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e (Often run in near-linear time!

e Used in model checking, planning, bioinformatics, etc.

Conflict-Driven Clause Learning (CDCL)
 Basis of state-of-the-art solvers
e Based on Davis—Putnam-Logemann-Loveland (DPLL)

algorithm [DP60, DLL62] augmented with fine-tuned
heuristics
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Proof of unsatisfiability!

SAT solvers run on unsatisfiable CNFs output proofs.

 Proof complexity analysis applies to SAT solvers
* proof size = runtime of ideal implementation of search algorithm
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DPLL

F=(x1Va2) AN(T1Vx2)A(T1V T2)N(T1V Z2)
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DPLL proofs = tree-like Resolution proofs
Query based Rule based

CDCL augments DPLL with heuristics, clause
learning, restarts, etc.
* Proofs still captured by Resolution

* Weak proof system, cannot count



PseudoBoolean SAT Solvers

Reason about integer-linear inequalities rather than
clauses

Most are based on Cutting Planes proof system
e stronger proof system than Resolution

Worse performance than state-of-the-art solvers
based on DPLL



Puzzle

Why Is can’t we develop good search algorithms
based on stronger proof systems?

Many strong proof systems for which we can
theoretically find proofs quickly.
* e.g. polynomial calculus

Best SAT algorithms based on DPLL
e DPLL can’t even count, no gaussian elimination!



Puzzle

Why Is can’t we develop good search algorithms
based on stronger proof systems?

Hypothesis:
Querying is more conducive to search algorithms

* |eads to simple divide-and-conquer style algorithms
e DPLL vs tree-like Resolution

r1 VT r1VZTo T1V To I1V To




Stabbing Planes

Generalization of DPLL to reason about integer-
linear inequalities, formalized as a proof system



Stabbing Planes

F = {Unsatisfiable set of ineteger-lincar inequalities}

Variables x,y € (0,1

over {0, 1}
assignments
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(1,1)

(0,0)

(1,0)
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J = {unsatisfiable set of linear inequalities}

Variables z,y € [0, 1)
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Stabbing Planes

J = {unsatisfiable set of linear inequalities}
Variables z,y € |0, 1]

r+vy

<1 > 9

FU{z+y <1} FU{z+y>2}

Can’t remove {0, 1} points!

Any o € {0,1}"satisfies Az > b or
Ar <b—1forAeZ", beZ

l<x+y <2 slab
removed
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J = {unsatisfiable set of linear inequalities}

Variables x,y € [0,1] | ‘0
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Stabbing Planes

J = {unsatisfiable set of linear inequalities}

Variables x,y € (0,1] | Srdy>
S Qs
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€T + Y .
<1 > 2
L —Y Empty
< () > 1
Empty Empty D<x—y<l1
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Farkas’ Lemma: Polytope is empty iff there is a non-
Lnega’cive linear combination of its constraints equalling 0 > iI_J




Stabbing Planes

J = {unsatisfiable set of linear inequalities}

Variables =,y € (0,1 | Srdby o
A 3 ) 3
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Witness Witness
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Witness: Non-negative linear combination of inequalities in
L_7—' and constraints along path to this node equalling O > 1




Stabbing Planes

J = {unsatisfiable set of linear inequalities}
Variables z,y € [0, 1)

r+vy

<1 > 2

L —Y Witness

Witness Witness

Algebraic proof Geometric proof



Stabbing Planes

F = {unsatisfiable set of linear inequalities}
Variables z,y € |0, 1]

r+vy
<1 >9 Complexity measures
, Size: Number of nodes
L =Y Witness
< 0 > 1 Depth: Tree-depth

Witness  Witness
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SP Generalizes DPLL

F = {;1;1 +220 21,21 —290 20,29 —21 20,—27 — 20 > —1}

Variables 1, x9 € [0, 1]

L1
< () el
L9 L2
<0 >1 <0 >1
2(r1 <0) 2(x1 < 0) 2(x1 > 1) 2(x1 2 1)

F(zy — 29 > 0) H(z1 — 22 2 0)+(x2 — 21 > 0) +(z2 — 2z > 0)
+(x1 +xo > 1) +H(rr + 22 2 1)+H(—21 —22 2 =1)+(—21 — 22 > —1)



Stabbing Planes

Polynomially equivalent to a tree-like variant of the

R(CP) proof system introduced in [Krajicek98]
e R(CP) - rule based

e Stabbing Planes - query based

Query-based viewpoint valuable for upper bounds.

Theorem: Quasi-polynomial size SP proof of any
system of linear equations over a finite field



Proof Sketch

Input: Unsatisfiable system ofmod 2 linear equations

over {0, 1}
assignments

L1 X2 X3 X4 Ty T Ty

i1 1 0 1 1 00 1
C, 01 0 0 1 10 0
C3'1 0 1 1 0 1 1 __ 1
Cq 11 0 1 1 11 — 0 mod 2
(s 00 1 0 0 1 0 0
s 11 0 1 1 0 0 1
c--1 1 0 0 1 0 f 1



Proof Sketch

Input: Unsatisfiable system ofmod 2 linear equations
=>EXxists subset which sumto 0 =1 mod 2

C
Co
Sumto (g
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Cs
Ce

L1 X2 X3 X4 Ty T Ty
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Proof Sketch

Idea: Split set of constraints in half. For any {0, 1}
assignment, one of the halves has a falsified equation.
e The sum of the constraints tell us which one!

L1 X2 X3 X4 Ty T Ty

i 1 0 1 1 0 O 1
T3 1 fIJ7{ O 1 0 0 1 1 0 0
i 0 1 1 0 1 1 1
— 111 2
i 1 0 1 1 1 1 0 od
Ta + 27 { O 0 1 0 0O 1 O 0
i 1 0 1 1 0 O 1
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Idea: Split set of constraints in half. For any
assignment, one of the halves has a falsified equation.
e The sum of the constraints tell us which one!
Trs + T7 must
be () mod 2

L1 X2 X3 X4 Ty T Ty

i 1 0 1 1 0 O 1
T3 1 fIJ7{ O 1 0 0 1 1 0 0
i 0 1 1 0 1 1 1
— 111 2
i 1 0 1 1 1 1 0 od
Ta + 27 { O 0 1 0 0O 1 O 0
i 1 0 1 1 0 O 1

T3 + 1r7 must
be 1 mod 2



Proof Sketch

Recursive Step:
1. Partition constraints into two sets S, S5

L1 X2 X3 X4 Ty T Ty

Ci 1 1 0 1 1 0 O 1
Co 01 0 0 1 1 O 0
Cs 1 0 1 1 0 1 1 1
‘ — 1110 d 2
Cq 1 1 0 1 1 1 1 0
Cs 00 1 0 O 1 0 0
Ce 1 1 0 1 1 0 O 1
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Recursive Step:
1. Partition constraints into two sets S, S5
2. Determine value of sum of constraintsmod 2 in both
sets

Z >k fork—=1,...,max
.5,

L1 X2 X3 X4 Ty T Ty

Ci 1 1 0 1 1 0 O 1
Co 01 0 0 1 1 O 0
Cs 1 0 1 1 0 1 1 1
‘ — 1110 d 2
Cq 1 1 0 1 1 1 1 0
Cs 00 1 0 O 1 0 0
Ce 1 1 0 1 1 0 O 1
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Recursive Step:
1. Partition constraints into two sets 5, .55
2. Determine value of sum of constraintsmod 2 in both
sets
3. Recurse on set whose sum is not satisfied

L1 X2 X3 X4 Ty T Ty

Ci 1 1 0 1 1 0 O 1
Co 01 0 0 1 1 O 0
Cs 1 0 1 1 0 1 1 1
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Proof Sketch

Recursive Step:
1. Partition constraints into two sets 5, .55
2. Determine value of sum of constraintsmod 2 in both
sets
3. Recurse on set whose sum is not satisfied

Suppose: r3 + 7= 0 mod 2
L1 X2 X3 X4 Ty T Ty

Ci 1 1 0 1 1 0 O 1
Co 01 0 0 1 1 O 0
Cs 1 0 1 1 0 1 1 1
‘ — 1110 d 2
Cq 1 1 0 1 1 1 1 0
Cs 00 1 0 O 1 0 0
Ce 1 1 0 1 1 0 O 1

Recurse



Proof Sketch

Recursive Step:
1. Partition constraints into two sets 5, .55
2. Determine value of sum of constraintsmod 2 in both
sets
3. Recurse on set whose sum is not satisfied

Suppose:
x1+x2+x3+ 24+ 25+ 27 =0 mod 2
1+ 2o +14 + x5 = 0 mod 2

1 L2 X3 4 X5 g Tt
cC( 11 0 1 1 1 1

0
Cs 00 1 0 0 10 — o0 mod?2
.11 0 1 1 0 0 1

Recurse



Proof Sketch

Termination:
By recursive step we have derived =1 | z2 | x4 | @5 =0 mod 2
Using the constraint =, + 5 — 24 + 25 = 1 mod 2 We can
derive 0 > 1

L1 X2 I3z g4 Xy g I
C¢s 11 0 1 1 0 0 — 1 mod?2



Proof Sketch

Termination:
By recursive step we have derived =1 | z2 | x4 | @5 =0 mod 2
Using the constraint =, + 5 — 24 + 25 = 1 mod 2 We can
derive 0 > 1

Analysis:

Each recursive step requires branches O(n)
O(log ) recursive steps - Reduce the set of constraints by
half each time
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Other Results

SP can solve systems of linear equations over a

finite field

e quasi-polynomial size proofs of Iseitin formulas
(conjectured to be hard for Cutting Planes)

SP can polynomially simulate Cutting Planes
* size sCP proof => size O(s)SP proof
e Surprising, SP proofs are tree-like, while CP proofs are DAG-like

O (n/log”n) depth lower bound
* reduction to real communication complexity
 same technique cannot give size lower bounds
- real communication protocols can’t be balanced,
- SP proofs can’t be balanced



Open Problem

Super-polynomial size lower bounds on SP?

Does SP proof size (#nodes) equal SP proof bit-size?
* [Muroga72] Any integer-linear inequality separating two
subsets U,V subset {0, 1 }""can be represented by poly(n) bits

Separate Cutting Planes and Stabbing Planes
 Candidate: Tseitin formulas

SP-based search algorithms?



