
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
MIG '15, November 16 – 18, 2015, Paris, France.
© 2015 ACM. ISBN 978-1-4503-3991-9/15/11…$15.00
DOI: http://dx.doi.org/10.1145/2822013.2822027

Automatic and Adaptable Registration of Live RGBD Video Streams

Afsaneh Rafighi∗ Sahand Seifi† Oscar Meruvia-Pastor‡

Department of Computer Science
Memorial University of Newfoundland

Abstract

We introduce DeReEs-4V, an algorithm that receives two separate
RGBD video streams and automatically produces a unified scene
through RGBD registration in a few seconds. The motivation be-
hind the solution presented here is to allow game players to place
the depth-sensing cameras at arbitrary locations to capture any
scene where there is some partial overlap between the parts of the
scene captured by the sensors. A typical way to combine partially
overlapping views from multiple cameras is through visual calibra-
tion using external markers within the field of view of both cameras.
Calibration can be time consuming and may require fine tuning,
interrupting gameplay. If the cameras are even slightly moved or
bumped into, the calibration process typically needs to be repeated
from scratch. In this article we demonstrate how RGBD registra-
tion can be used to automatically find a 3D viewing transformation
to match the view of one camera with respect to the other without
calibration while the system is running. To validate this approach,
a comparison of our method against standard checkerboard target
calibration is provided, with a thorough examination of the system
performance under different scenarios. The system presented sup-
ports any application that might benefit from a wider operational
field-of-view video capture. Our results show that the system is
robust to camera movements while simultaneously capturing and
registering live point clouds from two depth-sensing cameras.

CR Categories: I.2.10 [ARTIFICIAL INTELLIGENCE]: Vision
and Scene Understanding—3D/stereo scene analysis I.4.1 [IMAGE
PROCESSING AND COMPUTER VISION]: Digitization and Im-
age Capture—Camera Calibration I.4.3 [IMAGE PROCESSING
AND COMPUTER VISION]: Enhancement—Registration;

Keywords: wide-screen 3D video, registration of multiple RGBD
cameras, field of view extension

1 Introduction

With the introduction of the Kinect, RGBD sensing cameras be-
came widely acknowledged as input devices for gesture-controlled
and immersive virtual reality games, offering affordable hardware
to obtain hand and body gesture recognition. Since then, RGBD
sensing cameras have been adopted for a wide range of applica-
tions in arts, science, and the health sector among others [Lun and
Zhao 2015]. One limitation of these cameras is in their field of
view. In a typical playing scenario two adult users standing side
by side and playing against each other in an action game might oc-

∗e-mail:afsaneh.rafighi@mun.ca
†e-mail:sahands@mun.ca
‡e-mail:oscar@mun.ca

casionally hit each other during gameplay. A solution to address
this problem is having a system where each user has his or her own
separated playing area, sometime over a network. However, this
might not be ideal for family or group play. In this work, a solution
is proposed to widen the operational field-of-view of Kinect-type
sensors by using two sensors placed next to each other to capture
elements that would otherwise fall outside of the scope of a single
camera. The cameras can be placed in arbitrary locations in front
of the captured scene; they do not need to be at the same height or
otherwise aligned. The main requirement for this system to work is
that the cameras share part of their corresponding fields of view to
allow for automatic 3D video registration to take place. Using this
setup, users can move the sensors and combine the views from two
cameras to involve more users in the game, to provide more per-
sonal space for players to move and act more freely, or to change
the focus of attention to a different part of the room.

Apart from its use in games, depth-sensing cameras are used ex-
tensively in other research and commercial applications. A recent
survey on the applications of Kinect sensors lists 9 different areas
of applications and over 80 different documented cases [Lun and
Zhao 2015]. In Virtual Reality games, RGBD sensors are also used
to provide an immersive experience [Laskowski ,Raghuraman et al.
2012, NVIDIA]. In the health-care sector, active and immersive
games are being used together with RGBD sensors to help reha-
bilitate patients with motor disabilities and for other treatments as
well [Koenig et al. 2014, Webster and Celik 2014, Altamimi and
Skinner 2012]. To increase the sense of immersion in video confer-
ences, [Zhang et al. 2013b] proposed one of the first Kinect-based
3D video conferencing systems. While most of these applications
are based on the use of one camera per person, the simultaneous
use of multiple RGBD cameras has also great potential. For exam-
ple, as part of a medical exam, multiple calibrated cameras are be-
ing used to record the gait patterns of patients walking within large
rooms [Czarnuch and Ploughman 2014, Cippitelli et al. 2015].

Applying multiple depth sensing cameras not only helps capture a
larger portion of the environment: With the help of another camera,
parts of the scene which are occluded by one camera can be cap-
tured by the other. For example, the left corner of Figure 1(a) is not
captured due to the shadow of the user in front of camera one. How-
ever, the second camera has captured that space (Figure 1(b)). As
a result, the registered point cloud provides a more comprehensive
representation of the scene, as shown in Figure 1(c).

Having a multi-camera system typically requires careful calibra-
tion of the cameras as an initial setup [Zhang 2000]. After finding a
coarse transformation of point clouds through calibration, registra-
tion methods such as ICP [Besl and McKay 1992] and its variations
are used to perform a fine alignment on them. The calibration pro-
cess can be time consuming and has to be repeated whenever the
cameras are moved. It is a cumbersome task for users, whether
they are in a video conferencing or playing a game; even for reg-
ular researchers, this step can be frustrating and time-consuming.
In all of these cases, users could benefit from a system that is both
automatic and robust, particularly if the cameras are moved while
the system is working, as can easily occur in gaming situations that
involve multiple parties and physical activity.

243

Figure 1: Effect of having a multi-depth sensor system. Areas occluded by each of the cameras,(a) and (b), are complete in the registered
point cloud(c).

Motivation and Contributions The aim of this research is to
have a robust and flexible automatic registration system when using
multiple depth-sensing cameras for capturing video streams. The
registration of cameras sharing partial views of the scene provides
more room for players to act more freely or for more people to
take part in the game. The system must be user-friendly, so that no
calibration should be required for operation. In addition, the sys-
tem must be robust to camera displacements as long as they share
part of the viewed scene after displacement. To do this, we modi-
fied DeReEs [Seifi et al. 2014], a registration method that has been
proven to work for registering individually captured RGBD images,
but that we have adapted for video processing. DeReEs works for
cameras that share small overlapping regions within their field of
view. In contrast, other algorithms such as ICP require point clouds
to be fairly similar and roughly aligned with each other prior to at-
tempting the registration. The key contribution of this work is the
introduction of an adaptable registration system that captures wider
scenes by combining RGBD point cloud video streams from two
Kinects that can be moved during interaction. Further, we provide
a thorough demonstration of its robustness in maintaining point
clouds’ alignment under various conditions. Additional contribu-
tions, described in Section 3, include extending the Octree point
cloud compression method for two depth sensing cameras, apply-
ing ICP in the last step of the algorithm, detecting camera move-
ment and a mechanism to enhance the quality of the registration
over multiple iterations during the first seconds of use.

Since no calibration is necessary, the system is fast and removes
the hassle of the initial calibration of the cameras. In this work,
we show that users can easily move cameras around to change the
portion of the scenario that is captured. This feature is also useful in
situations where users enter in contact with the cameras and move
them inadvertently or in situations where cameras cannot be set at
fixed locations permanently.

The rest of the article is structured as follows: In Section 2, a review
of the most related systems along with an overview on camera cal-
ibration and point cloud registration is provided. In Section 3 our
system is presented in detail. In Section 4 we present an evaluation
of the proposed system, and Section 5 presents our conclusions and
suggestions for extending this work.

2 Related work

A large body of work exists regarding regular camera calibration
methods, which predates depth-sensing cameras. As discussed
in [Zhang 2000], calibration methods are classified in two general
ways as photogrammetric calibration and self-calibration. In
photogrammetric calibration, an object for which its 3D geometry

in the real world is known is used as reference. The latter does not
require an object. By moving the camera in a scene, internal and
external parameters are recovered by finding the correspondence
between only three images. A common approach is to use Zhang’s
method [Zhang 2000], which is implemented both as a toolbox in
Matlab [Bouguet 2004] and in the OpenCV library [Bradski 2000].
In this method, a planar pattern, usually a checkerboard, is observed
from at least two different orientations. Then, the intrinsic and ex-
trinsic camera parameters are obtained. The use of RGBD sensors
also requires calibration methods, since the depth sensor and the
RGB camera are separated by a small baseline. After taking several
snapshots of the object, the 3D coordinates of the feature points are
extracted from the RGB camera. Depth values are obtained from
the depth sensor’s coordinate system, and a feature matching be-
tween the RGB and depth image results in features getting their
true depth value based on the RGBs coordinate system.

RGBD sensors have also been used for 3D scanning through reg-
istration with a single sensor, such as in [Newcombe et al. 2011]
or [Henry et al. 2012], where a camera is moved around a scene
or object to acquire a 3D model of it, or for indoor 3D mapping
and localization, to provide 3D maps in real-time (e.g. [Zou et al.
2012]).

Since the use of multiple cameras provides an effective way to more
comprehensively capture a scene and provide a sense of immersion,
videoconferencing systems have long made use of multiple cam-
eras. [Zhang et al. 2013a] proposed an immersive teleconferencing
system where users are rendered in a virtual room as if they are
seated around a table. Each site is equipped with 3 IR cameras, 3
color cameras and two IR laser projectors, carefully calibrated. The
assumption in their setup is that there is only one user at each end
during the conference and eye-tracking methods are used to render
the virtual room according to each user’s gaze. In a related ap-
proach, [Maimone and Fuchs 2011a] proposed a telepresence sys-
tem that works by merging overlapping views from multiple Kinect
cameras. There, a fully dynamic 3D scene capture system that also
preserves gaze is presented. This work was improved later in [Mai-
mone and Fuchs 2011b] by using bigger and higher resolution 3D
displays to convey the feeling of a window through another room.
In [Beck et al. 2013], an immersive telepresence system is presented
that allows meeting of a group of people in a shared virtual 3D
world. In their setup, two projection-based multi-user display sys-
tems, two arrays of Kinects, and a distributed virtual reality frame-
work named AVANGO is used. It is important to note that in all
multi-camera scenarios above, the cameras must be carefully cali-
brated and must be fixed and placed in a certain position during the
whole session, whereas the system we propose is designed to al-
low users to freely move the cameras around, as long as the partial

244

overlap requirement is satisfied.

The work of [Miller et al. 2013] proposing camera registration with-
out human supervision or fully textured environments is also re-
lated. Their goal is to calibrate two cameras placed in a cross-eyed
view setup (where the cameras do not share a background), based
on the analysis of the motion of a user or an object moving within
the field of view of both cameras. Instead of using feature match-
ing, they interpret the optical flow across multiple frames and find
their correspondence to obtain the extrinsic calibration parameters.
Foreground objects are used to obtain an initial transformation us-
ing RANSAC [Fischler and Bolles 1981]. This step gives a rough
transformation which is then refined by an occlusion-aware energy
minimization step. While their approach involves multiple cameras
and dynamic scenes, it has an average execution time of about 10
minutes, which makes the solution unsuitable for live operation or
on-line adjustments of camera arrangements.

In this article we present a rigorous evaluation of our systems per-
formance and its robustness in registering RGBD video streams.
We also assessed our systems capability to successfully register
users found in either the non-overlapping, the partially overlapping,
or at the boundaries of the overlapping regions of each cameras
views. We present a multiple depth-sensing camera system that al-
lows for interactive positioning of the cameras and does not require
a calibration operation, even after the cameras are displaced.

2.1 Point Cloud Registration

Point cloud registration refers to aligning point clouds captured
either using one depth-sensing camera (that is capturing a scene
from different viewpoints) or using multiple depth-sensing cam-
eras. Each of these point clouds have their own coordinate sys-
tem. In order to bring these point clouds to a single framework, so
that overlapping parts of point clouds intersect correctly, registra-
tion methods are used. As shown in [Seifi et al. 2014], registration
techniques with fast execution times, such as ICP, are mostly suc-
cessful when they are used for fine alignment but are not suitable
to align point clouds sharing small overlapping sections and having
significant differences in their geometry.

To achieve video registration of the two RGBD streams, we imple-
mented a modified version of DeReEs, called DeReEs-4V (DeReEs
for Video). We have introduced modifications to provide regis-
tration stability and adaptability over time to enable applications
that go beyond single image pair registration. We have also imple-
mented such as Octree point cloud compression for data transmis-
sion.

3 Implementation

Two Kinect cameras, Kl and Kr , are used at the sender side and
they are placed arbitrarily in an indoor environment in a way that
an overlap of at least 23% exists between two viewpoints. Streams
of two point clouds and RGB images, RGBDl and RGBDr , are
constantly being captured.

3.1 Methodology

The first stage of the registration is to find corresponding features
in both point clouds. In our system data is streaming constantly.
RGBD data of each camera is being buffered in separate threads
at the frame rate of 30fps. The input of the registration algorithm,
which is being executed on a separate thread, is a pair of RGBD im-
ages. RGB images of two cameras are obtained from each camera’s
RGB buffer and are constantly being uploaded to the GPU to apply
SURF feature matching on them. In the second step of DeReEs,

after finding a coarse transformation, the transformation is applied
on feature pairs and then, features larger than a distance threshold
are removed from the set. To increase the stability of the fine trans-
formation estimation, we use ICP on a small subset of the original
point cloud which contains only the 3D feature pairs that are left af-
ter false-pair rejection, the last step of the algorithm. We observed
that by performing ICP on the point clouds made from this small
set of remaining 3D feature pairs we obtain a registration transfor-
mation that gives us a correct alignment and is more stable over
several iterations of DeReEs-4V. This modification does not intro-
duce much delay, as ICP is performed only on a small set of points,
executing in less than 1ms on average. Once the transformation
registration is found, it is applied on one of the point clouds. As a
result, point clouds are registered and updated in 65ms, or 15 fps on
average. Point clouds can be registered continuously from scratch
at this rate, and the quality of the registration produces matches that
are successful in producing well matched backgrounds. However,
the registration of elements in the foreground may still need some
fine tuning after the initial transformation has been found, so we
use the registration information gathered over several iterations of
DeReEs-4V to improve the quality of the registration results when
the cameras are not moving for a few seconds. After a registered
point cloud is produced, it is compressed using the Octree compres-
sion method implemented in Point Cloud Library(PCL) [Aldoma
et al. 2012]. Then, it is sent over the network to the client’s side to
decompress the registered point cloud and view it, being updated
continuously. The algorithm is outlined in Algorithm 1.

Data: Two live video streams RGBDl,RGBDr

Result: Registered point clouds
Cam1IsMoved
← DetectCameraMovement(RGBDlprev,RGBDlcurr)
Cam2IsMoved
← DetectCameraMovement(RGBDrprev,RGBDrcurr)
T← DeReEs-4V (RGBDl, RGBDr)
if Cam1IsMoved or Cam2IsMoved then

Erase memory
score← countfeatures
memory← T

else
if count features > score then

memory← T
update score

else
T← memory

end
end
Algorithm 1: Algorithm 1: An iteration of the registration system
using DeReEs-4V.

To accomplish this without introducing much delay, the different
tasks are executed by different threads. One thread is responsi-
ble for capturing point clouds and RGB images and putting them
in their buffers, while the other thread executes the registration by
reading from the input buffers. Once a registration is found, another
thread performs the visualization step using Point Cloud Library vi-
sualizer.

Since the system is designed to work with live video streams, sev-
eral enhancements were made to account for the two scenarios de-
scribed below.

3.1.1 Scenario one: Cameras are stable

One important observation is that during live capture and registra-
tion, each registration transformation obtained will be slightly dif-

245

Table 1: The speed of the different stages of DeReEs-4V measured on a case where the cameras are located apart from each other with 30%
scene overlap (Figure 1).

Step Camera Registration (ms) Camera Movement Detection (ms)
Feature Matching 24.15 21.33

Coarse Transformation Estimation 35.59 40.32
Bad Features Removal 0.19 0.95

ICP 0.86 1.02
Total DeReEs-4V(ms) 60.79 63.62

Table 2: The comparison between our algorithm and Miller et al. [Miller et al. 2013]. Results of Sequence 1 to 3 are retrieved from their
article.

Our algorithm Errort(cm) Errorr(◦) Miller et al. Errort(cm) Errorr(◦)
Figure 1(30% overlap) 0.62 0.44 Sequence 1 3.43 0.70
Figure 1(50% overlap) 0.59 0.61 Sequence 2 2.75 0.49
Figure 1(75% overlap) 0.70 0.98 Sequence 3 4.67 1.23

ferent than the previous one. This results in the point clouds up-
dating themselves with different values in the registration matrix.
This becomes noticeable by the viewer as a form of ”flicker” effect
or vibration stemming from the continuous update of the registra-
tion information. Our solution to this problem is to detect if either
camera is moved, updating the registration when any of the cameras
are moved. We noticed that over a period of time of 15 seconds or
more, a registration could be chosen as the best overall, as long as
cameras are stable and no considerable changes in the user’s move-
ments are observed. To take advantage of this fact, we implemented
a memory mechanism to keep the best possible registration found
so far, as long as cameras do not move. In order to do this, we
stored the score of the metric DeReEs-4V used to find the best reg-
istration. DeReEs-4V randomly selects three feature points for a
number of iterations and finds transformations between the features
in one camera and their corresponding pairs in the other camera.
After the transformation matrix is found, it is applied to all features.
The number of features which have distance less than a threshold
(5cm) is counted. After that, the transformation with the highest
number of successful feature pairs is chosen as the best transforma-
tion. In our case, after the score is found and the transformation is
used, this score and its transformation are saved in memory. Each
time a new registration at a different time stamp is obtained, the
score is compared to the previous one in the memory. If the score is
higher, the best transformation over time is then changed and new
score and its transformation are saved in memory.

Table 3: Execution times of camera motion detection and registra-
tion per iteration and across multiple iterations to achieve seamless
registration, measured on different video stream capture scenarios:.
Case 1-One camera is located higher than the other (Figure 5).
Case 2-Cameras are located far from each other with 30% overlap
(Figure 1). Case 3-Two users with one being captured by only one
of the cameras (Figure 3).

Step Case 1 Case 2 Case 3
Camera Movement Detection (ms) 68.55 63.42 72.75

DeReEs-4V Registration (ms) 77.81 66.40 57.73
Seamless Registration (seconds) 8.2 15.30 12.25

3.1.2 Scenario two: Cameras are moved

When the cameras are moved, the memory has to be refreshed,
since the best transformation found so far is not correct anymore for

the new coming point clouds. To detect camera movement, we take
advantage of DeReEs-4V itself. A separate thread is responsible for
applying DeReEs-4V on each camera’s buffer. Assuming we have
two RGBDs from the same camera (left one, for instance) taken at
time tprev and tcurr . Each new RGBD obtained from each camera
is given as input to DeReEs-4V. The result is a registration matrix
that shows the transformation and orientation of the two frames.
This matrix is saved and the current RGBD is saved as the previous
frame while the new frame is obtained. DeReEs-4V is then applied
on these two RGBDs. If the cameras have not been moved, the
difference between the new transformation matrix and the previous
one would be minimal. If this differential matrix is higher than a
certain threshold (0.05), the main thread receives the notification
that cameras have moved, causing the internal memory to be erased
and the registration data to be reset.

4 Evaluation

In our experiments, two MicrosoftTMXboX 360 Kinect cameras are
used at each end to capture a portion of an indoor office space. The
Kinects are connected to a PC equipped with an Intel(R) Core(TM)
i7-960 CPU with a NVIDIA GeForce GTX 570 GPU, 1280MB
memory, 480 CUDA cores, running Ubuntu 14.04 64-bit.

The GPU implementation of SURF feature matching in OpenCV
is used. The Point Cloud Library is used for point cloud stream
capturing from both Kinects simultaneously to visualize the aligned
point clouds, and to use Octree point cloud compression implemen-
tation for streaming the point clouds over the network.

Our experiments are based upon different video capturing scenarios
where one, two or three users are captured under varying conditions
as shown in Figures 2 to 5. The ground truth to which we are
comparing our results is obtained by calibrating cameras using the
RGBDemo software [Burrus 2012], designed for Kinect visualiza-
tion and calibration.

As mentioned in Section 2, the work of [Miller et al. 2013] is the
closest to what we achieved here in terms of alignment accuracy.
A direct comparison to their results is not possible since we did
not have access to their configurations and their video sequences;
however, we use the same methodology to obtain the ground truth.
The results and sequence pictures mentioned in Table 2 of Miller et
al.’s method are obtained from their paper [Miller et al. 2013].

We compared our results to the classic calibration method. Miller et

246

Figure 2: An example of successful registration of a multi user scene. Two users are captured by two Kinects, while the other one is captured
by only one camera. Images on the left shows the portions of the scene each Kinect cameras are capturing.

Figure 3: An example of successful registration of a multi-user scene where each user is captured by only one Kinect.

Figure 4: Example result of two users where half of one user is captured by one camera and the full body is captured by the other.

Figure 5: An example of successful registration of a multi user scene where one camera is located higher than the other one.

247

al. also evaluated their results based on the same method. In order
to compare our method to the ground truth, for each scene captured
we first calibrated the Kinects and then compared the calibration
parameters to our results being applied on the same camera pose.
As shown in Table 2, the results are very close to those obtained
from the calibration method with an average of 0.63cm translation
and 0.67 ◦ rotation errors. The results in Table 2 suggest that our
algorithm outperforms the work of Miller et al., in terms of transla-
tion and rotation error, using the same method to obtain the ground
truth. However, it is important to note that the video sequences and
configuration parameters are not the same and thus the differences
could be explained by other factors outside of our control.

As Table 1 shows, we measured the execution times of different
stages of the algorithm in a scenario of point clouds sharing 30%
overlap and the execution times for camera movement detection,
both included 100 RANSAC iterations to obtain a coarse trans-
formation estimation. Since camera movement detection is imple-
mented in a separate thread, its execution time does not influence
the execution time of the dual camera registration. Table 3 shows
the speed of the algorithm in different cases, both for camera mo-
tion detection and dual camera registration, and the execution time
across several iterations of DeReEs-4V until it is not possible to no-
tice any misalignment artefacts, when a seamless registration of the
point clouds is achieved.

We also evaluated the alignment improvement over time under
varying overlapping conditions of 10%, 25%, 50% and 70% for a
scene where one user is standing in front of the camera (Figure 1).
The number of features in Figure 6 shows the metric described in
Section 3.1.1, which is the number of feature pairs that update the
alignment to a better one over time. Each time a higher number
is found, the transformation is updated. According to the results,
camera arrangements where the overlap is small take longer time
to find a good transformation. For instance, for 10% of overlap,
it took 120.23ms to find a good transformation; However, it only
took 60.52ms for the cameras sharing 50% overlap to find a good
one.

0 1000 2000 3000 4000 5000 6000

0
5

10
15

20
25

30
35

Time(ms)

N
um

be
r o

f F
ea

tu
re

s

10% overlap
25% overlap
50% overlap
70%overlap

Figure 6: Performance of the algorithm over time under varying
overlapping conditions.

0 5000 10000 15000 20000 25000

0
5

10
15

20
25

30
35

Time(ms)

N
um

be
r o

f F
ea

tu
re

s

10% overlap
25% overlap
50% overlap
70%overlap

Figure 7: Performance of the algorithm over time under camera
movements.

Note that plots do not reach to the same point on the number of fea-
tures. This is because each scene has a different number of match-
ing features to start with. For example, scenes with high overlap
have high number of matching pairs, as well as scenes which many
distinctive features.

Figure 7 shows the performance of the algorithm under camera
movements. The captured scene is shown in Figure 1 in which one
user is standing in front of the cameras. Video capturing starts from
10% overlap. As the transformation stabilizes in each step, one of
the cameras are moved. The algorithm detects camera movement
and the memory is erased; therefore, a drop in the number of fea-
tures detected is observed. Once the transformation is found again,
point clouds are aligned again and continue to improve over time.

We also evaluated the algorithm by comparing the translation and
rotation error over time. Errors are obtained by comparing our
method to the standard calibration method. For this purpose, three
different overlaps of 30%, 50% and 75% are used in our measure-
ments. Figure 8 shows translation error in cm over a period of time.
Figure 9 shows the rotation error for the same overlapping condi-
tions over time. Results show that rotation and translation error are
kept to very low levels of less than 1cm in translation and 1◦ in
rotation error.

A video accessible at http://www.cs.mun.ca/
˜omeruvia/research/research.html shows sev-
eral usage scenarios. Since this system deals with video streams,
the video helps readers observe how the algorithm performs under
varying conditions. Four different scenarios are depicted in the
video. In the first one, cameras are stable and registration is
performed. A user walks in the scene, and registration is updated
as the person walks in. The second scenario shows two users being
captured by both Kinects and successfully registered. In scenario
3, one person is only visible in one camera, while the other user
is being captured by both. The first user walks in from the first
camera’s viewpoint towards the second camera, and the alignment
remains successful. Finally, in the fourth scenario, one of the

248

http://www.cs.mun.ca/~omeruvia/research/research.html
http://www.cs.mun.ca/~omeruvia/research/research.html

Figure 8: Translation error over time for three different overlaps.

Figure 9: Rotation error over time for three different overlaps.

cameras is moved and the result shows a successful registration
after the camera is moved.

5 Conclusions And Future Work

We have presented an automatic and adaptable registration system
using two Kinect cameras to capture and combine two RGBD video
streams providing a wider field of view. Our multi-camera system
allows for arbitrary camera placements and does not require camera
calibration. Our system successfully aligns point clouds on the fly
and is robust to camera movements while capturing point clouds
and visualizing them, automatically finding a good approximate
registration transformation in little less than 100 milliseconds and
a high-quality registration transformation in a few seconds. More-
over, the cameras need not be placed at the same height, they can
be placed at different heights and perform registration successfully.

Many potential extensions to this work and applications can be en-
visioned, for example, we are exploring active people tracking over
the extended field of view of both sensors and other algorithms that
can make use of the registered point cloud as a whole. To improve
the aspect of the rendering quality, hole- filling and point-rendering
algorithms can be used to present a smoother display of the envi-
ronment. Kinect cameras are suitable for capturing objects further
than 50cm, but the system proposed here could be used to regis-
ter video from depth sensing cameras with smaller depth-sensing
range, such as Intels Creative or it could be used to facilitate the
combination of different types of cameras. This work could also
be extended by using more than two Kinect cameras at each end.
In terms of applications, more point cloud processing algorithms
could be used on the resulting point cloud produced after registra-
tion, and the system could be used to support more users fitting
inside the wider field of view, or can provide a wider range of mo-
tion for a single user, which could be of benefit for motion capture
and gaming, robot and computer vision, simulation, training, and
health-related applications.

Acknowledgements

The authors of this work wish to acknowledge the assistance of Dr.
Lourdes Peña-Castillo for her support in interpreting and analyzing
the data. This work has been funded by a grant from the Office of
the Dean of the Faculty of Science, Memorial University of New-
foundland, Canada.

References

ALDOMA, A., MARTON, Z.-C., TOMBARI, F., WOHLKINGER,
W., POTTHAST, C., ZEISL, B., RUSU, R. B., GEDIKLI, S.,
AND VINCZE, M. 2012. Point cloud library. IEEE Robotics &
Automation Magazine 1070, 9932/12.

ALTAMIMI, R., AND SKINNER, G. 2012. A survey of active video
game literature. Journal of Computer and Information Technol-
ogy 1, 1, 20–35.

BECK, S., KUNERT, A., KULIK, A., AND FROEHLICH, B. 2013.
Immersive group-to-group telepresence. Visualization and Com-
puter Graphics, IEEE Transactions on 19, 4, 616–625.

BESL, P. J., AND MCKAY, N. D. 1992. Method for registration of
3-d shapes. In Robotics-DL tentative, International Society for
Optics and Photonics, 586–606.

BOUGUET, J.-Y. 2004. Camera calibration toolbox for matlab.

BRADSKI, G. 2000. Dr. Dobb’s Journal of Software Tools.

249

BURRUS, N., 2012. Rgbdemo: Demo software to visualize, cali-
brate and process kinect cameras output. https://github.
com/rgbdemo. Accessed: February 2015.

CIPPITELLI, E., GASPARRINI, S., SPINSANTE, S., AND GAMBI,
E. 2015. Kinect as a tool for gait analysis: Validation of a real-
time joint extraction algorithm working in side view. Sensors 15,
1, 1417–1434.

CZARNUCH, S., AND PLOUGHMAN, M. 2014. Automated gait
analysis in people with multiple sclerosis using two unreferenced
depth imaging sensors: Preliminary steps.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random sample
consensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Communications of the
ACM 24, 6, 381–395.

HENRY, P., KRAININ, M., HERBST, E., REN, X., AND FOX, D.
2012. Rgb-d mapping: Using kinect-style depth cameras for
dense 3d modeling of indoor environments. The International
Journal of Robotics Research 31, 5, 647–663.

KOENIG, S., ARDANZA, A., CORTES, C., DE MAURO, A., AND
LANGE, B. 2014. Introduction to low-cost motion-tracking for
virtual rehabilitation. In Emerging Therapies in Neurorehabili-
tation. Springer, 287–303.

LASKOWSKI, J. Ultra immersive game using kinect, vuzix
glasses and udk. https://youtube.com/watch?v=
ch3TD6u461I. Accessed: May 2015.

LUN, R., AND ZHAO, W. 2015. A survey of applications and
human motion recognition with microsoft kinect. International
Journal of Pattern Recognition and Artificial Intelligence.

MAIMONE, A., AND FUCHS, H. 2011. Encumbrance-free telep-
resence system with real-time 3d capture and display using com-
modity depth cameras. In Mixed and Augmented Reality (IS-
MAR), 2011 10th IEEE International Symposium on, IEEE, 137–
146.

MAIMONE, A., AND FUCHS, H. 2011. A first look at a telepres-
ence system with room-sized real-time 3d capture and life-sized
tracked display wall. Proceedings of ICAT 2011, to appear, 4–9.

MILLER, S., TEICHMAN, A., AND THRUN, S. 2013. Unsuper-
vised extrinsic calibration of depth sensors in dynamic scenes.
In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Inter-
national Conference on, IEEE, 2695–2702.

NEWCOMBE, R. A., DAVISON, A. J., IZADI, S., KOHLI, P.,
HILLIGES, O., SHOTTON, J., MOLYNEAUX, D., HODGES, S.,
KIM, D., AND FITZGIBBON, A. 2011. Kinectfusion: Real-time
dense surface mapping and tracking. In Mixed and augmented
reality (ISMAR), 2011 10th IEEE international symposium on,
IEEE, 127–136.

NVIDIA. Gaming’s future plays out at nvidia’s computex
demo hall. http://blogs.nvidia.com/blog/2015/
06/02/gaming-future-computex. Accessed: June
2015.

RAGHURAMAN, S., VENKATRAMAN, K., WANG, Z., WU, J.,
CLEMENTS, J., LOTFIAN, R., PRABHAKARAN, B., GUO, X.,
JAFARI, R., AND NAHRSTEDT, K. 2012. Immersive multi-
player tennis with microsoft kinect and body sensor networks. In
Proceedings of the 20th ACM international conference on Mul-
timedia, ACM, 1481–1484.

SEIFI, S., RAFIGHI, A., AND MERUVIA-PASTOR, O. 2014.
Derees: Real-time registration of RGBD images using image-

based feature detection and robust 3d correspondence estimation
and refinement. In Proceedings of the 29th International Con-
ference on Image and Vision Computing New Zealand, IVCNZ
2014, Hamilton, New Zealand, November 19-21, 2014, 136.

WEBSTER, D., AND CELIK, O. 2014. Systematic review of kinect
applications in elderly care and stroke rehabilitation. J. Neuro-
eng. Rehabil 11, 1, 108.

ZHANG, C., CAI, Q., CHOU, P. A., ZHANG, Z., AND MARTIN-
BRUALLA, R. 2013. Viewport: A distributed, immersive tele-
conferencing system with infrared dot pattern. MultiMedia,
IEEE 20, 1, 17–27.

ZHANG, D., YAO, Y., LIU, D., CHEN, Y., AND ZANG, D. 2013.
Kinect-based 3d video conference system. In Global High Tech
Congress on Electronics (GHTCE), 2013 IEEE, IEEE, 165–169.

ZHANG, Z. 2000. A flexible new technique for camera calibration.
Pattern Analysis and Machine Intelligence, IEEE Transactions
on 22, 11, 1330–1334.

ZOU, Y., CHEN, W., WU, X., AND LIU, Z. 2012. Indoor local-
ization and 3d scene reconstruction for mobile robots using the
microsoft kinect sensor. In Industrial Informatics (INDIN), 2012
10th IEEE International Conference on, IEEE, 1182–1187.

250

https://github.com/rgbdemo
https://github.com/rgbdemo
https://youtube.com/watch?v=ch3TD6u461I
https://youtube.com/watch?v=ch3TD6u461I
http://blogs.nvidia.com/blog/2015/06/02/gaming-future-computex
http://blogs.nvidia.com/blog/2015/06/02/gaming-future-computex

