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ABSTRACT
We present DeReEs, a real-time RGBD registration algorithm for
the scenario where multiple RGBD images of the same scene are
obtained from depth-sensing cameras placed at different viewpoints,
with partial overlaps between their views. DeReEs (Detection, Re-
jection and Estimation) is a combination of 2D image-based fea-
ture detection algorithms, a RANSAC based false correspondence
rejection and a rigid 3D transformation estimation. DeReEs per-
forms global registration not only in real-time, but also supports
large transformation distances for both translations and rotations.
DeReEs is designed as part of a virtual/augmented reality solution
for a remote 3D collaboration system that does not require initial
setup and allows users to freely move the cameras during use. We
present comparisons of DeReEs with other common registration
algorithms. Our results suggest that DeReEs provides better speed
and accuracy especially in scenes with partial overlapping.

Categories and Subject Descriptors
I.4 [Computing methodologies]: Image processing and computer
vision; I.4.5 [Computing methodologies]: Image processing and
computer visionReconstruction

General Terms
Algorithm, experimentation

Keywords
registration, alignment, 3d, reconstruction, multi-camera, feature-
based registration, rgbd

1. INTRODUCTION
The cost effective availability of depth sensing cameras has made

it possible to use 3D point clouds in many fields of research and in-
dustry. Depth cameras can be used to easily create partial 3D mod-
els of a scene or an object of interest. To gather more information
from the scene and build a more complete 3D model that covers all
sides, the depth cameras can be moved around the scene/object as in
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3D scanning applications (such as [13]) or multiple depth cameras
might be used simultaneously from different angles as in Virtual
and Augmented Reality scenarios [15]. In other scenarios such as
indoor robot localization (e.g. [7]), the camera is set up on the robot
and changes to the model indicates the movements and the location
of the robot.

In all these scenarios, to accumulate or compare point clouds
from different frames that are taken from different positions in the
same scene, the point cloud coordinates need to be transformed
into a unified coordinate system to determine their relevancy with
each other. Registration or alignment algorithms receive two point
clouds as input and estimate the transformation that transforms the
coordinates of one cloud into the other.

There are three main challenges regarding the existing registra-
tion algorithms. 1) Initial Pose: some algorithms heavily rely on
good initial pose of the input point clouds, or in other words, low
transformation distance between the two point clouds. Otherwise,
they are prone to local optimums (Figure 1). 2) Speed: less restric-
tive and more accurate algorithms are not well suited for real-time
applications. 3) Extent of overlap: most algorithms are designed
with the assumption that the input 3D images share all or most of
the scene and no major portion of the scene belongs to only one of
the 3D images.

The aim of this research is to design a registration technique that
can be used in scenarios where point clouds from 3D frames with
large pose distances can be aligned together in real-time. The mo-
tivation behind this research is to create a remote 3D collaboration
software where participants’ physical models and their surround-
ings are captured and shared with other participants as virtual or
augmented reality using multiple depth sensing cameras at each
end. Limiting the number of cameras requires the registration al-
gorithm to perform well with partially overlapping image pairs with
large transformation distances. Furthermore, for a smooth user ex-
perience the system must not require users to perform fine tuning
and alignment for use, while having minimal restrictions over how
the cameras are set up. A real-time registration algorithm is re-
quired to hold alignment if users decide to move the cameras dur-
ing communication or if they bump into the cameras, which is fore-
seeable considering the obstruction of vision by VR/AR wearable
glasses or head-mounted gears.

In this work, we propose DeReEs, a simple registration algo-
rithm that can handle large transformation distances both in terms
of rotation and translation and places no significant restrictions over
the 6 degrees of freedom. DeReEs is a refined version of the work
in progress presented in [21]; with improvements in the estimation
of the final fine transformation. It performs well with partially over-
lapping pairs (23% overlap or more) that cause most algorithms
fall into local optimums. Our experiments indicate that it performs
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Figure 1: Importance of initial pose in algorithms such as ICP.

faster (27fps) and more accurate than existing algorithms.

2. RELATED WORK

2.1 ICP
The ICP (Iterative Closest Point) algorithm originally introduced

by Chen and Medioni [9] and Besl and McKay [5] is widely used
and is well suited for registration of 3D point clouds with minimal
transformation distances; for example in scenarios where the depth
camera is capturing a scene with high frame-rates while moving
slowly as in hand-held 3D scanners.

ICP starts from an initial pose, which can be the default pose
from the 3D images or a coarse transformation found by another
algorithm. Then, a collection of corresponding pairs from both
clouds are selected (e.g. by closest distance or normal projection),
an error metric is calculated between the corresponding points (e.g.
least square [2]) and a transformation that minimizes the error met-
ric is applied. The process continues iteratively until a criteria is
met. The criteria is usually set as a number of iterations or when
the most recent transformation is negligible. Numerous variants of
ICP (such as [22], [14], [10] and surveyed in [20]) are proposed
that focus on individual steps of the algorithm.

With any of the ICP variations, the algorithm tends to fall in local
optimums if a poor initial pose of the point clouds (large transfor-
mation distance) and large amounts of non-overlapping points pre-
vent successful corresponding pair matching. With clouds that have
large non-overlapping parts, minimizing the error metric forces the
exclusive parts of the clouds to be pushed together. This is illus-
trated with an example in Figure 2. The correct transformation
would appear to have a large error measurement with distance-
based metrics since the non-overlapping sections between both point
clouds increase the total distance reported. In such scenarios, the
ICP algorithm would favour and estimate an incorrect transforma-
tion in an attempt to decrease the error metric (visualized in Fig-
ure 2b), unlike our proposed solution (Figure 2a).

2.2 3D-NDT
NDT (Normal Distributions Transform) was first used by [6] for

2D registration and was extended to 3D registration by [18]. In his
work, Magnusson explains the short-comings of using point clouds:
1) lack of surface characteristics such as orientation or smoothness,
2) when extracted from sensors, point clouds have unnecessaryly
large number of points on surfaces close to the sensor and much
less information for further surfaces.

Instead, 3D-NDT is designed as a point-to-surface registration

(a) DeReEs (b) ICP

Figure 2: Registration results of an image pair with large non-
overlapping parts with our proposed algorithm and ICP. The color
of the points indicate the point cloud they belong to.

algorithm: instead of using a point cloud, the source model is trans-
formed into a smooth surface representation. This representation
consists of a set of local probability density functions which de-
scribe different sections of the surface.

This is done by dividing the model into a grid of cells (cube for
3D, square for 2D) and computing the Probability Density Func-
tion (PDF) for each cell, which describes the likelihood of a point
existing in a certain position in that cell. PDF is a piecewise smooth
representation of the surface in each cell that has continuous deriva-
tives, so it also describes the orientation and smoothness of the sur-
face. The algorithm then aims to find a transformation that maxi-
mizes the likelihood of the point existing in the surface.

Choosing the right cell size is a challenge in the NDT algorithm.
Overly large cell sizes will cause the algorithm to neglect details
of the model, since the computed PDF function uses normal distri-
bution and will blur little features. In other words, large cells lead
to less detailed registration. Overly small cell sizes on the other
hand, will cause the algorithm to fail if the initial pose of the mod-
els are not close to the solution, since cells only contribute to the
target points that are within their boundary. Magnusson also ex-
plains many extensions to the 3D-NDT algorithm that aim to cover
its limitations, especially with cell sizes. While 3D-NDT generally
performs better than ICP in terms of transformation distance (based
on [18]), it is not suited for real-time applications, as registration of
each frame pair requires > 1 seconds to complete [17].

2.3 Feature-Based Registration
Feature-based registration on 2D images can be used in most of

the commercial depth-sensing cameras as they incorporate a RGB
sensor and provide colored point clouds. Scale Invariant Feature
Transform (SIFT [16]) or Speeded Up Robust Features (SURF [4])
algorithms are used with the majority of feature based registration
techniques to indicate corresponding points based on visual fea-
tures of the images.

Compared to ICP, the correspondence accuracy is much higher
with these methods, but the number of corresponding pairs is very
low. There are two main problems with existing feature-based reg-
istration methods: 1) a single false feature corresponding pair can
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Figure 3: Proposed Registration Pipeline.

create significant errors considering the low number of correspond-
ing pairs, 2) feature-based registration is prone to false feature-pair
detection when the scene is dynamic, as a moving object can throw
off the registration completely, or when similar objects exist in the
scene. Depending on the implementation of the feature detection
algorithm, the speed of these techniques might not be suitable for
real-time applications.

It is necessary for feature-based registration techniques to incor-
porate a robust method for rejecting false feature pairs, as seen in
RGBD-ICP by Henry et al. [12]. RGBD-ICP uses image-based
feature detection algorithms with true pair detection for coarse reg-
istration and combines it with the ICP algorithm for further refine-
ment of the transformation. This work successfully addresses the
Initial Pose problem with the ICP algorithm, however by using ICP
it inherits ICP’s weakness against partially overlapping 3D images.
In the case of a large non-overlapping set of images, the first stage
of the algorithm provides the ICP algorithm with a good estimate
of the solution, but ICP tends to move away from this solution by
pushing the non-overlapping parts of the images together to mini-
mize the error.

3. DEREES
The pipeline of the registration method we propose is depicted in

Figure 3. The input of the pipeline is a pair of 3D images captured
from cameras placed at different positions which share a certain
portion of the scene and the output is a transformation matrix.

3.1 Detection
2D feature detection algorithms are used to extract features from

the RGB images. Multiple algorithms might be executed and re-
sults can be aggregated for a potentially more accurate alignment
in exchange of speed. Feature descriptors are extracted and features
from each image are matched together to derive corresponding fea-
ture pairs. The output of this step is two sets of corresponding
features (one set for each image) with each feature described by its
2D position in the RGB image.

The GPU implementations of the SURF and ORB [19] feature
detection algorithms, as well as the GPU implementation of brute
force feature matching have been used in our system.

For the next step of the algorithm, 3D coordinates of the detected
feature pairs are required which can be easily extracted for each
point based on their corresponding depth values in the depth chan-
nel. Considering that the depth map from depth sensing cameras is
incomplete compared to the RGB information, a noticeable num-
ber of feature pairs are lost at this step. Missing depth information
mainly occurs for two reasons:

• Depending on the type of depth camera, depth values may
not be present for shiny surfaces, very dark objects or light
sources.

• The RGB sensor and the depth sensor are located slightly
apart from each other in the depth sensing camera. Hence,
parts of the RGB information may not correspond with the
depth information.

3.2 Rejection
Not all the pairs from previous step are true corresponding pairs.

False corresponding pair refers to the situation when the matching
algorithm has matched two unrelated feature points. In this step we
aim to find 3 true feature pairs using Random Sample Consensus
(RANSAC [11]). This helps us estimate a coarse 3D transformation
based on these 3 features and detect all false corresponding pairs
based on the coarse transformation.

3 pairs can be randomly selected to be considered as the true
pairs; but the reliability of this random selection is determined by
the ratio of true and false pairs.

α =
TrueCorrespondingFeaturePairs

AllCorrespondingFeaturePairs
(1)

Considering that α is the ratio of true corresponding feature pairs
to all pairs, the probability of selecting 3 true pairs from the set with
one try is α3. With scenes where α = 0.5 the chances of a correct
coarse transformation would be at only 12.5%.

We assume that by repeating random selection for enough times,
3 true feature pairs will be eventually selected with high certainty.
While the probability of missing 3 true features with one try is 1−
α3, if the selection is repeated n times, the probability that none of
the selections consist of 3 true feature pairs (Pmiss) is (1 − α3)n.
n can be selected in a way that the Pmiss falls below the desired
certainty threshold.

Pmiss = (1− α3)n (2)

n = log1−α3 Pmiss (3)

With α = 0.5 and 69 repetitions, the probability that no 3 true
feature pairs are randomly selected falls below 0.01%.

The 3 true features from any of the “good” random selections can
be used to generate the desired coarse transformation based on the
transformation between the 3 features and their respective pairs, but
a scoring is required to identify the good selection(s) from missed
selections.

The correctness of a random selection can be assessed based on
the correctness of the transformation it produces. Conventionally,
the correctness of a registration transformation is assessed by ap-
plying the transformation to the point clouds and then measuring
the distance of the two clouds, using metrics such as least square.
This is time consuming and inaccurate for the similar reasons men-
tioned in subsection 2.1: non-overlapping areas of two clouds will
cause the distance metric to increase while the clouds might be
aligned correctly, since points in exclusive parts of the clouds have
no neighbouring points in the other cloud. Conversely, an incor-
rect alignment that pushes the non-overlapping parts together may
produce a better value for the distance metric.

In this work, the proposed metric for evaluating the correctness
of the transformation is the number of all features that their distance
to their respective pairs is less than a certain distance threshold (d)
after applying the transformation. A correct transformation will
transform the point cloud in a way that truly corresponding pairs
will be placed in close proximity, while false apparent pairs will
have noticeable distances. Our metric counts the number of true
pairs by taking advantage of this observation.

Note that due to depth noise and inaccuracy in the depth map,
camera resolution and inaccuracy of the feature detection algo-
rithm, even true pairs would not be identical in terms of (X,Y, Z)
values after the transformation is applied. The need for using a dis-
tance threshold in the scoring process arises from this issue. The
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distance threshold is selected in a way that these inaccuracies along
with the inaccuracy of a coarse transformation does not cause true
pairs to be rejected (5cm in our experiments).

Unlike true pairs, transformations between most false pairs are
arbitrary and it is extremely unlikely that an incorrect transforma-
tion results in a majority of false pairs being placed close by. In the
case of an incorrect transformation, the 3 feature pairs will have
relatively small distances and all true pairs, as well as the majority
of false pairs, will have noticeable distances.

The following is the process followed to obtain the coarse trans-
formation:

1. Random selection: 3 feature pairs are randomly selected -
(A1, B1, C1) from first view and their respective pairs
(A2, B2, C2) from second view.

2. Transformation estimation: transformation T is estimated in
way that T transforms (A1, B1, C1) to (A2, B2, C2).

3. Transformation: T is applied to all feature pairs.

4. Scoring: the pairs that their distance is less than the threshold
are counted.

5. Repeat steps 1-4 n times.

6. Transformation with the best score is selected as coarse trans-
formation (Tc).

Finally, the coarse transformation Tc is applied to all feature
pairs and all the pairs that have a greater distance than the distance
threshold d are removed from the set.

3.3 Estimation
The remaining feature pairs are used to estimate a transforma-

tion which best transforms the features from one cloud to their cor-
responding features by minimizing the least squares error between
the two sets. Performing this with only the true pairs ensures that
false feature pairs do not affect the overall accuracy. Minimizing
the least squares is performed by an algorithm based on singular
value decomposition (SVD) proposed by Arun et al. [2], with equal
weights for all corresponding pairs.

4. EXPERIMENTS
To generate our data-set, a MicrosoftTM Xbox 360 Kinect camera

is used to capture color+depth images at 640× 480 resolution. Im-
age pairs are captured in moderately lit indoor environment. The
ground truth is estimated by visually aligning each of the image
pairs used in the experiments with an accuracy of 1cm for transla-
tion and 0.5◦ for rotation. The supplementary material, including
the image pairs we used for the experiments are available for the
research community at [1].

The workstation used for executing the tests is an Intel Core-i7
960 (3.2Ghz) machine with a NVidia Quadro K5000 GPU, running
Ubuntu 12.04 LTS 64-bit. For our experiments GPU implementa-
tions of the SURF and ORB feature detection algorithm and Brute
Force feature matching have been used from the OpenCV library
[8]. The Point Cloud Library has been used for depth-sensing in-
put, visualization tools and implementation of ICP and 3D-NDT
for comparison purposes.

The distance threshold d explained in subsection 3.2 is set in
a way that true corresponding pairs are not rejected because of a
slightly incorrect coarse transformation and depth errors. We have
set d to 5cm as it has proven most successful across all data-sets.
Unless mentioned explicitly, the number of RANSAC iterations is
set to 150.

Method Success
(%)

Errort
(cm)

Errorr
(degree)

Speed
(ms)

3D-NDT 30 16.12 21.87 21063
ICP 40 18.11 17.36 42.37
RGBD-ICP NA 12.3 3.3 730
DeReEs 96 1.11 0.21 36.68

Table 1: Comparison of DeReEs, ICP, 3D-NDT and RGBD-ICP in
terms of success ratio, transformation error and speed.

Algorithm Overlap (%) Errort (cm) Errorr
(degree)

Success
(%)

NDT 83 39.04 17.40 10
ICP 70 62.89 10.12 91

DeReEs 23 1.28 2.68 100

Table 2: Performance of DeReEs, ICP and 3D-NDT under different
amounts of overlap between the image pairs of the same scene.

4.1 Comparison
DeReEs is compared to ICP and 3D-NDT using a data-set of

10 RGBD image pairs with low to moderate transformation dis-
tances, each being executed 10 times for every algorithm (100 ex-
ecutions in total for each algorithm). Table 1 outlines the success
ratio, transformation error and speed of all three algorithms. The
RGBD-ICP values in table 1 represent the evaluations reported in
the publication ([12]). Due to lack of access to implementations of
registration algorithms other than ICP and 3D-NDT, a direct per-
formance comparison was not possible with other algorithms such
as [23] and [3].

We defined any transformation estimation with a translation er-
ror of 0.5m or more for any axes or a rotation error of 30◦ around
any axes as an unsuccessful registration. Transformation error for
each transformation is calculated as the sum of absolute translation
errors in the 3 axes and the sum of absolute rotation errors around
the 3 axes. The errors in the table (Errort and Errorr) represent
the average of these errors only for successful registrations, as to
prevent unsuccessful registrations from skewing the error measure-
ments.

The speed is the average execution time of all executions. Since
the speed of both ICP and 3D-NDT is highly dependent on the size
of the point clouds, it is essential to down-sample the 300k input
of the Kinect camera. The clouds were down-sampled to 6 − 7k
points for ICP and 2− 3k points for 3D-NDT.

Our algorithm performs at 36.68ms per frame (including 2D fea-
ture detection), capable of processing RGBD images at 27fps. As
seen in the table 1, DeReEs outperforms other algorithms in all
metrics. It should be noted that it is possible to run both ICP and
3D-NDT faster by a more strict down-sampling, which in turn de-
creases accuracy. A direct speed comparison with the RGBD-ICP
cannot be made due to different settings and configurations, al-
though it is known that the majority of the time that RGBD-ICP
uses is dedicated to the ICP algorithm with dense input for trans-
formation refinement ( 500ms). It should be noted that we have
tested the RGBD-ICP approach by using ICP in the Estimation step
of our algorithm with no noticeable effect on the accuracy, and as
earlier described in subsection 2.1, prone to partially overlapping
images.
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Figure 4: Success rate of DeReEs, ICP and 3D-NDT under differ-
ent amounts of overlap between the image pairs of the same scene.

4.2 Performance Comparison Under Varying
Amounts of Overlap

To evaluate how our algorithm performs with varying degrees
of partial overlap between image pairs against other algorithms,
we generated a set of overlapping images from a scene. We did
this by capturing an initial image from the scene, then rotating the
camera by 5 degrees around one axis before taking the next image
and so on. The first image is used as the source point cloud, while
consequent images are used as target point clouds. Considering
Kinect camera’s field of view of 57 degrees, the amount of overlap
between each image pair is calculated as the ratio of the overlapping
portion of the clouds with respect to the whole coverage of the two
clouds based on the amount of camera rotation r, where r is the
amount of rotation from the initial pose (5◦ for second image, 10◦

for third image, etc).

OverlappingRatio =
57− r
57 + r

(4)

Table 2 represents the average of error measurements and the
success rate for the minimum amount of overlapping with different
algorithms, before the results deteriorate with less overlap. Note
that unlike the previous experiment, the error measurements in this
experiment are the average for all executions. Figure 4 illustrates
the success rate between the three algorithms.

DeReEs outperforms other algorithms by successfully register-
ing image pairs (such as figure 5) with only 23% of overlap, com-
pared to requiring of 70% and 83% overlap for ICP and 3D-NDT.
Robustness of our algorithm deteriorates with less overlap as the
feature detection and matching algorithms begin to provide a large
number of false corresponding pairs. For this experiment, RANSAC
iterations has been set to 200, while still providing a real-time so-
lution (25fps).

4.3 Robustness Under Poor Image Conditions
Texture-less surfaces and low number of detectable features in

the scene greatly affect the performance of the 2D feature detec-
tion algorithm. In such conditions, the randomized selection of 3
pairs for coarse registration estimation has a lower chance of suc-
cess. Hence, the number of iterations used at this step becomes the
crucial determinant in successful registration in poor conditions,
which in return affects the speed of the algorithm.

We evaluated the accuracy and the speed of our algorithm with
different number of RANSAC iterations (from 10 to 200 - See fig-
ure 7). We performed this experiment with a feature-less image
pair against a feature-rich one (Figure 6). The feature detection al-
gorithm has also been constrained to produce less certain results.

Figure 5: Successful registration of image pairs with only 23 per-
cent overlapping using DeReEs. Top: The individual RGB images
from each viewpoint. Lines indicate the feature matchings. Middle:
The point clouds for each RGBD image after registration. Bottom:
Successfully registered RGBD image pair.

(a) Feature-less

(b) Feature-rich

Figure 6: Comparing feature-less with feature-rich scenes.
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(a) Translation Error

(b) Rotation Error

Figure 7: Effects of increasing the number of RANSAC iterations
on accuracy of the algorithm, compared between a feature-less and
a feature-rich 3D image pair.

Figure 7 illustrates the effect of increasing the number of iterations
on transformation errors on each of these pairs. Each data point is
the average result of 100 executions.

As seen in Figure 7, increasing the RANSAC iterations has a
direct effect on increasing the accuracy of the results which is nec-
essary for maintaining the registration accuracy of the feature-less
scenes. With a feature-less scene, our algorithm can outperform
other algorithms at 170 iterations, generating 0.90cm translation
and 3.09◦ rotation errors while still processing frames at 34.90ms.

5. CONCLUSION
The algorithm runs in real-time and is not limited to largely over-

lapping image pairs or a very limited range of translational or ro-
tational distances. Transformation refinement can be further en-
hanced to achieve optimal solution in complex scenarios. As other
visual feature based registration techniques, this algorithm is de-
pendent on RGB information. We believe this algorithm is a suit-
able solution for real-time scenarios with multiple depth camera
settings (e.g. virtual reality collaborative cave), reducing the bur-
den of set up (calibration and/or manual alignment) or misalign-
ment in case of accidental camera displacements; or with single
depth cameras in static scenes.
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