edges that intersect with
these detector lines. The angles of extracted edges are then
compared and only those pairs that are nearly parallel to
each other are considered as smartphone edges.

B. Smartphone Detection with Statistical Classifier (SDSC)

The IBSD was able to detect the smartphone’s edges;
however, there were many instances where edges of other
objects in the surroundings were also considered a smart-
phone edge. In short, our devised algorithm had a high false
positive rate, which was unacceptable. Figure 5(b) shows
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Figure 3. (a) Image captured by leap motion device with speckle at the center of the cross hairs (b) Features extracted from the detected smartphone (c)
A sample instance where SCSD was able to detect smartphone edges

instances where edges of other objects in the surroundings
were considered to be edges of the smartphone. A detected
false smartphone edge will not only produce undesirable
results while augmenting the smartphone device in VR
environment but might also place the user’s fingers in a false
position in the VR scene, making it difficult for the users
to use their smartphone. To lower the false positive rate
and obtain better detection results, we decided to explore
the use of machine learning approaches, such as statistical
classifiers, that would be able to determine whether or not
the detected edges are indeed the smartphone’s edges. We
required a classifier that could satisfy constraints such as
detection of smartphone in real-time, ease of integration
with the existing solution, possibly by some mathematical
model, no additional process calls to external programs or
libraries that might slow down the smartphone detector, and
no additional storage of instance vectors (as required by
instance-based classifiers such as K-NN). Considering the
constraints, we decided to evaluate three statistical classi-
fiers: Logistic Regression (LR) [37], Linear Discriminant
Analysis (LDA) [37], and Quadratic Discriminant Analysis
(QDA) [37]. These classifiers generate mathematical models
that can be easily integrated into the existing system and do
not cause significant computing overhead. To select the most
suitable classifier we assessed the predictive performance of
these three statistical learning methods and selected the one
with the lowest false positive rate at a comparable recall
rate. Once the images captured by the Leap Motion device
are processed, we extract a set of 11 features from the
detected edges. Figure 3(b) illustrates these features in the
processed images. Since the values of the extracted features
are absolute X and Y coordinates of the smartphone detected
in the image, these features are normalized.

To implement smartphone detection with a statistical
classifier, we first generated a data set and evaluated the
performance of three classifiers (LR, LDA, and QDA). The
dataset contained 312 instances or records. Each instance
was made up of a set of 11 features (see Figure 3(b)) that
were extracted from the smartphone’s edges detected by
IBSD as described in the previous section. The instances
were classified into two groups depending on whether the
edges of the smartphone are correctly detected (group D)
or not (group N). For each instance, a feature vector, along

Table I
AVERAGE PERFORMANCE MEASURES AUC (± SD), SENSITIVITY (±

SD), SPECIFICITY (± SD) AND ACCURACY (± SD) OF LR, LDA AND
QDA OVER 10 FOLDS. SENSITIVITY, SPECIFICITY AND ACCURACY OF
LR, LDA AND QDA FOR EACH OF THE 10 FOLDS WERE CALCULATED

FOR THE OPTIMAL PROBABILITY CUTOFF. THE AVERAGE OPTIMAL
CUTOFF FOR LR, LDA AND QDA WAS 0.295 ± 0.10, 0.280 ± 0.10

AND 0.642 ± 0.30 RESPECTIVELY

Performance
LR LDA QDA

Measure
AUC 0.778 ± 0.13 0.777 ± 0.14 0.935 ± 0.04
Sensitivity 0.875 ± 0.12 0.873 ± 0.09 0.906 ± 0.09
Specificity 0.710 ± 0.17 0.701 ± 0.17 0.899 ± 0.07
Accuracy 0.758 ± 0.13 0.754 ± 0.12 0.907 ± 0.06

with its corresponding class, is stored in the dataset. Out
of 312 records, 222 (or 71.15%) records belonged to group
N while 90 (or 28.85%) records belonged to group D. To
estimate the performance measurements for each statisti-
cal learner (LR, LDA, and QDA), we carried out 10-fold
cross-validation. At the end of the 10-fold cross-validation,
we obtained the average and standard deviation of each
performance measurement. Table I gives the performance
measures averaged out over the ten folds for each classifier.
The classifier with the lowest false positive rate (< 0.2) at
a comparable recall of 0.8 was QDA (Figure 4), and thus
QDA was selected to be used in the SDSC implementation.
QDA was then trained with the complete dataset to generate
the classification model to be implemented. To do this, we
obtained class means per feature and class covariances from
the dataset. These values were then used to generate a
mathematical model that was integrated with our existing
smartphone detector. For QDA, the Bayes classifier can be
approximated by the equation [37]:

δk(x) = −1

2
(x− µk)T Σ−1

k (x− µk) + logπk (1)

where µk = mean of kth class, Σk = covariance matrix for
the kth class, πk is prior probability of kth class and δk(x)
is the discriminant function for the class k. Observation x
is assigned to the class for which δk(x) is largest.
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Figure 4. (a) Comparison of LR, LDA and QDA based on ROC curve
across various probability thresholds (b) Comparison of LR, LDA and
QDA based on recall (sensitivity) across various probability thresholds
(c) Comparison of LR, LDA and QDA based on false positive rate (1 -
specificity) across various probability thresholds (d) Comparison between
IBSD and SDSC. The y-axis indicates the percentage of instances in the
validation set. IBSD error rate is 28.1% (red block) while SDSC error rate
is 11% (gray and red blocks).

V. RESULTS AND DISCUSSION

A. IBSD

By using the smartphone speckle and traditional image
processing algorithms, we were successfully able to quickly
localize and recognize a smartphone in a given leap mo-
tion image. Although there were certain instances where
edges from surrounding objects were incorrectly identified
as smartphone edges, IBSD was able to successfully detect
a smartphone nearly 70% of the time. There are certain
situations where IBSD typically fails, one such instance is
when the smartphone’s screen is facing HMD in such an
angle that the speckle will not be present on the smartphone.
However, this would imply that users are holding the smart-
phone in such a way that they will not usually be able to
read clearly the text displayed on the smartphone’s screen.
Another instance where IBSD fails is when a similar object
with a highly reflective surface is present in the near vicinity
of the smartphone. In these cases, there will be two speckles

present in the leap motion image, and IBSD may produce a
false detection when the wrong speckle is chosen.

B. Comparison of IBSD against SDSC

After integrating the mathematical model of the statistical
classifier into IBSD, we further compared the performance
of IBSD against that of SDSC with a validation data set that
was not used during training. To do that, a dataset of 210
records was generated. Out of 210 records obtained, 59 (or
28.1%) records belonged to group N while 151 (or 71.9%)
records belonged to group D. Out of the 210 instances, there
were 59 (or 28.1%) instances where IBSD considered edges
of surrounding objects to be part of the smartphone, while
only 8 (or 3.8%) false positives were reported by SDSC
(Figure 4(d)). SDSCs total error rate was 11%.

As higher specificity means that the devised algorithm
rejects most of the false positive cases (improper detection
of smartphone edges), we were mostly interested in reducing
the false positive rate. Comparing IBSD and SDSC, we
found that SDSC rejects 75% of the cases that were falsely
considered to be smartphone by IBSD. An accuracy of
89% was achieved by SDSC compared to an accuracy of
72% obtained by IBSD. Some instances from the validation
dataset where the IBSD incorrectly detects the edges of a
smartphone are shown in Figure 5. Thus, with the help of
statistic classifiers, we were able to improve the accuracy
when deciding which detected edges truly correspond to the
edges of the smartphone. SDSC works as an additional filter
which discards false smartphone edges detected by IBSD.
Therefore, it will still be limited by the inability to detect a
smartphone when the speckle is missing, but will perform
better at discarding false positives when the wrong speckle
is identified.

(a) (b)

Figure 5. Some sample instances that represent incorrect smartphone
detection by IBSD. Note that in these images the edges of other objects in
the surroundings are considered part of the smartphone. SDSC successfully
rejects these incorrect edge labelling.

C. Smartphone detection after SDSC

By combining traditional image processing techniques
with statistical classifiers, we designed a system that can
successfully detect the presence of the smartphone in 90%
of the true positive cases. Our empiric assessment indicates
that the system can respond at interactive rates. The system
is also able to map the images obtained from smartphone’s
screen to the smartphone displayed inside the VR space,



and our initial testing showed that user can operate their
smartphone device without having to remove their HMD
device. Some instances where the user was able to launch an
App and/or able to read text displayed on the smartphone’s
screen in VR environment are shown in Figure 6. These
images show that, although limitations exist, the method
proposed can bring modern communication devices like
smartphone inside the VR space. It shows that users can
operate their smartphone from inside the VR space and no
longer have to remove their HMD’s each and every time
they need to check their social networks or talk with friends
and family over the phone.

The main limitation we currently observe with the pro-
duced system is the jumpiness of the smartphone display
within the virtual environment. This jumpiness is due to
several factors, such as the low resolution of the images
provided by the Leap Motion device, but mostly arises from
the instability of the algorithms in the image-processing
pipeline, which are sensitive to noise from the users fingers.
In addition, the high resolution of the smartphone is filtered
through the low resolution of the HMD, while the natural
motion of the users head relative to the users hand while
holding the phone guarantees that the input will always be
in flux.

(a) (b)

(c) (d)

Figure 6. Some instances where users were able interact with smartphone
inside VR environment. (a) Smartphone’s home screen mapped to the
smartphone displayed in Leap Motion Image (b) User can check weather
updates (c) User’s can read news in ’InShorts’ app (d) User’s can initialize
a phone call

VI. CONCLUSIONS AND FUTURE WORK

The visual isolation from the real world while wearing
an HMD makes the task of using a smartphone difficult.
This may in turn lead to temporary isolation, where users
are not able to get in touch with their friends and family
or check out important notifications when immersed in
the VR space. To address this issue, we present a novel
method that allows people wearing VR HMDs to use their
smartphones without removing their HMDs. The devised
method combines traditional image processing techniques
with statistical classifier to accurately detect the presence
of the smartphone in the user’s real-world surrounding. An
additional camera such as the Leap Motion device is used
to capture the user’s real-world immediate surroundings.
Once the smartphone is detected, we augment the scene
inside the VR HMD with a view of the user’s device so
that the user can interact with the device without removing
the headset. This setup allows the users to interact with the
smartphone or tablet device from within the virtual space
and be in touch with their friends and family through it.
Although the proposed system has some limitations and the
human visual system is quite sensitive to these, achieving a
satisfying solution is within reach, and the presented results
are encouraging. The dataset used to train the machine
learning model is limited. Smartphones of different sizes
or variations in the way users use their smartphones at
different positions and orientations are not considered. The
dataset will be further enriched to include data generated
with various smartphones, user’s postures and orientations.
The proposed system will be further explored for use in
application areas where the use of traditional input devices
can be challenging and smartphones may come in handy.
Through user studies, activities that rely on the smartphones
touch screen as an input device, such as text entry, game
control, internet browsing, and drawing gestures will be
further explored.
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