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Search
SAT - NP hard

• Intractable in worst-case

SAT Solvers
• Solve real world instances with millions of variables 

• often run in near-linear time! 

• Used in model checking, planning, bioinformatics, etc.
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Conflict-Driven Clause Learning (CDCL)

• Basis of state-of-the-art solvers

• Based on Davis–Putnam–Logemann–Loveland (DPLL) 

algorithm [DP60, DLL62] augmented with fine-tuned 
heuristics
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DPLL

SAT solvers run on unsatisfiable CNFs output proofs.

• Proof complexity analysis applies to SAT solvers

• proof size = runtime of ideal implementation of search algorithm

Proof of unsatisfiability!
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DPLL proofs               =    tree-like Resolution proofs

Rule basedQuery based



DPLL

DPLL proofs               =    tree-like Resolution proofs

Rule basedQuery based

• Weak proof system, cannot count

CDCL augments DPLL with heuristics, clause 
learning, restarts, etc.

• Proofs still captured by Resolution



PseudoBoolean SAT Solvers
Reason about integer-linear inequalities rather than 
clauses

Most are based on Cutting Planes proof system

• stronger proof system than Resolution

Worse performance than state-of-the-art solvers 
based on DPLL



Puzzle

Many strong proof systems for which we can 
theoretically find proofs quickly. 

• e.g. polynomial calculus

Best SAT algorithms based on DPLL

• DPLL can’t even count, no gaussian elimination!

Why is can’t we develop good search algorithms 
based on stronger proof systems?



Hypothesis:

Puzzle
Why is can’t we develop good search algorithms 
based on stronger proof systems?

• Leads to simple divide-and-conquer style algorithms

• DPLL vs  tree-like Resolution

Querying is more conducive to search algorithms



Stabbing Planes
Generalization of DPLL to reason about integer-
linear inequalities, formalized as a proof system
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Variables 

                  slab 
removed

Any                 satisfies              or

                   for                   

Can’t remove          points!
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Stabbing Planes

Farkas’ Lemma: Polytope is empty iff there is a non-
negative linear combination of its constraints equalling

Variables 



Stabbing Planes

Witness: Non-negative linear combination of inequalities in 

     and constraints along path to this node equalling 

Variables 



Stabbing Planes

Variables 

Algebraic proof Geometric proof



Stabbing Planes

Size: Number of nodes

Depth: Tree-depth

Complexity measures

Variables 



SP Generalizes DPLL
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Polynomially equivalent to a tree-like variant of the 
R(CP) proof system introduced in [Krajíček98]

• R(CP) - rule based 

• Stabbing Planes - query based

Stabbing Planes

Query-based viewpoint valuable for upper bounds. 

Theorem: Quasi-polynomial size SP proof of any 
system of linear equations over a finite field



Proof Sketch
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Unsatisfiable system of          linear equationsInput: 
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Sum to 
0=1 mod2

Unsatisfiable system of          linear equations

=>Exists subset which sum to 0 = 1 mod 2 

Input: 
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Idea: Split set of constraints in half. For any 
assignment, one of the halves has a falsified equation.

• The sum of the constraints tell us which one!
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Recursive Step: 
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1. Partition constraints into two sets 

2. Determine value of sum of constraints            in both 

sets

Recursive Step: 

for
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3. Recurse on set whose sum is not satisfied

Recursive Step: 
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By recursive step we have derived 
Using the constraint                                      we can 
derive 

Termination: 
Proof Sketch



By recursive step we have derived 
Using the constraint                                      we can 
derive 

Termination: 

Analysis: 
Each recursive step requires branches  
            recursive steps - Reduce the set of constraints by 
half each time 

Proof Sketch
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SP can polynomially simulate Cutting Planes

• size   CP proof       size         SP proof

• Surprising, SP proofs are tree-like, while CP proofs are DAG-like

                  depth lower bound

• reduction to real communication complexity

• same technique cannot give size lower bounds 

- real communication protocols can’t be balanced,  
- SP proofs can’t be balanced

Other Results
SP can solve systems of linear equations over a 
finite field

• quasi-polynomial size proofs of Tseitin formulas 

(conjectured to be hard for Cutting Planes)



Open Problem 

Does SP proof size (#nodes) equal SP proof bit-size? 

• [Muroga72] Any integer-linear inequality separating two 

subsets U,V subset            can be represented by poly(n) bits

Super-polynomial size lower bounds on SP?

SP-based search algorithms?

Separate Cutting Planes and Stabbing Planes

• Candidate: Tseitin formulas


