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Abstract

In this article, a comprehensive approach for the eval-
uation of hardware and software solutions to support
stereo vision and depth-dependent interactions based
on the specific requirements of the human visual sys-
tem within the context of augmented reality applica-
tions is presented. To evaluate stereo correspondence
solutions in software, we present an evaluation model
that integrates existing metrics of stereo correspon-
dence algorithms with additional metrics that consider
human factors that are relevant in the context of out-
door augmented reality systems. Our model provides
modified metrics of stereoacuity, average outliers, dis-
parity error, and processing time. These metrics have
been modified to provide more relevant information
with respect to the target application. We illustrate
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how this model can be used to evaluate two stereo
correspondence methods: the OpenCV implementa-
tion of the semi-global block matching, also known as
SGBM, which is a modified version of the semi-global
matching by Hirschmüller; and ADCensusB, our im-
plementation of ADCensus, by Mei et al.. To test these
methods, we use a sample of fifty-two image pairs se-
lected from the KITTI stereo dataset, which depicts
many situations typical of outdoor scenery. Further on,
we present an analysis of the effect and the trade-off of
the post processing steps in the stereo algorithms be-
tween the accuracy of the results and performance. Ex-
perimental results show that our proposed model can
provide a more detailed evaluation of both algorithms.
To evaluate the hardware solutions, we use the char-
acteristics of the human visual system as a baseline to
characterize the state-of-the-art in equipment designed
to support interactions within immersive augmented
and virtual reality systems. The analysis suggests that
current hardware developments have not yet reached
the point where their characteristics adequately match
the capabilities of the human visual system and serves
as a reference point as to what are the desirable char-
acteristics of such systems.

Keywords: Augmented Reality, Human Visual Sys-
tem, Binocular Stereo, Stereoacuity, Disparity, Stereo
Correspondence, Virtual Reality, Field of View, Dis-
play Resolution, Depth Sensing Cameras, Head
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1 Introduction

Many Augmented Reality (AR) systems require some
form of optical markers placed within a scene in order
to integrate computer-generated objects with scenery
directly generated from the real world; these markers
help the system identify the location of an item within
the scene to be used as a place-holder for the synthetic
objects. Placing such markers in objects that are part
of a scene may work for many indoor environments,
but is a less practical option in outdoor AR settings
where users can move freely in their surroundings. In
the absence of such markers, an AR system requires
a depth map of the surrounding environment. In or-
der to obtain the 3D location of different objects in the
scene, several technologies can be used. Among these
technologies, one of the most practical techniques is
the use of stereo cameras to take images of the scene
from slightly different viewpoints. These images can
then be processed by the stereo correspondence algo-
rithms, which attempt to find the corresponding pixels
in the stereo images, to generate the depth map of the
surrounding environment. This map is then used to in-
tegrate virtual objects in the scene such that synthetic
objects are rendered in a way that considers the oc-
clusion properties and the depth of the real objects in
the scene. Due to the potential applications of stereo
correspondence, which is one of the most extensively
studied subjects in computer vision [SS02], using an
evaluation scheme that is designed according to the
specific requirements of the target application is es-
sential. The evaluation scheme proposed in this paper
is designed for outdoor AR applications which make
use of stereo vision techniques to obtain a depth map
of the surrounding environment.

Over the past few years, a few evaluation schemes
have been proposed by researchers in the field to pro-
vide a testbed for assessment of the solutions based
on specific criteria. The Middlebury Stereo [SB12]
and the KITTI Stereo benchmarks [GLU12] are two
of the most popular and widely used evaluation sys-
tems through which a stereo correspondence algorithm
can be evaluated and compared to others and each year
they call out for new submissions of stereo correspon-
dence algorithms by researchers in the community to
update their evaluation results. In spite of being a valid
reference in many applications, both the KITTI and
the Middlebury projects take a general approach to-
wards evaluating the methods; that is, they have not
been designed with an eye to any particular target ap-

plication. In fact, these models focus on the particular
application of a stereo correspondence algorithm as a
solution per se to find the best matches of the corre-
sponding pixels in stereo pairs, regardless of the target
application. As a result, the information provided by
these evaluation benchmarks is not sufficient to select
a given algorithm suitable for AR because we need in-
formation on the specific accuracy and efficiency of
these algorithms, for example, to assess their suitabil-
ity regarding their processing time or accuracy. The
fact that some of this information is missing from such
standard evaluations of stereo correspondence meth-
ods has compelled us to take steps towards a compre-
hensive analysis and evaluation design based on spe-
cific requirements of outdoor stereo AR applications,
which results in better definition and adjustment of the
criteria for efficiency and accuracy metrics used for the
evaluation.

2 Background and Terminology

Over the past decades, many mobile AR systems
have been built, from the Touring Machine in 1997
[FMHW97] to Google Glass which was announced
in 2013 [Goo13]; however, most of these prototypes
have remained experimental due to certain difficulties
and constraints of using them in practical applications
[DM96, Liv05]. Two of the most important constraints
are the human factors in AR and the high demand of
computational resources needed to provide a real-time
interaction between the user and the system; therefore,
in order to build a practical AR system, these factors
need to be carefully considered while designing differ-
ent components of the system.

2.1 Binocular Vision and the Human Visual
System

Studies in binocular vision show that human percep-
tion of depth can vary depending on the environment
and under different circumstances. Many studies have
focused on the evaluation of human perception of
depth within different frameworks and in different ap-
plications, such as virtual reality and AR, which have
recently attracted more attention [WRMW95, DM96,
Liv05, JW05, SJK+07, KSF10, SSJE12, DS14].
These studies show that the viewer perception of depth
is inversely proportional to his/her distance from the
object [KSF10, SJK+07, JW05, Liv05]; for instance,
in [SJK+07], some experiments are designed to study
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and evaluate the human perception of distance, in
terms of the absolute depth of the objects from the ob-
server, for an outdoor AR application in urban settings.
However, in this research we are more interested in the
human perception of relative depth in stereo vision:
the ability to perceive and distinguish the depth of dif-
ferent objects relative to each other. Binocular dispar-
ity, which in fact arises from the spatial difference be-
tween the images of the same scene in the visual sys-
tem, provides a relative perception of depth from the
surrounding environment. This perception is known as
binocular stereopsis [HR95]. In stereo vision, the lo-
cus of the points that yield a unified view of an object
in the visual system is known as the horopter, and any
point located on the horopter is usually called a fixa-
tion point [Rea83, HR95]. An important property of an
object on the horopter is that no spatial difference ex-
ists between the images of the fixated object between
the two eyes, that is, the binocular disparity is zero
[HR95]. Exploiting this property, the disparity of any
other object in the scene can be estimated relative to
the fixated object by inspecting two important factors:
whether the object of interest is closer or further than
the fixated object and then how much closer or further
it is relative to the fixated object. As a result, the binoc-
ular disparity provides a relative perception of depth of
the surrounding environment. In binocular vision, the
minimum depth difference between two points that can
be detected in the visual system is known as Stereo-
scopic Acuity or Stereoacuity [Pfa00]. This metric is
normally presented in angular units, commonly arc-
seconds. According to the geometry of binocular vi-
sion illustrated in Figure 1, stereoacuity can be ob-
tained from the following equation:

θ =
a∆Z

Z2
(1)

This equation estimates the angular disparity in ra-
dians, where a is the distance between the center of the
pupils of the two eyes, which is known as interpupil-
lary distance.

According to standard stereo tests [Rea83], the
finest detectable disparity in the human visual system
(HVS) is approximately 10-15 arcseconds. However,
a more recent study on 60 subjects [GS06] at different
age groups, from 17 to 83 using standard stereotests,
shows that the average stereoacuity for different age
groups is as follows:

As can be seen, the stereoacuity for the HVS in-
creases with age, that is the amount of error in the

Figure 1: Binocular disparity

Age Range Avg Stereoacuity(arcsecs)
17-29 32
30-49 33.75
50-69 38.75
70-83 112.5

Table 1: Average stereoacuity for subjects of age 17 to
83

depth results is less perceptible in the visual system
of the elders than the younger people. Using these val-
ues in Equation 1 along with the average interpupillary
distance in the human visual system, that is approx-
imately 64mm [HR95], we can estimate the thresh-
old for minimum detectable depth between two objects
based on their distance from the observer.

2.2 Real-time Interaction

Providing real-time interaction in an AR system for
the user requires the processing time and update rate
of the whole system to keep up ideally with the stan-
dard video frame rate, between 24fps and 30fps, or
higher. However, studies show that in practice to build
a reasonable interactive augmented world the process-
ing rate should not be less than half of the video frame
rate [HP00]. Two ways to speed up a system are using
a more advanced technology and hardware, and im-
plementing more sophisticated and efficient software
design. However, having access to advanced tech-
nology and hardware is not always feasible and even
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the most advanced technologies have some limitation
in their memory space and computational capability
which may not meet the requirement for some real-
time applications. Therefore, in many cases, employ-
ing the second approach is more practical.

3 Comprehensive Evaluation Scheme

In our design, unlike the Middlebury or KITTI bench-
marks, we label a pixel in the disparity results as
an outlier if the angular measurement, that is the
stereoacuity, corresponding to the depth error between
the ground truth and the estimated depth value by
the algorithm is more than the average perceptible
stereoacuity of the HVS as determined by standard
stereo tests [Rea83, GS06]. Moreover, we use the av-
erage stereoacuity for different age groups [GS06] in
our design to evaluate the performance of the algo-
rithm for users at different ages; this makes the eval-
uation results more reliable and applicable to applica-
tions of AR. In order to evaluate the efficiency of an
algorithm and investigate whether it meets the require-
ments for being part of a real-time AR application, we
integrate a module in the evaluation process that re-
ports on the average execution time of the algorithm
for the input data. The average outliers based on the
specified stereoacuity thresholds and the average dis-
parity error are also estimated during the evaluation
process.

In addition, our model employs a particular ap-
proach which can be of specific value to AR applica-
tions. In this approach, we suggest that it is important
to focus the evaluation process on particular regions
of the disparity map rather than the whole image. The
main reason is that salient edges caused by depth dis-
continuities, which also represent object boundaries
and occlusion, are important depth cues for the human
visual system to better perceive the location of differ-
ent objects in the 3D environment [Sze11]. Therefore,
more accurate depth results in these regions permit a
higher quality combination of the depth map of the
real world with the virtual depth of the synthetic ob-
jects that are part of the AR scene. To this end, we
build a mask of the ground truth disparity map by ap-
plying the Canny edge detector and then the Dilation
operation to include areas from both background and
foreground of the scene near the edges for our evalu-
ation. The result mask is, in fact, a mask of the edges
in the image caused by depth discontinuities and their
surrounding area.

3.1 Architecture

The block diagram of our evaluation system can be
seen in Figure 2, which illustrates the sequence of the
operations during the whole process. As can be seen in
this figure, first the input data consisting of the stereo
images, the ground truth disparity, and the calibration
data are passed to the system. Afterwards, the spec-
ified masks are created using a Canny edge detector
and a Dilation operation with the appropriate parame-
ters selected separately for each image. After the cor-
responding disparity maps have been generated by the
stereo algorithm and stored on the disk, they are passed
to the evaluation module with the specified arguments.
Finally, the evaluation metrics are estimated and out-
put as data files and plots to facilitate the evaluation of
the stereo algorithm in the application of interest.

3.2 Evaluation Metrics

The main evaluation component consists of different
modules which estimate specific evaluation metrics.
These metrics are: 1) the average stereoacuity, 2) the
average outliers, 3) the average disparity error, and 4)
the average execution time. Analysis of these metrics
in the framework of an outdoor AR application will
then allow for a practical evaluation of the stereo algo-
rithm performance.

3.2.1 Average Stereoacuity

We can break the estimation of the average stereoacu-
ity down to 3 steps: 1) estimate the stereoacuity based
on the generated disparity for each image pair and the
ground truth; 2) average the stereoacuity results over
certain depth ranges in each image; 3) average the re-
sults from the previous step over all the images. Corre-
sponding plots are generated after the third step based
on the final results.

According to the specific age ranges, different val-
ues are reported for the average stereoacuity at the end
of the evaluation. In order to estimate this metric, the
depth values corresponding to both ground truth and
the generated disparity by the algorithm are first calcu-
lated. Subsequently, the difference between these val-
ues is used in Equation 1 to calculate the correspond-
ing stereoacuity, Equations 2 and 3. This process is
done for all the pixels in the image; or if a mask has
been provided, it will be applied only to the pixels in
the masked areas. Finally the results are output and
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Figure 2: Architecture of the evaluation system

stored in a separate data file for each image.

Deptherr = |depthgt − depthgen| (2)

StAc =
a ∗Deptherr
depth2gt

(3)

Here, depthgt, depthgen, StAc and a denote the
ground truth depth, the generated depth by the algo-
rithm, the corresponding stereoacuity, and the average
interpupillary distance, respectively.

After conducting the first step on all the disparity
maps corresponding to input image pairs, the second
step starts by building a histogram of the stereoacuity
values over specific depth ranges, Equations 5 and 6.
In our design, the width of each bin determines the
aforementioned depth range and is kept constant for
all the bins. Moreover, the number of bins along with
their corresponding width determine the total distance
over which the results are estimated and subsequently
examined.

Total distance = NumOfBins ∗Width (4)

For outdoor applications of AR, these parameters are
normally set to certain values so that the total distance
covers the medium to far depth fields; extending from
1.5 meters to more than 30 meters [SJK+07].

SumdRange =
∑

dRange

StAc (5)

Avg StAcdRange =
SumdRange

NumOfPixsdRange
(6)

Here, Avg StAcdRange and SumdRange denote the
average and total stereoacuity over specified depth
ranges in each image, and NumOfPixsdRange de-
note the number of pixels within each depth range.

The results of the previous step, all stored in a data
file, are then passed to the last step. At this point, a his-
togram is built over the data from all the disparity im-
ages, which results in the average stereoacuity values
within each specified depth range over all the images,
Equation 7. It should be noted that the number of bins
and their corresponding width in this step are similar
to the histogram constructed in the previous step.

Avg StAc =

∑
imgs(SumdRange)∑

imgs(NumOfPixsdRange)
(7)

3.2.2 Average Outliers

For this measurement, the relative depth error is first
calculated by finding the corresponding depth values
for the ground truth disparity and the disparity gen-
erated by the algorithm and then converted to effec-
tive stereoacuity, as shown in Equations 2 and 3. This
value is then compared to the relative detectable depth
threshold for the HVS that is estimated using Equa-
tion 1. If the relative depth error is equal to or more
than the detectable threshold in the HVS, Equation 8,
then the corresponding pixel is labelled as an outlier.

StAc ≥ StActhreshold (8)

Since we are using four different thresholds of
stereoacuity corresponding to different age groups in
our evaluation, the estimated error is compared against
each of these thresholds, and therefore, four different
values are eventually calculated. The average outliers
is then computed as a fraction of the total number of
pixels in the inspected regions, Equation 9.

Avg Outliers =
Outlierstotal
NumOfPixs

(9)
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This process is repeated for all the pixels in the im-
age or merely the pixels in the masked regions depend-
ing on the availability of a mask.

3.2.3 Average Disparity Error

This metric is the mean error between the ground truth
disparity and the one found by the algorithm, which is
estimated for all the pixels in the image or merely the
masked pixels depending on the availability of a mask.
It can be presented with the following estimations:

Disperr = |dispgt − dispgen| (10)

DispErrtotal =
∑
pixs

Disperr (11)

After the computation of the total disparity error for
the pixels, the average disparity error is estimated as
follows:

Avg DispErr =
DispErrtotal
NumOfPixs

(12)

The NumOfPixs is, in fact, the total number of pixels
in the whole image or the masked regions, depending
on the case for which the error is being estimated.

3.2.4 Average Execution Time

We use the C++ function clock() to estimate the av-
erage execution time of the algorithms for generating
disparity results corresponding to the input stereo im-
ages, fifty-two image pairs in our evaluation. We then
compare this value to the acceptable criteria for hav-
ing a real-time interactive AR system from the user’s
perspective, that is, a processing time less than 0.06-
0.08 seconds per frame corresponding to a frame rate
of 12.5 to 16.5 fps, as proposed by [HP00].

Analyzing each of these metrics in the light of the
relevant factors in an outdoor AR application results
in a practical evaluation of the stereo correspondence
methods.

4 Validation

In order to verify the effectiveness of our proposed
model for the evaluation of stereo correspondence
methods in outdoor AR applications, we have evalu-
ated two sample stereo algorithms: the OpenCV im-
plementation of the semi-global block matching, also
known as SGBM, which is a modified version of the
semi-global matching by Hirschmüller [Hir08]; and

ADCensusB, our implementation of “on building an
accurate stereo matching system on graphics hard-
ware” [MSZ+11], originally known as ADCensus. It
should be noted that the CPU implementation of both
methods have been used.

Experiments were carried out on a Linux platform
with Intel Core i7 3.20GHz CPU. Fifty-two image
pairs were chosen from the KITTI Stereo Dataset cor-
responding to real outdoor scenes. Figure 13 shows
a sample stereo pair from the KITTI dataset. The
OpenCV Canny edge detector and Dilation operation
were used for building the specified masks and the ex-
pansion of the masked areas, respectively. The corre-
sponding mask of Figure 13, is shown in Figure 14.
The masked ground truth and the masked disparity
images generated by SGBM and ADCensusB for the
sample stereo image, can also be seen in Figures 15, 16
and 17, respectively.

Parameters corresponding to stereo algorithms, the
aperture size in Canny, and the degree of Dilation were
kept constant over all the images and experiments.
These values are presented in Tables 2, 3, and 4. The
parameters for Dilation and Canny were chosen em-
pirically by running the algorithms over our image set
with the intention of selecting the values which best
define the depth edges and expand them enough to
include regions with different depths surrounding the
edges.

SADWindowSize 9 disp12MaxDiff 2
uniquenessRatio 10 P2 3*9

speckleWindowSize 100 speckleRange 2

Table 2: SGBM Parameters

The minimum and maximum disparity values are
also kept constant for each image pair in both algo-
rithms; however, the maximum disparity differs for
each image pair as the scenes are different and objects
are located at different depth fields. The minimum
disparity is set to 0 for both algorithms. The maxi-
mum disparity for each image pair is selected based
on the maximum value in their corresponding ground

λAD 10 λCensus 30 L1 34 L2 17
τ1 20 τ2 6 π1 1.0 π2 3.0
τSO 15 τS 20 τH 0.4

Table 3: ADCensusB Parameters
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Dilation iterations 10
Canny apertureSize 3

Table 4: Masking Parameters

truth disparity. The standard stereoacuities used for
the evaluation are based on the results mentioned in
Table 1.

4.1 Experimental Results

The evaluation metrics, mentioned in Section 3.2,
were estimated for SGBM and ADCensusB in our
evaluation system. The main results are described be-
low.

4.1.1 Average Stereoacuity

Figures 3 and 4 show the average relative depth error
converted to effective stereoacuity over distance for
the masked and the whole images with both SGBM
and ADCensusB.

In these plots, a cross point below a stereoacuity
threshold (straight lines) implies that the average er-
ror in the disparity values estimated by the stereo al-
gorithm is imperceptible to the human visual system.
However, a value higher than the threshold indicates
that the error cannot be ignored and should be resolved
to achieve a better alignment between the virtual and
the real world in the AR application of interest. More-
over, as can be seen most of the errors fall below
the standard stereoacuity value corresponding to older
ages; indicating that these are not perceptible to the vi-
sual system of people at these particular ages.
The zero values in the plots imply that either there is no
object within the corresponding range or the disparity
value estimated by the algorithm is equal to the ground
truth disparity; however, since the average of the re-
sults has been taken over all the images, it is more
likely that the zero values indicate no object within the
particular range.

As can be seen in the results, SGBM performs better
in finding more accurate corresponding matches com-
pared to ADCensusB, as most of the error points fall
below the standard stereoacuity lines. Moreover, the
plots show that in both methods the significant amount
of error corresponds to the near field objects, within
the first 5 meters. This range of the depth field can
be considerably important in some applications, such
as the ones involving certain manipulative tasks; for

these types of applications, other technologies, such
as depth sensing cameras, are better choice.

Comparing the results between the masked and the
whole image show that the average error over the
masked regions, that is, near the depth edges, is very
similar to the results over the whole image. This may
imply that there is no additional benefit in the inspec-
tion of these regions. However, this might be merely
an indication of the performance of the selected algo-
rithms and can be better analyzed by evaluating more
algorithms within our model.

4.1.2 Average Outliers

The average outliers for the masked and the whole im-
age are presented in Table 5. Results show that in
both cases, the masked regions and the whole image,
SGBM has less average outliers than ADCensusB, in-
dicating that SGBM generates a more accurate dispar-
ity map as perceived by the human visual system.

Another observation is that in SGBM, the average
outliers over the masked regions is larger than the
average outliers over the whole image, whereas in
ADCensusB the opposite behavior is observed. This
implies that SGBM generates less accurate results
near the depth discontinuities and occluded regions
compared to the other areas in the image. On the
other hand, ADCensusB generates more accurate
disparity values near the depth edges compared to the
other regions in the image and tends to preserve the
occluded regions. This only indicates that, despite
the better performance of SGBM over ADCensusB
according to the experimental results, in cases where
only one of these solutions is available, it is reasonable
to consider this behavior to employ the method in the
right application based on the accuracy requirement of
the target system in different regions. In other words,
it is important to first investigate which regions of the
image are more important in the context of the target
application. For instance, ADCensusB performs
better in an application where the areas near depth
discontinuities and occlusion are more important than
the rest of the image, such as image compositing for
layering visual elements on the scene, compared to
application scenarios where obtaining an accurate,
dense disparity map for all the regions in an image
is essential, such as constructing a 3D model of the
scene or preparing a model for 3D printing. Figure 11
shows a comparison of all the results.
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Figure 3: Average relative depth error over distance for the masked image
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Figure 4: Average relative depth error over distance for the whole image
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Algorithm Age
Avg Outliers
(Masked)

Avg Outliers
(Full)

SGBM

17-29 0.12 0.11
30-49 0.11 0.10
50-69 0.09 0.08
70-83 0.0012 0.005

ADCensusB

17-29 0.23 0.27
30-49 0.22 0.26
50-69 0.18 0.22
70-83 0.002 0.002

Table 5: Average outliers

Algorithm Region Avg DispErr

SGBM
Full 6.58

Masked 7.81

ADCensusB
Full 4.49

Masked 4.74

Table 6: Average disparity error

4.1.3 Average Disparity Error

The average disparity error for both the whole and
the masked image are presented in Table 6. As can
be seen, ADCensusB results in less average disparity
error than SGBM. This difference is likely caused
by the various refinement steps implemented in the
ADCensusB algorithm which do not exist in SGBM.
As a result, despite the larger outliers in ADCensusB
than SGBM as presented in Section 4.1.2, ADCen-
susB attempts to decrease the difference between the
resulting disparity value and the ground truth disparity
through multiple refinement steps, thus generating
smoother disparity patches within different regions of
the image. Figure 12 presents a comparison between
all the results.

4.1.4 Average Execution Time

In another experiment, we estimated the average
execution time for both algorithms using a set of
fifty-two stereo image pairs from the KITTI data set
[GLU12]. Results of the average execution time over
all the images are shown in Table 7. Considering
the requirements of a real-time AR system [HP00],
the processing time of each frame should not be
more than 0.06-0.08 seconds. Although the current

Algorithm Avg ExecTime(secs)
SGBM 0.54

ADCensusB 272.82

Table 7: Average execution time

implementation of SGBM could be used when the
real world scene remains stable for approximately one
second, it can be safely concluded that none of these
implementation meets the requirements of a real-time
interactive AR system.

4.2 Effect of Refinement

In this experiment, we studied the effect of the post
processing steps, also referred to as the refinement
steps, in the stereo algorithms on the accuracy of the
results in our evaluation criteria.

Refinement is usually the last step in a stereo cor-
respondence algorithm because it attempts to decrease
the number of wrong matches or the error after the dis-
parity results have been found [SS02]. Therefore, this
step must be applied after the outliers, that is the wrong
pixel matches, have been detected in the results. The
detection of the outliers occurs through a check known
as left-right consistency check in a stereo matching al-
gorithm. In this check, the disparity map for both the
left and right image is first calculated. Then, if a pixel
in the left image, based on its disparity value, corre-
sponds to a pixel in the right image that does not map
back to it, it will be labeled as an outlier [SS02]. This
description can be formulated as follows:

DL(p) 6= DR(p− (DL, 0)) (13)

Where DL(p) is the disparity function for the left im-
age and DR is the disparity function for the right im-
age.
In our implementation of ADCensusB, we have the L-
R check and its subsequent refinement steps triggered
with a flag. Therefore, when the flag is not set, nei-
ther the check nor the refining steps are triggered in
the algorithm. To investigate the effect of the refine-
ment on the final results, we used ADCensusB in this
experiment with the L-R flag set to zero, generating
the disparity results for the image pairs, and evaluat-
ing the results. The results for both cases, not refined
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Figure 5: Average disparity error by ADCensusB for the masked images; blue circles show some sample values
that have slightly changed as a result of refinement
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Figure 6: Average disparity error by ADCensusB for the whole images; blue circles show some sample values
that have slightly changed as a result of refinement
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Region Avg DispErr
Masked 5.59

Full 5.29

Table 8: ADCensusB average disparity error - unre-
fined

Avg Outliers
Region Age valid gtDisp valid genDisp

Masked

17-29 0.23 0.33
30-49 0.22 0.31
50-69 0.18 0.27
70-83 0.002 0.003

Full

17-29 0.27 0.39
30-49 0.26 0.37
50-69 0.23 0.32
70-83 0.001 0.002

Table 9: ADCensusB average outliers - unrefined

and refined, over the masked regions and the whole
image are shown in Figures 5 and 6, respectively.

As can be observed in the plots of Figures 5 and 6,
the evaluation results in our specific criteria are not
significantly different from the results of the algorithm
when L-R check and refinement were triggered and
only a few average values have slightly changed. We
have marked a few of these values with blue circles in
Figures 5, 6.
We also estimated the average execution time, the av-
erage disparity error, and the average outliers in this
experiment. The results for the average error and out-
liers are shown in the tables below.

Figure 7 shows a comparison between the average
outliers by ADCensusB with the effect of refinement
and without it for the masked and the whole images
in one of the validity criteria, that is, when the ground
truth disparity is valid. As can be seen, no significant
decrease is obtained in the number of outliers.

The average execution time was approximately
147.84 seconds which is nearly half the running time
of the algorithm with the L-R check and refinements
triggered, Table 10. Comparing these results to the
ones presented in Tables 5 and 6 a slight decrease
in the amount of errors and nearly no change in the
number of outliers is observed. Analyzing the results
in this experiment, we can conclude that despite
the considerable rise in the execution time of the

ADCensusB Avg ExecTime (secs)
refined 272.82

unrefined 147.84

Table 10: ADCensusB average execution time - re-
fined and unrefined

algorithm, no significant improvement in accuracy is
achieved in our evaluation criteria through refinement
of the disparity results; therefore, the execution of
ADCensusB without any L-R check and refinement
step is more beneficial to an AR application in outdoor
environments, since it requires less processing time
with a modest decrease in quality.

4.3 Discretization Degree of Disparity Values

According to different studies [DM96, ABB+01,
KSF10, Cor12], some other factors such as issues as-
sociated with the environment, display device, and
capturing device can also affect the perception of depth
in the visual system. As a result, the ability to detect
the difference in depth and to accurately estimate the
depth of different points, in practice, do not merely
depend on the implemented discretization level of the
disparity values in the stereo correspondence algo-
rithm. In order to investigate the validity of this state-
ment, we conducted the following experiment. In this
experiment we defined some stereoacuity thresholds.
In order to find the minimum threshold to start with,
we attempted to find the minimum disparity change
in the ground truth disparity images. To this end, we
move along horizontal scanlines in each image and
compute the difference between the values of consec-
utive pixels, which is, in fact, an indicator of the de-
tectable threshold of the changes in depth between dif-
ferent pixels. This is illustrated in Figure 8.

scanline direction

P P+1

image width

Figure 8: The scanline pixels difference process

After finding the minimum value in each image, a
global minimum is sought between all the computed
values from different images. The value we found for
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Figure 7: Average outliers by ADCensusB in refined and unrefined cases for both masked and whole images;
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a group of twelve images selected from our dataset
with the size of 1242 × 375 and the focal length of
721 pixels, as reported by KITTI stereo [GLU12],
was 0.0022 arcmins. After finding this minimum and
defining our thresholds, we apply a nearly similar op-
eration on the disparity results of the same group of
images from each of the sample algorithms. In this
process, while moving through each image, for those
pixels whose generated disparity is close to the ground
truth disparity, within a specific pixel threshold, we es-
timate their depth difference from their following pixel
in the ground truth and compare the value to each of
the specified thresholds; if this value is less than a
threshold, then we check to see whether the stereo al-
gorithm has also detected different values for the cor-
responding pixels. In case of detection, we increment
a counter corresponding to each threshold that indi-
cates the number of detected pixels. This process is re-
peated for different images and, finally, the average of
detected pixels is estimated for each specified thresh-
old.

The results for both algorithms are shown in Fig-
ure 9. As can be seen in these plots, for both al-
gorithms, the average detected pixels with detectable
change in depth values starts to converge at the value
of approximately 0.4 arcmins. We also observe that for
the values below this threshold, the average detected
pixels are very small and for some values, such as the
minimum detectable threshold in ground truth, both
algorithms are not capable of detecting any change in
depth values. This implies that, regardless of the ac-
curacy resolution of the algorithms, which is 1

8 th of a
pixel for SGBM, approximately 0.6 arcmins, and 1

16 th
of a pixel for ADCensusB, approximately 0.3 arcmins,

for KITTI images based on the camera parameters and
the geometrical relation presented in Figure 10 and
Equation 14, some changes in depth in the real world
still cannot be detected by the algorithm. This effect
might be due to the constraints of the sensor, that is,
the errors associated with the capturing device and its
resolution, or the environmental noise.
In Figure 10, w is the image width and f is the focal
length of the capturing device.

θ = arctan(
pixel resolution

focal length
) (14)

For the image size of 1242 × 375 pixels and focal
length of 721 pixels, and based on the resolution of
SGBM and ADCensusB in the estimation of the dis-
parity values, the minimum and maximum detectable
disparity, that is, at the center and at the boundary of
the image, respectively, in terms of effective stereoacu-
ity are as follows:

SGBM :

θmax = arctan(
1
8

721
)

= 0.00993 degrees× 60
arcmins

degrees

= 0.596 arcmins

(15)
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SGBM :

θmin = arctan(
1
8 × (12422 )

721
)

− arctan(
1
8 × (12422 − 1)

721
)

= 0.589 arcmins

(16)

ADCensusB :

θmax = arctan(
1
16

721
)

= 0.00496 degrees× 60

= 0.298 arcmins

(17)

ADCensusB :

θmin = arctan(
1
16 × (12422 )

721
)

− arctan(
1
16 × (12422 − 1)

721
)

= 0.297 arcmins

(18)

However, as can be seen, the minimum and maximum
angular resolution in the image are not considerably
different.

As a result of this experiment, we can conclude that
in order to achieve more accurate depth results in the
stereo algorithms and correctly detect the difference
between depth values, that is, to obtain a lower thresh-
old of depth changes closer to the actual resolution
of the implemented algorithm, using higher resolu-
tion devices and considering their robustness to noise
is also essential. Based on the information about the
average stereoacuity in the HVS, we can say that the
lower bound resolution of a capturing device with fo-
cal length of 721 pixels should be 1

8 th of a pixel. In
the end, we should note that the experimental results
presented earlier in this research show that despite var-
ious types of errors relevant to the capturing device,
environmental noise, and the actual accuracy of the
stereo correspondence algorithm in the estimation of
disparity values, the effect of such errors on the results
will still be imperceptible for most cases to the HVS
in outdoor AR applications, especially where objects
are distant from the observer.

Metrics Evaluation Models
Middlebury Kitti Comprehensive

Evaluation
Avg StAc 7 7 3

Avg Outliers 3 3 3

Avg DispErr 3 3 3

Avg ExecTime 7 7 3

Table 11: Comparison of different evaluation schemes

4.4 Overview

Table 11 shows an overview of the difference between
our proposed evaluation approach and the other evalu-
ation models, Middlebury and KITTI, in terms of the
estimated evaluation metrics.

It should be noted that although the average error
and the average outliers exist in the other evalua-
tion schemes as well, the major difference which
makes our evaluation more appropriate than the other
schemes for practical applications of AR, is the ap-
proach employed during the design of the metrics and
the analysis of the results in the evaluation process.
In fact, integrating the important factors related to
the human visual system and its perception of depth
in the design of the metrics and the insights they
provide make the evaluation model more relevant and
applicable to outdoor AR systems.

5 Metrics for Immersive Augmented
and Virtual Realities Equipment

In this section we present a detailed analysis of es-
sential equipment to support stereoscopic vision and
depth-sensing capture of hand gestures in the user’s
surroundings in Immersive Realities (AR/VR) sys-
tems. The analysis starts from the basis that the Hu-
man Visual System should be used as a reference to
define the desired targets for the amount of visual de-
tail that should be captured and displayed, the field of
view of cameras and displays, and the range of action
the depth-sensing cameras should support to provide
comprehensive support for optimal immersive AR &
VR interactions.
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5.1 Screen Resolution and Sensor Density in
the Retina

Humans have about 125 million light sensors in their
retinas [Hec98]. If these sensors were mapped to a
square grid, this would correspond to approximately
11,200 sensors on the horizontal and vertical sensors.
If the sensors of the retina were mapped to a circle,
which would be more fitting shape to represent the
retina, the circle would have a radius of 6,300 sen-
sors. These figures can be used as the baseline to de-
termine the approximate resolution a display should
have to match the number of sensors in the eye. For
the sake of simplicity, we will assume that one pixel
in a display may roughly correspond to one sensor in
the retina. Since the human eye has a field of view of
nearly 180 degrees, an initial estimate on the number
of sensors required to replicate an impression in each
of the retinas would result in about 70 samples (pixels)
per degree, based on a circular mapping with a diam-
eter of 12,600 sensors for 180 degrees. Accordingly,
we propose setting the baseline of display resolution
to 70 pixels per degree (ppd) to support peripheral vi-
sion. A similar principle was used when Apple intro-
duced its line of retina displays. Apple’s retina dis-
plays present in different products such as the Apple
Watch, iPad and iMac Retina 5K, range from 57.5 ppd
to 86 ppd [Wik15]. It is worth noting that the physical
size of the display, its resolution and typical distance
of use are taken into account to estimate these figures.
Apple’s ppd estimates are based on the capacity of dis-
plays to support 20/20 vision, a relative measure of vi-
sion describing an individual who can see as well as
most other people.

Not all light sensors in the retina work the same,
some work as illumination sensors (rods) and some
work as color sensors (cones). The cones are di-
vided in three color sensor types, specialized in the
perception of each of the red, green, and blue light
frequencies. In addition, the rods and cones are not
evenly distributed in the retina. For instance, there
are more cones to perceive red light than there are to
perceive other frequencies. In addition, the retinal re-
gion called the fovea corresponds to a special adapta-
tion containing exclusively cones, which are densely
packed and support the sharpest vision. The retinal
fovea is essential for all activities that require the abil-
ity to perceive visual detail, such as reading and driv-
ing [KNFJ16]. It can be argued that this is the most
important structure of the human eye that stereoscopic
displays need to support when it comes to the percep-

tion of visual detail. Although each human eye has
a field of view of nearly 180 degrees, the fovea cov-
ers only 15 degrees of the total field of view of the
eye [NG16]. In the fovea there are 17,000 cones per
square degree [KNFJ16], meaning a resolution of 130
x 130 pixels per degree would be necessary for a dis-
play to support the sharpest human vision, as captured
by the fovea. For this reason, we propose to set the
baseline for supporting high visual detail in the cen-
tral region of the HVS at 130 pixels per degree. This
may not seem like a particularly large number, but
it is about twice as much as the overall proposed by
some manufacturers [Wik15, Kan15]. For instance,
AMD [Kan15] has produced an estimate of 116 mil-
lion pixels (116 MPixels) to support stereoscopic vi-
sion. These 116 MPixels are distributed over the ver-
tical and horizontal fields of view assuming a single
display would be used to cover the complete field of
view of a viewer (which is about 200 degrees horizon-
tally and 135 degrees vertically), including the shared
region between both eyes. Their estimate of display
resolution to support overall stereoscopic vision is 60
ppd. However, in regards to the capabilities of the
HVS, it could be argued that pixel density should be
higher around the center of the field of view, where the
visual field of both eyes overlap, and should be lower
in the sides, in areas that support peripheral vision.

5.2 Field of View

The entire human binocular field of view (FOV) ex-
tends 190 degrees horizontally and 135 degrees ver-
tically [HR95, SDM12], so we propose to use these
figures as the baseline for supporting the complete
horizontal and vertical binocular fields of view. In
terms of coverage of the visual field of view, most
display manufacturers have focused on two different
approaches to support immersive AR and VR: either
to cover a large part of the field of view at the ex-
pense of a lower resolution, or cover a limited part
of the field of view and provide a good screen res-
olution. Because of the presence of the nasal block,
which reduces the field of view in the region between
the eyes, each individual eye’s FOV is about 170 de-
grees horizontally [SDM12]. Stereoscopic displays do
not need to cover the entire 170 degree field of view
for each eye separately, because the eyes share a good
portion of the entire field of view (114 out of 190 de-
grees) [HR95]. The eyes capture detail in a small re-
gion of the entire field of view. However, because
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the eyes move around to discover detail, for example,
when we are reading, the region that the HVS covers
to find sharp details includes eye individual eye rota-
tions with a maximum amplitude of about 80 degrees,
so the region that is suitable for viewing sharp details
and stereo vision covers about 50 % of the whole field
of view [Ful96]. This region occupies the center of
the field of view. Therefore, two regions can be dis-
tinguished in the HVS; one that usually supports the
central and highly detailed vision requiring 130 pix-
els per degree over about 50 % of the shared (central)
FOV and another that supports peripheral vision with
only 70 pixels per degree required over the remaining
(temporal) part of the entire field of view.

5.3 Assessment of Immersive AR and VR
Equipment

We divide our assessment in three main categories:
Head Mounted Displays (HMDs) for immersive
AR/VR, RGB Video Capture (mainly relevant for AR
systems) and Depth-sensing cameras, which are useful
for gesture capture and interpretation and for capture
of the users’ short- and medium-range surroundings.

5.3.1 Assessment of Head Mounted Displays

There is a flurry of development in hardware designed
to support stereo vision in immersive Virtual Reality
and Augmented Reality through Head-Mounted Dis-
plays [Ave16, Vir15, Vuz11, Vuz15, Sam15, Eps15].
The main configurations that have been recently pro-
posed by HMD manufacturers to support stereoscopic
vision in Augmented Reality and immersive VR are
analyzed in this section. In Table 12, we characterize
HMDs based on their support of a wide field of view
and in terms of their pixel density, as a function of the
capabilities of the human visual system. Display sup-
port of general vision, i.e., at a baseline of 60 ppds,
varies from 17 % to 80 %. To support a baseline of
130 ppds for detailed vision, current display support is
between 8 % and 17 % . The binocular horizontal FOV
coverage ranges from 11 % for the most dense ppd dis-
plays to 49% for the widest FOV displays, this was es-
timated taking into account that the binocular field of
view extends slightly over 190 degrees [HR95]. The
vertical FOV coverage goes from 3 % in some displays
to 74 %. These larger amounts (with respect to the hor-
izontal FOV coverage), stems from the fact that the
vertical FOV is 135 degrees, significantly smaller than

the 190 degrees covered horizontally. On a separate is-
sue, from the data shown in Table 12, it can be clearly
concluded that displays that provide a wide field-of-
view support exhibit the lowest density of pixels per
degree. To characterize visual support provided by
these very different technologies, we have introduced a
measure called the Overall Visual Support (OVS). The
OVS is calculated as the average of the four main met-
rics found earlier: general vision pixel density support,
detailed vision pixel density support, and the binocu-
lar horizontal and vertical field of view coverage. Note
that under this metric, a monocular display such as the
Vuzix M100 or Google’s Glass, would achieve a max-
imum of 50 % binocular FOV coverage, as the missing
display would be accounted as 0 % coverage. With this
metric, we are able to characterize the current state of
the art in the display hardware, where a value of 100 %
would imply a complete match to the characteristics
of the HVS in binocular systems. This measure shows
that current displays support from 20 % to 37 % of the
HVS capabilities when the field of view and sensor
density are taken into consideration.

5.3.2 Assessment of RGB Video Cameras

In addition to HMDs, Augmented Reality applica-
tions heavily rely on the use of RGB video cam-
eras to capture elements from the real world that may
need to be integrated with computer generated im-
agery [Int14, Int15, Ste15, Ash14]. The capacity of
these cameras to convert visual detail would also have
an impact on the user’s ability to perceive visual and
peripheral detail while wearing an HMD. Two main
groups of cameras can be used to capture the envi-
ronment: RGB cameras and Depth-sensing cameras.
In some cases, these cameras are already integrated in
one device, however, for the sake of a cleaner analysis
we will consider them separately. First, we charac-
terize the support RGB cameras provide to the users
in terms of support for general vision pixel density,
detailed vision pixel density and capture of a wide
field of view. In Table 13, we characterize RGB cam-
eras based on their support of stereoscopic capture,
the amount of detail these cameras capture, and the
field of view they cover. The values shown in the gen-
eral vision sensor density are measured based on the
cameras horizontal resolution and field of view against
the baseline of 60 ppd. The highest resolution cam-
eras provide reach up to 74 % support and down to
19 % support. For detailed vision sensor sensitivity,
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Pixel Pixel Binocular Overall
Latency Dens. Dens. FOV FOV FOV Visual

Head Mounted Display (Hz) PPD Gen. Detail Horizontal Vertical Coverage Support

Oculus Rift DK2 60 10.2 17 % 8 % 49 % 74 % 62 % 37 %
Samsung Gear VR 50 20.1 33 % 15 % 34 % 53 % 43 % 34 %
Avegant Glyph 60/120 33.5 56% 26 % 20 % 18 % 19 % 30 %
Vuzix Wrap 1200 VR 60 27.9 47 % 21 % 16 % 13 % 14 % 24 %
Vuzix M100 Mono AR 60 31.1 52 % 24 % 3 % 3 % 3 % 20 %
Epson Moverio BT 200 60 47.9 80 % 37 % 11 % 8 % 9 % 34 %

Table 12: Assessment of Binocular Vision Support Provided by Head Mounted Displays

the baseline is 130 ppd and the resulting coverage goes
from 34 % at the highest end to 9 % at the lowest end.
Binocular field of view coverage for RGB cameras dis-
plays much less variation, with ranges from 23 % up to
50 % of the 190 degrees baseline. In terms of the ver-
tical FOV coverage the range is similar, 29 % to 47 %;
however, those devices which rank high in the hori-
zontal FOV coverage are not the same as those which
rank high in the vertical FOV coverage. Finally, results
show some of the latest cameras support from 33 %
to 45 % of the ideal overall visual support. It is not
possible, however, to simply choose the camera that
provides the best Overall Visual Support and attach it
to an HMD. It is important to take into account the
amount of visual detail that the HMD supports when
compared to each single camera. For instance, a cam-
era that captures 74 % of the visual detail may not be
of much benefit to the user if the camera is connected
to a display that has a general vision pixel density sup-
port of only 17 %, such as the Oculus DK2. A similar
point can be made with respect to Field of View.

5.3.3 Assessment of Depth Sensing Cameras

Our analysis of depth-sensing cameras is made from
the point of view of depth sensors which are mounted
on the user and focuses on the support these pro-
vide for free motion and tracking of hands, referred to
as wide gestural space, for short- and medium-range
depth estimation, for the combined depth-sensing sup-
port and for the combined depth sensing and wide field
of action support. Depth-sensors are used for a vari-
ety of applications, but in this case, we concentrate on
the use of depth-sensors as wearable or at least first-
person perspective devices to support tasks and ac-
tions that depend on the correct interpretation of depth
data [Mot15, Int14, Int15, Ste15, Ash14]. When we

refer to a wide field of action, we hypothesize about
the support the body-worn devices provide for a user
moving his or her arms and hands in a wide space,
or whether the user is restricted to move within a cer-
tain region where the sensor is functional. To measure
short range depth support we measure the coverage of
the sensors within the first meter, which is about the
longest distance that a person can reach with extended
arms. The medium-range depth support is estimated as
the amount of depth coverage the device supports from
the first meter within the first 35 meters (as defined
by [SJK+07]), excluding the short-range coverage re-
gion and is relevant to the estimated depth and place-
ment of objects that are within the interaction space
of the user. The combined depth-sensing support is
estimated as the average of the short and the medium-
range depth-sensing support. Table 14 shows the re-
sults of our analysis for a wide array of depth-sensing
cameras.

In terms of general vision pixel density support
(measured horizontally), depth-sensing cameras vary
from 7 % to 38 %. Detailed vision support is be-
tween 3 % up to 18 %. These numbers are clearly in-
sufficient for high detail capture and are dramatically
lower than the figures of RGB sensors previously dis-
cussed. The reason for this may be two-fold: first, es-
timating depth from stereo involves an additional extra
processing step; and second, depth-sensing technolo-
gies are newer than other technologies. Nevertheless,
depth-sensing cameras provide valuable information
for stereoscopic manipulation, as well as for combin-
ing depth-cues from the synthetic world with depth-
cues from the outside world, for both near and distant
located objects. These cameras provide a wide range
of angular field of action support, from 31 % to 84 %,
with the latter being much more preferable. There are
two categories of depth-sensing cameras, some sup-
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Stereo Sensor Sensor Binocular Visual
Latency Video Density Density FOV Capture

RGB Camera (Hz) Capture PPD General for Detail Coverage Support

Intel Real Sense R200 30-200 No 27.4 46 % 21 % 34 % 34 %
Intel Real Sense F200 30/60 No 27.4 46 % 21 % 34 % 34 %
ZED-15 30-120 Yes 23.0 38 % 18 % 45 % 37 %
ZED-30 15 Yes 20.0 33 % 15 % 45 % 35 %
Microsoft Kinect V1 30 No 11.2 19 % 9 % 31 % 22 %
Microsoft Kinect V2 30 No 27.4 46 % 21 % 41 % 37 %

Table 13: Assessment of RGB Video Capture for Use in Immersive Augmented Reality.

Angular Gesture Short &

Pixel FOA & Short- Medium- Medium

Latency Range Range Dens. & FOV Range Range Distance

Depth Camera (Hz) min max PPD Gen. Capture Capture Capture Support

Leap Motion 200 max 2 cm 60 cm 4.3 7 % 84 % 58 % 2 % 30 %
Intel Real Sense R200 30/60 20 cm 1.2 m 10.4 17 % 34 % 80 % 3 % 41 %
Intel Real Sense F200 30-120 51 cm 4 m 8.1 14 % 43 % 50 % 10 % 30 %
ZED-15 15 1.5 m 20m 23.0 38 % 45 % 0 % 53 % 26 %
ZED-30 30 1.5 m 20m 20.0 33 % 45 % 0 % 53 % 26 %
Microsoft Kinect V1 30 40 cm 4.5 m 5.6 9 % 31 % 80 % 12 % 46 %
Microsoft Kinect V2 30 50 cm 8 m 7.3 12 % 41 % 70 % 21 % 46 %
ZED-15 + R200 * 15 20 cm 20m N/A N/A 40 % 80 % 56 % 68 %
* Hypothetical mix

Table 14: Assessment of Depth Sensing Cameras Support for Gestural and Medium Distance Capture.
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port exclusively short-range capture suitable for arm
and hand gesture interpretation, and some are exclu-
sively suitable for medium-range depth-sensing pur-
poses. Currently, a mixture of technologies would be
suitable to cover a significant range of depth-sensing.
For instance, combining an Intel RealSense R200 with
a ZED -15 camera would hypothetically allow the cap-
ture of depths fields from 0.2 to 20 meters, i.e., 68 %
of the support needed for short and medium distance
capture.

5.4 Reduction of visual acuity with aging

As we have discussed in Section 3, visual acuity de-
creases with age. The practical consequence of this
fact is that most existing devices might initially be suit-
able enough for older age individuals. As technolog-
ical advances move towards the ideal display resolu-
tions described previously, younger segments of the
population would increasingly benefit from them.

6 Conclusions

In this paper, we present a new approach in which we
suggest that the schemes for evaluating stereo algo-
rithms should be designed based on the specific re-
quirements of the target application and the character-
istics of the human visual system. We then applied this
concept to the particular application of AR in outdoor
environments. We have chosen outdoor environments
in this research since augmented reality systems and
stereo vision algorithms deal with more challenges in
these environments due to external factors that cannot
be easily controlled, such as the effect of shadow and
lighting. As a result, a practical analysis on the perfor-
mance of the stereo algorithms, in terms of accuracy
and processing time as perceived by the HVS, was pre-
sented. The results over the masked regions did not
show any significant benefit to the evaluation of the
areas near the depth discontinuities and occluded re-
gions; however, as mentioned previously, this might
be merely an indication of the performance of the al-
gorithms we selected for evaluation and can only be
better analyzed by evaluating more algorithms within
our model. In either case, we hypothesize that, due
to the importance of occlusion and areas near depth
discontinuities to the HVS for the perception of depth
in AR applications, it might be reasonable to focus
more on the regions that contain depth edges and their
surroundings when designing or employing a stereo

matching technique for an AR application. Valida-
tion of this hypothesis is a topic we would like to fur-
ther investigate in the future research. In this study,
we presented an experiment to show the effect of post
processing steps and refinement and its effect on the
performance of the stereo algorithms. In addition, we
presented an experiment to show the importance of the
hardware used in AR systems, their resolution and ro-
bustness to noise and proved how important those fac-
tors are despite the accuracy of the results achieved by
the software and the stereo algorithms in such applica-
tions. Further on, we would like to assess the benefits
of our model for other AR applications, such as under-
water environments and explore other factors which
may also affect the evaluation process, such as the ef-
fect of contrast and brightness.

Our assessment of equipment characteristics evalu-
ates hardware based on the amount of visual detail that
can be captured by the HVS and the field of view of
cameras and sensors used for immersive AR/VR sys-
tems. In our evaluation of HMDs, we confirmed our
perception that devices that cover a wide FOV provide
relatively low visual detail support in terms of pixels
per degree. Alternative devices which provide high
levels of visual detail are restricted to displaying much
smaller regions of the binocular FOV. In our evaluation
for RGB cameras, which are mainly meant to support
interactions in immersive AR systems, we present that
the amount of visual detail provided is higher than that
found in HMDs, and the binocular FOV coverage is
much more standard, between 31 % and 45 % of the
ideal support needed for visual capture of the users’
surroundings. Based on our study, depth-sensing cam-
eras are used in two distinct type of applications. In
the short range, they are used to capture and interpret
users’ gestures and commands, and the angular field
of action and field of view capture is between 31 %
to 84 % of the 190 degree of action. In the medium
range, depth sensors are used to estimate depths from
1 to 20 meters, covering up to 56 % of the medium
range of capture. Short- and medium-range depth sen-
sors can be combined to provide support both gesture
and short distance estimation, as well as depth capture
of the users’ environment.
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Figure 13: Sample outdoor scene from KITTI stereo dataset. Top: left image. Bottom: right image

Figure 14: The mask of depth edges and their surrounding regions for Figure 13

Figure 15: Masked ground truth for Figure 13

urn:nbn:de:0009-6-44179, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 13(2016), no. 2

Figure 16: Masked disparity by SGBM for Figure 13

Figure 17: Masked disparity by ADCensusB for Figure 13
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