
Stabbing Planes

Noah Fleming
Department of Computer Science

University of Toronto
Joint work with Paul Beame, Russell Impagliazzo, Antonina Kolokolova,

Denis Pankratov, Toniann Pitassi, and Robert Robere

Search
SAT - NP hard

• Intractable in worst-case

SAT Solvers
• Solve real world instances with millions of variables

• often run in near-linear time!

• Used in model checking, planning, bioinformatics, etc.

SAT Solvers
• Solve real world instances with millions of variables

• Often run in near-linear time!

• Used in model checking, planning, bioinformatics, etc.

Conflict-Driven Clause Learning (CDCL)

• Basis of state-of-the-art solvers

• Based on Davis–Putnam–Logemann–Loveland (DPLL)

algorithm [DP60, DLL62] augmented with fine-tuned
heuristics

Search
SAT - NP hard

• Intractable in worst-case

DPLL

DPLL

DPLL

DPLL

DPLL

DPLL

Proof of unsatisfiability!

DPLL

SAT solvers run on unsatisfiable CNFs output proofs.

• Proof complexity analysis applies to SAT solvers

• proof size = runtime of ideal implementation of search algorithm

Proof of unsatisfiability!

DPLL

DPLL proofs = tree-like Resolution proofs

Rule basedQuery based

DPLL

DPLL proofs = tree-like Resolution proofs

Rule basedQuery based

• Weak proof system, cannot count

CDCL augments DPLL with heuristics, clause
learning, restarts, etc.

• Proofs still captured by Resolution

PseudoBoolean SAT Solvers
Reason about integer-linear inequalities rather than
clauses

Most are based on Cutting Planes proof system

• stronger proof system than Resolution

Worse performance than state-of-the-art solvers
based on DPLL

Puzzle

Many strong proof systems for which we can
theoretically find proofs quickly.

• e.g. polynomial calculus

Best SAT algorithms based on DPLL

• DPLL can’t even count, no gaussian elimination!

Why is can’t we develop good search algorithms
based on stronger proof systems?

Hypothesis:

Puzzle
Why is can’t we develop good search algorithms
based on stronger proof systems?

• Leads to simple divide-and-conquer style algorithms

• DPLL vs tree-like Resolution

Querying is more conducive to search algorithms

Stabbing Planes
Generalization of DPLL to reason about integer-
linear inequalities, formalized as a proof system

over
assignments

Stabbing Planes

Variables

Stabbing Planes

Variables

Stabbing Planes

Variables

Stabbing Planes

Variables

 slab
removed

Stabbing Planes

Variables

 slab
removed

Any satisfies or

 for

Can’t remove points!

Stabbing Planes

Variables

Stabbing Planes

Variables

Stabbing Planes

Farkas’ Lemma: Polytope is empty iff there is a non-
negative linear combination of its constraints equalling

Variables

Stabbing Planes

Witness: Non-negative linear combination of inequalities in

 and constraints along path to this node equalling

Variables

Stabbing Planes

Variables

Algebraic proof Geometric proof

Stabbing Planes

Size: Number of nodes

Depth: Tree-depth

Complexity measures

Variables

SP Generalizes DPLL

SP Generalizes DPLL

Variables

SP Generalizes DPLL

Variables

Polynomially equivalent to a tree-like variant of the
R(CP) proof system introduced in [Krajíček98]

• R(CP) - rule based

• Stabbing Planes - query based

Stabbing Planes

Query-based viewpoint valuable for upper bounds.

Theorem: Quasi-polynomial size SP proof of any
system of linear equations over a finite field

Proof Sketch

1 1 0 1 1 0 0  
0 1 0 0 1 1 0 
1 0 1 1 0 1 1 
1 1 0 1 1 1 1 
0 0 1 0 0 1 0 
1 1 0 1 1 0 0 
1 1 0 0 1 0 1

1 
0 
1 
0 
0 
1 
1

Unsatisfiable system of linear equationsInput:

over
assignments

1 1 0 1 1 0 0  
0 1 0 0 1 1 0 
1 0 1 1 0 1 1 
1 1 0 1 1 1 1 
0 0 1 0 0 1 0 
1 1 0 1 1 0 0 
1 1 0 0 1 0 1

1 
0 
1 
0 
0 
1 
1

Sum to 
0=1 mod2

Unsatisfiable system of linear equations

=>Exists subset which sum to 0 = 1 mod 2

Input:

Proof Sketch

1 1 0 1 1 0 0  
0 1 0 0 1 1 0 
1 0 1 1 0 1 1 
1 1 0 1 1 1 1 
0 0 1 0 0 1 0 
1 1 0 1 1 0 0

1 
0 
1 
0 
0 
1

Idea: Split set of constraints in half. For any
assignment, one of the halves has a falsified equation.

• The sum of the constraints tell us which one!

{
{

Proof Sketch

1 1 0 1 1 0 0  
0 1 0 0 1 1 0 
1 0 1 1 0 1 1 
1 1 0 1 1 1 1 
0 0 1 0 0 1 0 
1 1 0 1 1 0 0

1 
0 
1 
0 
0 
1

Idea: Split set of constraints in half. For any
assignment, one of the halves has a falsified equation.

• The sum of the constraints tell us which one!

{
{

 must

be

 must

be

Proof Sketch

1 1 0 1 1 0 0  
0 1 0 0 1 1 0 
1 0 1 1 0 1 1 
1 1 0 1 1 1 1 
0 0 1 0 0 1 0 
1 1 0 1 1 0 0

1 
0 
1 
0 
0 
1

1. Partition constraints into two sets

Recursive Step:

Proof Sketch

1 1 0 1 1 0 0  
0 1 0 0 1 1 0 
1 0 1 1 0 1 1 
1 1 0 1 1 1 1 
0 0 1 0 0 1 0 
1 1 0 1 1 0 0

1 
0 
1 
0 
0 
1

1. Partition constraints into two sets

2. Determine value of sum of constraints in both

sets

Recursive Step:

for

Proof Sketch

1 1 0 1 1 0 0  
0 1 0 0 1 1 0 
1 0 1 1 0 1 1 
1 1 0 1 1 1 1 
0 0 1 0 0 1 0 
1 1 0 1 1 0 0

1 
0 
1 
0 
0 
1

1. Partition constraints into two sets

2. Determine value of sum of constraints in both

sets

3. Recurse on set whose sum is not satisfied

Recursive Step:
Proof Sketch

1 1 0 1 1 0 0  
0 1 0 0 1 1 0 
1 0 1 1 0 1 1 
1 1 0 1 1 1 1 
0 0 1 0 0 1 0 
1 1 0 1 1 0 0

1 
0 
1 
0 
0 
1

1. Partition constraints into two sets

2. Determine value of sum of constraints in both

sets

3. Recurse on set whose sum is not satisfied

Recursive Step:

Suppose:

Recurse

Proof Sketch

1 1 0 1 1 1 1 
0 0 1 0 0 1 0 
1 1 0 1 1 0 0

 
 
 
0 
0 
1

1. Partition constraints into two sets

2. Determine value of sum of constraints in both

sets

3. Recurse on set whose sum is not satisfied

Recursive Step:

Suppose:

Recurse

Proof Sketch

 
1 1 0 1 1 0 0

 
 
 
 
 
1

By recursive step we have derived 
Using the constraint we can
derive

Termination:
Proof Sketch

By recursive step we have derived 
Using the constraint we can
derive

Termination:

Analysis:
Each recursive step requires branches  
 recursive steps - Reduce the set of constraints by
half each time 

Proof Sketch

Other Results
SP can solve systems of linear equations over a
finite field

• quasi-polynomial size proofs of Tseitin formulas

(conjectured to be hard for Cutting Planes)

Other Results
SP can solve systems of linear equations over a
finite field

• quasi-polynomial size proofs of Tseitin formulas

(conjectured to be hard for Cutting Planes)

SP can polynomially simulate Cutting Planes

• size CP proof size SP proof

• Surprising because SP is tree-like, while CP is DAG-lik

SP can polynomially simulate Cutting Planes

• size CP proof size SP proof

• Surprising, SP proofs are tree-like, while CP proofs are DAG-like

 depth lower bound

• reduction to real communication complexity

• same technique cannot give size lower bounds 

- real communication protocols can’t be balanced,  
- SP proofs can’t be balanced

Other Results
SP can solve systems of linear equations over a
finite field

• quasi-polynomial size proofs of Tseitin formulas

(conjectured to be hard for Cutting Planes)

Open Problem

Does SP proof size (#nodes) equal SP proof bit-size?

• [Muroga72] Any integer-linear inequality separating two

subsets U,V subset can be represented by poly(n) bits

Super-polynomial size lower bounds on SP?

SP-based search algorithms?

Separate Cutting Planes and Stabbing Planes

• Candidate: Tseitin formulas

