Stabbing Planes

Noah Fleming
Department of Computer Science
University of Toronto
Joint work with Paul Beame, Russell Impagliazzo, Antonina Kolokolova,
Denis Pankratov, Toniann Pitassi, and Robert Robere

Search

SAT - NP hard
e |ntractable in worst-case

SAT Solvers

e Solve real world instances with millions of variables
e often run in near-linear time!
e Used in model checking, planning, bioinformatics, etc.

Search

SAT - NP hard
e |ntractable in worst-case

SAT Solvers

e Solve real world instances with millions of variables
e (Often run in near-linear time!

e Used in model checking, planning, bioinformatics, etc.

Conflict-Driven Clause Learning (CDCL)
 Basis of state-of-the-art solvers
e Based on Davis—Putnam-Logemann-Loveland (DPLL)

algorithm [DP60, DLL62] augmented with fine-tuned
heuristics

DPLL

F=(x1Va)AN(T1 V)N (x1VT2)N(ZT1V T2)

DPLL

F=(x1Va)AN(T1 V)N (x1VT2)N(ZT1V T2)

DPLL

F=(x1Va)AN(T1 V)N (x1VT2)N(ZT1V T2)

DPLL

F=(x1Va)AN(T1 V)N (x1VT2)N(ZT1V T2)

DPLL

F=(x1Va)AN(T1 V)N (x1VT2)N(ZT1V T2)

DPLL

F=(x1Va2) AN(T1Vx2)A(T1V T2)N(T1V Z2)

1 V T2 x1VZTos 1V ITo T1 V To

Proof of unsatisfiability!

DPLL

F=(x1Va2) AN(T1Vx2)A(T1V T2)N(T1V Z2)

1 V T2 x1VZTos 1V T T1 V To

Proof of unsatisfiability!

SAT solvers run on unsatisfiable CNFs output proofs.

 Proof complexity analysis applies to SAT solvers
* proof size = runtime of ideal implementation of search algorithm

DPLL

F=(ryVa) AN (T Va)A(xyVI2)AN(T1V T2)

X1
9 L2
=0 =1 =0 =1
1 \/ZCQ x1 V Zo CEl \/LUQ r1 V IT9
DPLL proofs =

Query based

r1 VI T

VZo T1V Ty r1V To

)
~
2

tree-like Resolution proofs

2

\ule based

DPLL

F=(x1Va2) AN(T1Vx2)A(T1V T2)N(T1V Z2)

T r1V To r1NVTo T1V I r1V To
=0 — ||
o) L2 I o
=) &l =0 &l
x1V T2 x1VZs T1 VT T1V I 0
DPLL proofs = tree-like Resolution proofs
Query based Rule based

CDCL augments DPLL with heuristics, clause
learning, restarts, etc.
* Proofs still captured by Resolution

* Weak proof system, cannot count

PseudoBoolean SAT Solvers

Reason about integer-linear inequalities rather than
clauses

Most are based on Cutting Planes proof system
e stronger proof system than Resolution

Worse performance than state-of-the-art solvers
based on DPLL

Puzzle

Why Is can’t we develop good search algorithms
based on stronger proof systems?

Many strong proof systems for which we can
theoretically find proofs quickly.
* e.g. polynomial calculus

Best SAT algorithms based on DPLL
e DPLL can’t even count, no gaussian elimination!

Puzzle

Why Is can’t we develop good search algorithms
based on stronger proof systems?

Hypothesis:
Querying is more conducive to search algorithms

* |eads to simple divide-and-conquer style algorithms
e DPLL vs tree-like Resolution

r1 VT r1VZTo T1V To I1V To

Stabbing Planes

Generalization of DPLL to reason about integer-
linear inequalities, formalized as a proof system

Stabbing Planes

F = {Unsatisfiable set of ineteger-lincar inequalities}

Variables x,y € (0,1

over {0, 1}
assignments

(0,1)

(1,1)

(0,0)

(1,0)

Stabbing Planes

J = {unsatisfiable set of linear inequalities}
Variables x,y € |0, 1]

) 2
Al

r+vy

<1 > 2

Stabbing Planes

J = {unsatisfiable set of linear inequalities}

Variables =,y € (0,1 | NETES:
5‘ 5’
r+vy
<1 2

FU{z+y<1} FU{lzx+y>2)

Stabbing Planes

J = {unsatisfiable set of linear inequalities}

Variables z,y € [0, 1)

r+vy

<1 > 2

FU{z+y<1} FU{z+y>2}

l<x+y<2 Slab
removed

A\l

A2

A

Stabbing Planes

J = {unsatisfiable set of linear inequalities}
Variables z,y € |0, 1]

r+vy

<1 > 9

FU{z+y <1} FU{z+y>2}

Can’t remove {0, 1} points!

Any o € {0,1}"satisfies Az > b or
Ar <b—1forAeZ", beZ

l<x+y <2 slab
removed

Stabbing Planes

J = {unsatisfiable set of linear inequalities}

Variables x,y € [0,1] | ‘0

AN \.ﬂ

) 3

.’L'—|—y .
<1 2
— Y
<0 > 1
O<r—y<1

Stabbing Planes

J = {unsatisfiable set of linear inequalities}
Variables x,y € |0, 1]

T+
<1 >2
L —Y Empty
<0 > 1
Empty Empty

Stabbing Planes

J = {unsatisfiable set of linear inequalities}

Variables x,y € (0,1] | Srdy>
S Qs

‘ 7

€T + Y .
<1 > 2
L —Y Empty
< () > 1
Empty Empty D<x—y<l1

4
Y4
2 4 R 23

g R
Farkas’ Lemma: Polytope is empty iff there is a non-
Lnega’cive linear combination of its constraints equalling 0 > iI_J

Stabbing Planes

J = {unsatisfiable set of linear inequalities}

Variables =,y € (0,1 | Srdby o
A 3) 3
. s’
A 3
r+y .
<1 =2

L —Y Witness

O<r—y<1

Witness Witness

4
Y4
2 4 R 23

ey R
Witness: Non-negative linear combination of inequalities in
L_7—' and constraints along path to this node equalling O > 1

Stabbing Planes

J = {unsatisfiable set of linear inequalities}
Variables z,y € [0, 1)

r+vy

<1 > 2

L —Y Witness

Witness Witness

Algebraic proof Geometric proof

Stabbing Planes

F = {unsatisfiable set of linear inequalities}
Variables z,y € |0, 1]

r+vy
<1 >9 Complexity measures
, Size: Number of nodes
L =Y Witness
< 0 > 1 Depth: Tree-depth

Witness Witness

SP Generalizes DPLL

F=(ryVa) AN (T Va)A(xyVI2)AN(T1V T2)

SP Generalizes DPLL

F = {;1;1 + 29021, 21 — 290 20,29 —271 20, —21 — o > —1}

Variables x1,x2 € 0, 1]

SP Generalizes DPLL

F = {;1;1 +220 21,21 —290 20,29 —21 20,—27 — 20 > —1}

Variables 1, x9 € [0, 1]

L1
< () el
L9 L2
<0 >1 <0 >1
2(r1 <0) 2(x1 < 0) 2(x1 > 1) 2(x1 2 1)

F(zy — 29 > 0) H(z1 — 22 2 0)+(x2 — 21 > 0) +(z2 — 2z > 0)
+(x1 +xo > 1) +H(rr + 22 2 1)+H(—21 —22 2 =1)+(—21 — 22 > —1)

Stabbing Planes

Polynomially equivalent to a tree-like variant of the

R(CP) proof system introduced in [Krajicek98]
e R(CP) - rule based

e Stabbing Planes - query based

Query-based viewpoint valuable for upper bounds.

Theorem: Quasi-polynomial size SP proof of any
system of linear equations over a finite field

Proof Sketch

Input: Unsatisfiable system ofmod 2 linear equations

over {0, 1}
assignments

L1 X2 X3 X4 Ty T Ty

i1 1 0 1 1 00 1
C, 01 0 0 1 10 0
C3'1 0 1 1 0 1 1 __ 1
Cq 11 0 1 1 11 — 0 mod 2
(s 00 1 0 0 1 0 0
s 11 0 1 1 0 0 1
c--1 1 0 0 1 0 f 1

Proof Sketch

Input: Unsatisfiable system ofmod 2 linear equations
=>EXxists subset which sumto 0 =1 mod 2

C
Co
Sumto (g
0=1 I’T]OC!Q(}/1
Cs
Ce

L1 X2 X3 X4 Ty T Ty

1

.
0
3
0
1

0
3

O — -

0

OO0 =+ 20

mod 2

Proof Sketch

Idea: Split set of constraints in half. For any {0, 1}
assignment, one of the halves has a falsified equation.
e The sum of the constraints tell us which one!

L1 X2 X3 X4 Ty T Ty

i 1 0 1 1 0 O 1
T3 1 fIJ7{ O 1 0 0 1 1 0 0
i 0 1 1 0 1 1 1
— 111 2
i 1 0 1 1 1 1 0 od
Ta + 27 { O 0 1 0 0O 1 O 0
i 1 0 1 1 0 O 1

Proof Sketch

Idea: Split set of constraints in half. For any
assignment, one of the halves has a falsified equation.
e The sum of the constraints tell us which one!
Trs + T7 must
be () mod 2

L1 X2 X3 X4 Ty T Ty

i 1 0 1 1 0 O 1
T3 1 fIJ7{ O 1 0 0 1 1 0 0
i 0 1 1 0 1 1 1
— 111 2
i 1 0 1 1 1 1 0 od
Ta + 27 { O 0 1 0 0O 1 O 0
i 1 0 1 1 0 O 1

T3 + 1r7 must
be 1 mod 2

Proof Sketch

Recursive Step:
1. Partition constraints into two sets S, S5

L1 X2 X3 X4 Ty T Ty

Ci 1 1 0 1 1 0 O 1
Co 01 0 0 1 1 O 0
Cs 1 0 1 1 0 1 1 1
‘ — 1110 d 2
Cq 1 1 0 1 1 1 1 0
Cs 00 1 0 O 1 0 0
Ce 1 1 0 1 1 0 O 1

Proof Sketch

Recursive Step:
1. Partition constraints into two sets S, S5
2. Determine value of sum of constraintsmod 2 in both
sets

Z >k fork—=1,...,max
.5,

L1 X2 X3 X4 Ty T Ty

Ci 1 1 0 1 1 0 O 1
Co 01 0 0 1 1 O 0
Cs 1 0 1 1 0 1 1 1
‘ — 1110 d 2
Cq 1 1 0 1 1 1 1 0
Cs 00 1 0 O 1 0 0
Ce 1 1 0 1 1 0 O 1

Proof Sketch

Recursive Step:
1. Partition constraints into two sets 5, .55
2. Determine value of sum of constraintsmod 2 in both
sets
3. Recurse on set whose sum is not satisfied

L1 X2 X3 X4 Ty T Ty

Ci 1 1 0 1 1 0 O 1
Co 01 0 0 1 1 O 0
Cs 1 0 1 1 0 1 1 1
‘ — 1110 d 2
Cq 1 1 0 1 1 1 1 0
Cs 00 1 0 O 1 0 0
Ce 1 1 0 1 1 0 O 1

Proof Sketch

Recursive Step:
1. Partition constraints into two sets 5, .55
2. Determine value of sum of constraintsmod 2 in both
sets
3. Recurse on set whose sum is not satisfied

Suppose: r3 + 7= 0 mod 2
L1 X2 X3 X4 Ty T Ty

Ci 1 1 0 1 1 0 O 1
Co 01 0 0 1 1 O 0
Cs 1 0 1 1 0 1 1 1
‘ — 1110 d 2
Cq 1 1 0 1 1 1 1 0
Cs 00 1 0 O 1 0 0
Ce 1 1 0 1 1 0 O 1

Recurse

Proof Sketch

Recursive Step:
1. Partition constraints into two sets 5, .55
2. Determine value of sum of constraintsmod 2 in both
sets
3. Recurse on set whose sum is not satisfied

Suppose:
x1+x2+x3+ 24+ 25+ 27 =0 mod 2
1+ 2o +14 + x5 = 0 mod 2

1 L2 X3 4 X5 g Tt
cC(11 0 1 1 1 1

0
Cs 00 1 0 0 10 — o0 mod?2
.11 0 1 1 0 0 1

Recurse

Proof Sketch

Termination:
By recursive step we have derived =1 | z2 | x4 | @5 =0 mod 2
Using the constraint =, + 5 — 24 + 25 = 1 mod 2 We can
derive 0 > 1

L1 X2 I3z g4 Xy g I
C¢s 11 0 1 1 0 0 — 1 mod?2

Proof Sketch

Termination:
By recursive step we have derived =1 | z2 | x4 | @5 =0 mod 2
Using the constraint =, + 5 — 24 + 25 = 1 mod 2 We can
derive 0 > 1

Analysis:

Each recursive step requires branches O(n)
O(log) recursive steps - Reduce the set of constraints by
half each time

Other Results

SP can solve systems of linear equations over a

finite field

e quasi-polynomial size proofs of Iseitin formulas
(conjectured to be hard for Cutting Planes)

Other Results

SP can solve systems of linear equations over a

finite field

e quasi-polynomial size proofs of Iseitin formulas
(conjectured to be hard for Cutting Planes)

SP can polynomially simulate Cutting Planes
* size sCP proof => size O(s)SP proof
* Surprising because SP is tree-like, while CP is DAG-Ilik

Other Results

SP can solve systems of linear equations over a

finite field

e quasi-polynomial size proofs of Iseitin formulas
(conjectured to be hard for Cutting Planes)

SP can polynomially simulate Cutting Planes
* size sCP proof => size O(s)SP proof
e Surprising, SP proofs are tree-like, while CP proofs are DAG-like

O (n/log”n) depth lower bound
* reduction to real communication complexity
 same technique cannot give size lower bounds
- real communication protocols can’t be balanced,
- SP proofs can’t be balanced

Open Problem

Super-polynomial size lower bounds on SP?

Does SP proof size (#nodes) equal SP proof bit-size?
* [Muroga72] Any integer-linear inequality separating two
subsets U,V subset {0, 1 }""can be represented by poly(n) bits

Separate Cutting Planes and Stabbing Planes
 Candidate: Tseitin formulas

SP-based search algorithms?

