Semialgebraic Proofs and Efficient
Algorithm Design

Noah Fleming
Department of Computer Science
University of Toronto

Joint work with Pravesh Kothari and Toni Pitassi

Sum-of-Squares

Sum-of-Squares: Powerful proof system
— Proofs correspond to a family of SDPs

Sum-of-Squares

Sum-of-Squares: Powerful proof system
— Proofs correspond to a family of SDPs

Sum-of-Squares has become a popular tool in algorithm design

Sum-of-Squares

Sum-of-Squares: Powerful proof system
— Proofs correspond to a family of SDPs

Sum-of-Squares has become a popular tool in algorithm design

Powerful:

- Captures many famous approximation algorithms for NP hard
problems such as the Goemans Williamson algorithm for
MaxCut

- Gives optimal approximations of any CSP under the Unique
Games Conjecture [Raghavendra08]

Sum-of-Squares

Sum-of-Squares: Powerful proof system
— Proofs correspond to a family of SDPs

Sum-of-Squares has become a popular tool in algorithm design

Powerful:

- Captures many famous approximation algorithms for NP hard
problems such as the Goemans Williamson algorithm for
MaxCut

- Gives optimal approximations of any CSP under the Unique
Games Conjecture [Rag08]

Simple Algorithm Design Strategy:

- Sum-of-Squares proofs are automatizable.

- Proofs that a solution exist automatically give efficient algorithms
for finding that solution. Main difficulty is rounding the solution.

Outline

Developing the Sum-of-Squares Relaxation

Phrasing the Relaxation as an SDP

The Dual Sum-of-Squares Proofs and Completeness
Convergence and Strong Duality

Upper Bounds

o Ok L Dd =

Lower Bounds

Outline

Developing the Sum-of-Squares Relaxation

Phrasing the Relaxation as an SDP

The Dual Sum-of-Squares Proofs and Completeness
Convergence and Strong Duality

Upper Bounds

2

Lower Bounds

Polynomial Optimization Problems

P C R[x] a set of polynomials, » € R[x] linear.

max r(x)
X

s.t. px)>20 Vpe PR

Polynomial Optimization Problems

P C R[x] a set of polynomials, » € R[x] linear.

max r(x)
X

s.t. px)>20 Vpe PR

Kyp:={xeR":p(x)>0Vp € &P}

Polynomial Optimization Problems

P C R[x] a set of polynomials, » € R[x] linear.

max r(x)
X

s.t. px)>20 Vpe PR

@
® /(r
Kyp:={xeR":p(x)>0Vp € &P}
Problem: Polynomial optimization problems are NP-hard to

solve in general.

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about

Motivating the SoS Relaxation

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

Standard approach is via convex programming.

Motivating the SoS Relaxation

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

Standard approach is via convex programming.

Thought Experiment:
Take the convex relaxation of K@

(T

conv(Ky) @

\. //'(r

Motivating the SoS Relaxation

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

Standard approach is via convex programming.

Thought Experiment:
Take the convex relaxation of K@

(T

conv(Ky) @
\ ®
o//(r
max7(x) = max r(x)
XEK 5 xeconv(K g)

By linearity of r(x), any optimal solution x € conv(<) is a convex
combination of optimal x € K4

Motivating the SoS Relaxation

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

Distributional View: view the points in conv(K) as distributions p
supported on the points K 4

P1
0\‘172
/ D 1 = {Pr[p,] =2/3, Pr[p;] = 1/3}
conv(Ky) @ | p;

\. //'(r

Motivating the SoS Relaxation

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

Distributional View: view the points in conv(K) as distributions p

supported on the points K 4

max r(x) =
XEK 4

max
xeconv(K 4)

P1

9 — 1%
®
/ D /= \Pr[p,] =2/3, Pr[p;] = 1/3}

\. //’(F

r(x) = max

\P3

= M[r(x)] . 1 is supported on K,

Motivating the SoS Relaxation

Distributions ¢ can be described by their moments [E M[xl]
I

Where X .= Hlelxl

Motivating the SoS Relaxation

Distributions ¢ can be described by their moments [E M[xl]
I

Where X .= Hlelxl

Suggests a relaxation

Relaxation: restrict attention to the degree < d moments of
these distributions, E[x'] for |I| < d
d

— Only n” such moments

Motivating the SoS Relaxation

Distributions ¢ can be described by their moments [E M[xl]
I

Where X .= Hlelxl

Suggests a relaxation

Relaxation: restrict attention to the degree < d moments of

these distributions, E[x'] for |I| < d
d

— Only n” such moments

However...

NP-hard to determine if there exists a distribution y on K Zwhich
agrees with a given set of moments { -[xl]}| I1<d

Motivating the SoS Relaxation

Distributions ¢ can be described by their moments [E M[xl]
I

Where X .= Hlelxl

Suggests a relaxation

Relaxation: restrict attention to the degree < d moments of

these distributions, E[x'] for |I| < d
d

— Only n” such moments

However...
NP-hard to determine if there exists a distribution y on K Zwhich

agrees with a given set of moments { -[xl]}| I|<d

Therefore
Look for efficient tests which distinguish collections of moments

which belong to distributions supported on Kp

The Sum-of- Squares Relaxation

{‘[xl]}|]|<d — linear function [E [R[x]<d — R.

The Sum-of-Squares Relaxation

~/

{ ‘[XI]}Illsd = linear function | : R[x].;, = R.
Want: i
A set of efficient tests distinguishing It that agree with the moments

of a true distribution on K4 from those that do not.

The Sum-of-Squares Relaxation

{

~/

Want:

A set of efficient tests distinguishing

-[xl]}ulsd = linear function E : R[x].; = R.

~/

— that agree with the moments

of a true distribution on K4 from those that do not.

Obvious tests of consistency:

[g*(0)]1 >0 Vg eR[x]yp

The Sum-of-Squares Relaxation

{

~/

Want:

A set of efficient tests distinguishing

-[xl]}ulsd = linear function E : R[x].; = R.

~/

— that agree with the moments

of a true distribution on K4 from those that do not.

Obvious tests of consistency:

(g7 ()] >0 Vg € R[x]

~/

[px)] >0 VpePR

The Sum-of-Squares Relaxation

{

~/

-[xl]}|1|gd = linear function [: R[x];, = R.

Want:
A set of efficient tests distinguishing & that agree with the moments

of a true distribution on K4 from those that do not.

~/

Obvious tests of consistency:

(g7 ()] >0 Vg € R[x]

~/

- :p(X)qz(x)] > 0 Vp = L@, Vq = R[X]S(d—deg(p))/z

The Sum-of-Squares Relaxation

~/

{ _[xl]}|]|§d = linear function It : R[x]sd — R.

Want:
A set of efficient tests distinguishing & that agree with the moments

of a true distribution on K4 from those that do not.

Obvious tests of consistency:
[q70)]1 20 Vg € Rix]yp

~/

o E[p()g°(0)]1 20 Vp € P,VYq € RIX] (g geg(p2

Degree-d Pseudo-Expectation for &: Any linear function
E - R[x].; — R satisfying

1. E[1] =1

2. :qz(x)] > 0 Vg € Rlx <d?

3. E[p(x)g*(x)] 2 0 Vg € R[x <(d—deg(p)y2» P € &

~/

The Sum-of-Squares Relaxation

Degree-d Pseudo-Expectation for &°: Any linear function
F: R[x] <q — R satisfying
1.E[1]=1

2.E[¢°(0)] >0 Vg € Rlx]
3. E[p(x)¢*(x)] 20 Vg € R[x <(d—deg(p)2s P € P

@
/ Distributions on K4
o Kgé < 'Pseudo-distributions

The Sum-of-Squares Relaxation

Degree-d Pseudo-Expectation for &2: Any linear function

= R[x].; — R satisfying

1.E[1]=1
2.E[¢’)] >0 Vg€ R[xlp
3. E[p(x)q°(x)] 2 0 Vg € R[X](y_geg(pyar P € P

The Sum-of-Squares Relaxation

~/

max E[r(x)]
s.t. E[1] =1
g7 (x)] >0 forallg € Rlx]_,»
:p(x)qz(X)] >O0forallp € P, g & R[x]g(d—deg(p))/z
E is linear

12 10 TR

n¢ variables, one for each monomial.

Outline

Developing the Sum-of-Squares Relaxation

Phrasing the Relaxation as an SDP

The Dual Sum-of-Squares Proofs and Completeness
Convergence and Strong Duality

Upper Bounds

o O &~ W b =

Lower Bounds

Solving the Relaxation

max E[r(x)]
s.t. E[1] =1
q*(x)] >0 forallg € Rlx]

:p(X)qz(x)] > O for aIIp = gj, dq = R[X]S(d—deg(p))/2
— IS linear

] 1 T TR

Goal: Phrase as an SDP of size | P | - n%¥)

Solving the Relaxation

max E[r(x)]
st. E[1] =1
:qz(x)] > () forallg € Rlx]
C :p(X)qz(x)] > O for aIIp = gj, dq = R[X]S(d—deg(p))/z

~/

~/

- IS linear
Goal: Phrase as an SDP of size | P | - n%¥)

|dea: rewrite polynomials as vector products
—Square polynomials become PSD constraints.

Solving the Relaxation

Goal: Phrase as an SDP of size | 2| - n%¥

Monomial vector: v, where (v,;); = x'for |I| < d
Any p € R[x].,; can be written as

px) = ?Tvd(x)
? is the coefficient vector of the monomials in p(x)

7’

Forn = 2: 2
1

D X1

Xi+3%+4=403 10 0 *
2
X1X2

2
Ay

Solving the Relaxation

Goal: Phrase as an SDP of size | 2| - n%¥

Monomial vector: v, where (v,;); = x'for |I| < d
Any p € R[x].,; can be written as

px) = ?Tvd(x)
? is the coefficient vector of the monomials in p(x)

~/

Rephrase —[qz(X)] >0 Vg e Rx]

~/ ~/ . ~/

(g% (0] = E[gvIv, Tl = GEVIv,IgT > 0

Solving the Relaxation

Goal: Phrase as an SDP of size | 2| - n%¥

Monomial vector: v, where (v,;); = x'for |I| < d
Any p € R[x].,; can be written as

px) = ?Tvd(x)
? is the coefficient vector of the monomials in p(x)

~/

Rephrase —[qz(X)] >0 Vg e Rx]

~/ ~/ . ~/

F[qg* ()] =E[qviv,q"1 = GE[vIv,g" >0 PSD constraint!

Solving the Relaxation

Goal: Phrase as an SDP of size | 2| - n%¥

Monomial vector: v, where (v,;); = x'for |I| < d
Any p € R[x].,; can be written as

px) = ?Tvd(x)
? is the coefficient vector of the monomials in p(x)

~/

Rephrase —[qz(X)] >0 Vg e Rx]

~/ ~/ . ~/

F[qg* ()] =E[qviv,q"1 = GE[vIv,g" >0 PSD constraint!

Moment Matrix: (Md)|1|,|1|gd/2 = E[x'*/], then M, = -[VdTvd]

Solving the Relaxation

Goal: Phrase as an SDP of size | 2| - n%¥

Monomial vector: v, where (v,;); = x'for |I| < d
Any p € R[x].,; can be written as

px) = ?Tvd(x)
? is the coefficient vector of the monomials in p(x)

~/

Rephrase —[qz(X)] >0 Vg e Rx]

~/ ~/ . ~/

(g2 ()] = E[qviv,q"l = GE[vIv,g" >0 PSD constraint!

Moment Matrix: (Md)|1|,|1|gd/2 = E[x'*/], then M, = -[VdTvd]

Flg*(x)] > 0 Vg € R[x].,, becomes M, > 0

Solving the Relaxation

Goal: Phrase as an SDP of size | £] - n 0@
E[g°(x)] >0 Vg € R[x].,, becomes M, > 0

E(1], E[x], ..., Elx,]

M2 — [E[xl] [E[xlxl] --.,[E[xlx]

Elx 1, E[xx],[E[x x,]

Solving the Relaxation

Goal: Phrase as an SDP of size | £ | - n

~/

Rephrase

[¢%(x)] >0 Vg €

O(d)

R[x] n becomes M, > 0

F[p(X)g~(x).

>0 Vp e P, q € Rxlg—deg(pyr’

Solving the Relaxation

Goal: Phrase as an SDP of size | £] - n 0@

Rephrase

Elg*(x)] > 0 Vg €

E[p(x)g*(x).

R[x] n becomes M, > 0

>0 Vpe P qe RXlcy—gespy

Moment Matrix for p € &:

MP

= [p (X)vy Vo o]

|I|,|J| < dwhered = (d —

where (Mp)”— Z pK"_’[xI+J+K]
deg(p))/2 |K|<deg(p)

F[p(x)g*(x)] > 0 Vg & RI[X]<(i—deg(pyy2 ECOMES Mfl’ >0

Solving the Relaxation

Goal: Phrase as an SDP of size | £] - n 0@
_[‘Iz(x)] >0 Vg €& R[x]sd/z becomes M, > ()

Rephrase E[p(x)g*(x)] 2 0 Vp € P,q € RIX]<y_geo(pyy2

Moment Matrix for p € &:

Mp —[p(x)vdvd] where (Mp)l J = Z PK:[XHHK]
III,IJ | < d'where d' = (d — deg(p))/2 K| <deg(p)

E[p(0)g*(x)] 2 0 Vg € R[X]<(y_geg(p)y2 PECOMES M? >0
SoS SDP Relaxation

~/

max [E[r(x)]
st. M;>0 | P| - n9@D
Mg >0 VpeR size SDP

F[1] = 1

SOS (P)

Solving the Relaxation

max [E[p(x)]
st. M, >0

MI=0 VpeP

E[1] =1

Solvable by the Ellipsoid Method in time | 2 | n%® log(1/¢) to
within an additive error &

SOS (P)

Solving the Relaxation

max E[p(x)]
st. M, >0
SO3/(F) M'>0 VpeP
E[1] = 1

Solvable by the Ellipsoid Method in time | 2 | n%® log(1/¢) to
within an additive error &

A solution to SOS (&) is on n variables.
Obtain an approximate solution to & by projecting to [#]

Solving the Relaxation

max [E[p(x)]
st. M, >0
SO3/(F) M'>0 VpeP
E[1] = 1

Solvable by the Ellipsoid Method in time | 2 | n%® log(1/¢) to
within an additive error &

A solution to SOS (%) is on n variables.
Obtain an approximate solution to & by projecting to [#]

\7 N2

P”Ojn(SOSd(@))

Max Cut

Max Cut POP

2
max Z w; {x; — X))
i<j
s.t. x> —x; > 0
X, —x? >0

SDP Formulation

Degree-2 SOS Relaxation

Moment Matrices

Max Cut

Max Cut POP

2
max Z w; {x; — X))
i<j
s.t. x> —x; > 0
X, —x? >0

SDP Formulation

Degree-2 SOS Relaxation
max 2 w; :[(xl- — xj)z]

z<]
s.t. E[g*(x)] > 0 Vg € R[x],
E _xi2 —x] >0
::xl- —xizj > ()
-[1] =1

Moment Matrices

Max Cut

Max Cut POP

2
max Z w; {x; — X;)
i<j
s.t. x> —x; > 0
X; — xl.z >0

SDP Formulation

max Z w; j: [(x; — xj)z]
i<j
s.t. M, > 0
M’zxi_xl'220 2 O
M50 > 0
E[1]1 =1

Degree-2 SOS Relaxation
max 2 w; :[(xl- — xj)z]

l<]
s.t. E[g*(x)] > 0 Vg € R[x],
= _xl.2 —x] >0
Elx; — x7] > 0
-[1] =1

Moment Matrices

[E[l]a E[xl]’ ce [E[xn]
Elx], E[xx], ..., E[xx,]

Elx 1, E[x x,1, ..., E[x x]

Hierarchy of Relaxations

The Sum-of-Squares relaxations form a hierarchy of ever-tightening
spectahedrons parameterized by the degree d of the relaxation

99—
@
/o e 50,

Y \. <= SOS (P)

N

Hierarchy of Relaxations

The Sum-of-Squares relaxations form a hierarchy of ever-tightening
spectahedrons parameterized by the degree d of the relaxation

.\.
/o e 5058,
Y \ < S0 (P)
\./0

Can we guarantee convergence to K g?

—Not known to be true in General.
—We will see later that convergence can be guaranteed under certain

assumptions on . This follows from duality.

Outline

Developing the Sum-of-Squares Relaxation

Phrasing the Relaxation as an SDP

The Dual Sum-of-Squares Proofs and Completeness
Convergence and Strong Duality

Upper Bounds

o Ok O Dd =

Lower Bounds

Certifying a Good Solution

Given an SoS relaxation, how can we certify an upper bound on its
object?

Certifying a Good Solution

Given an SoS relaxation, how can we certify an upper bound on its
object? Duality!

—Find the minimum A € R such that A — r(x) is non-negative over

SOS ()

Certifying a Good Solution

Given an SoS relaxation, how can we certify an upper bound on its
object? Duality!

—Find the minimum A € R such that A — r(x) is non-negative over
SOS (P)
Dual program corresponds to finding a good sum-of-squares

decomposition of A — r(x)

Dual:

min A
st. A—r(x)= Z p(x)qg(x)
pePU{l}

qd, € RIxl<i_degpyr
A ER

Weak Duality

max E[7(x)] min A

st.E[1]=1 st. A—r) =) pEgHx)
Flg*(x)] > 0 peEPU{1}
E[p(x)g*(x)] > 0 4y € RIX]<(a-deg(pyy2
- is linear AER

Primal Dual

Weak Duality

max E[7(x)] min A

st.E[1]=1 st. A—r) =) pEgHx)
Flg*(x)] > 0 peEPU{1}
E[p(x)g*(x)] > 0 4y € RIX]<(a-deg(pyy2
- is linear AER

Weak Duality: Let F € SOS (&) and r(x) = A — 2, Pu {1}p(x)q5(x)
then E[r(x)] < 1.

Weak Duality

max E[7(x)] min A

st.E[1]=1 st. A—r) =) pEgHx)
Flg*(x)] > 0 peEPU{1}
E[p(x)g*(x)] > 0 4y € RIX]<(a-deg(pyy2
- is linear AER

Weak Duality: Let F € SOS (&) and r(x) = A — 2, Pu {1}p(x)q5(x)

~/

then E[r(x)] < A.

Proof: E[r(x)] = E[1] — Z :[p(x)qg(x)] (Linearity)
peEPU{1}
=i-) Elpmg®l EN1=1)
pePU{1}

< E[p(x)g;(x)] > 0)

Weak Duality

max E[7(x)] min A

st.E[1]=1 st. A—r) =) pEgHx)
E[g*(x)] > 0 pePu(l)
E[p(x)g*(x)] > 0

~/

then E[r(x)] < A.

Proof: E[r(x)] = E[1] — Z :[p(x)qg(x)] (Linearity)

peEPU{1}

=1—) Elp@gi)

pePU{1}

<A

q, € RIXlcadgegpyr2
- IS linear LE€R

Weak Duality: Let F € SOS (&) and r(x) = A — 2, Pu {1}p(x)q5(x)

~/

(E[1] = 1)

£

E[p(0)g2(x)] = 0)

Writing 4 — r(x) as a degree-d sum of squares is a Sum-of-Squares
proof that the maximum over SOS (&) is at most 4

Sum-of-Squares Proofs

Sum-of-Squares Proof: A degree-d SoS proof of r € R[x] from
P C Rlx] is a set of polynomials g, € R[x] ;_ze(,)y2 Such that

=, pWg®

pePU{l}

Size: minimum number of bits needed to represent the proof

Sum-of-Squares Proofs

Sum-of-Squares Proof: A degree-d SoS proof of r € R[x] from
P C R[x] is a set of polynomials d, € RIX](4—geg(r))n Such that

=, pWg®

pePU{l}
Size: minimum number of bits needed to represent the proof

Sum-of-Squares Refutation: An SoS proof of — 1 from .
o certifies that K5 = O@.

Sum-of-Squares Proofs

Sum-of-Squares Proof: A degree-d SoS proof of r € R[x] from
P C R[x] is a set of polynomials d, € RIX](4—geg(r))n Such that

=, pWg®

pePU{l}
Size: minimum number of bits needed to represent the proof

Sum-of-Squares Refutation: An SoS proof of — 1 from .
o certifies that K5 = O@.

Weak Duality: If there exists a degree-d pseudo-expectation for
S, then there does not exist a degree-d refutation of .

Sum-of-Squares Proofs

Sum-of-Squares Proof: A degree-d SoS proof of r € R[x] from
P C R[x] is a set of polynomials d, € RIX](4—geg(r))n Such that

=, pWg®

pePU{l}
Size: minimum number of bits needed to represent the proof

Sum-of-Squares Refutation: An SoS proof of — 1 from .
o certifies that K5 = O@.

Weak Duality: If there exists a degree-d pseudo-expectation for
S, then there does not exist a degree-d refutation of .

Proof: Let —1 = 2 4, {l}p(x)qg(x) be a degree-d refutation and [E

be a degree-d pseudo-expectation for & then
—1 = —E[1] = E[-1] = Z,c (1) Elp(0)g,(0)] 2 0

Sum-of-Squares Proofs

Proofs of CNF formulas: x; v x, vV ~x; becomes x; + x, + (1 —x;) — 1 > 0.

Also include boolean axioms x? — x; = 0.

Sum-of-Squares Proofs

Proofs of CNF formulas: x; v x, vV ~x; becomes x; + x, + (1 —x;) — 1 > 0.

Also include boolean axioms x? — x; = 0.

SoS is a sound and complete proof system for any set of polynomials
P containing the boolean axioms

Sum-of-Squares Proofs

Proofs of CNF formulas: x; v x, vV ~x; becomes x; + x, + (1 —x;) — 1 > 0.

Also include boolean axioms x? — x; = 0.

SoS is a sound and complete proof system for any set of polynomials
P satisfying the Archimedean Assumption

Archimedean Assumption: & contains a constraint of the form

% — Zie[n]xiz > () for some r.

Radius r

Sum-of-Squares Proofs

Proofs of CNF formulas: x; v x, vV ~x; becomes x; + x, + (1 —x;) — 1 > 0.

Also include boolean axioms x? — x; = 0.

SoS is a sound and complete proof system for any set of polynomials
P satisfying the Archimedean Assumption

Archimedean Assumption: & contains a constraint of the form

% — Zie[n]xiz > () for some r.
— AXioms xl.2 — x; = () already satisfy Archimedean Assumption
®
Lo
® K G \ Radius r

Sum-of-Squares Proofs

Proofs of CNF formulas: x; v x, vV ~x; becomes x; + x, + (1 —x;) — 1 > 0.

Also include boolean axioms x? — x; = 0.

SoS is a sound and complete proof system for any set of polynomials
P satisfying the Archimedean Assumption

Archimedean Assumption: & contains a constraint of the form

% — Zie[n]xiz > () for some r-.

2

—AXioms x;” — X; = 0 already satisfy Archimedean Assumption

Putinar’s Positivstellensatz: Let &? C R[x] satisfy the Archimedean
assumption. Then r(x) > 0O for all x € K iff
=2, pWgX
pePU{1}
for some g, € R[x].

Sum-of-Squares Proof of PHP

Pigeonhole Principle:

a ZicPii—120 Vie |n+ 1]
b. 1 —p;i—py; 20 Vi£i' e[n+1],V) € [n]
C.pfj —p;;=0 Vie|n+1],j € [n]

SoS Refutation of PhP:
1. Derive | — 2, Pi; VJ “Each hole has one pigeon’

2. Sum the constraints in 1 over j € [n]
Zje[n](l — Zicn+11Pi, j) = n = Zi,jpi,j
3. Sum the constraints in a. overi € [n + 1] to get.
Zie[n+1](2je[n]pi,j — 1) — Zi,jpi,j —(n+1)
4. Add 2 and 3 to derive — 1.

Proof of 1 as an SoS polynomial:
2 _
Ziziet(d =P =D)P+ (I = Zigpbi)" = 1 = Zigpli

Outline

Developing the Sum-of-Squares Relaxation

Phrasing the Relaxation as an SDP

The Dual Sum-of-Squares Proofs and Completeness
Convergence and Strong Duality

Upper Bounds

o ok LD =

Lower Bounds

Convergence of the SoS hierarchy

Can we guarantee that our hierarchy of SDP relaxations
converges to K47

— Does lim max F[r(x)] = max r(x)?
d— o0 EESOS (9P) x€K4

Convergence of the SoS hierarchy

Can we guarantee that our hierarchy of SDP relaxations
converges to K47

— Does lim max F[r(x)] = max r(x)?
d— o0 EESOS (9P) x€K4

Convergence is holds under the Archimedean Assumption.

Archimedean Assumption: & contains a constraint of the form

re — Zie[n]xiz > () for some r-.

Convergence: Let & C R[x] satisfy the Archimedean Assumption

lim max [E[r(x)] = maxr(x)
d— o0 E€SOS (P) x€K 5

Convergence of the SoS hierarchy

Can we guarantee that our hierarchy of SDP relaxations
converges to K47

— Does lim max F[r(x)] = max r(x)?
d— o0 EESOS (9P) x€K4

Convergence is holds under the Archimedean Assumption.

Archimedean Assumption: & contains a constraint of the form

re — Zie[n]xiz > () for some r-.

Convergence: Let & C R[x] satisfy the Archimedean Assumption

lim max [E[r(x)] = maxr(x)
d— o0 E€SOS (P) x€K 5

Proof: Combine strong duality with completeness

Convergence of the SoS hierarchy

Convergence: Let & C R[x] satisfy the Archimedean Assumption

lim max [E[r(x)] = max r(x)
d—oco EESOS(9P) x€K 4

Proof: Combine strong duality with completeness

Convergence of the SoS hierarchy

Convergence: Let & C R[x] satisfy the Archimedean Assumption

lim max [E[r(x)] = max r(x)
d— oo EESOS(9P) x€K 4

Proof: Combine strong duality with completeness

Strong Duality: For all & C R[x] satisfying the Archimedean

Assumption min A= max [E[p]
A—r(x)=Zp(x)g;(x) E€SOS ()

Convergence of the SoS hierarchy

Convergence: Let & C R[x] satisfy the Archimedean Assumption

lim max [E[r(x)] = max r(x)
d— oo EESOS(9P) x€K 4

Proof: Combine strong duality with completeness

Strong Duality: For all & C R[x] satisfying the Archimedean

Assumption min A= max [E[p]
A—r(x)=Zp(x)g;(x) E€SOS ()

Putinar’s Positivstellensatz: Let &? C R[x] satisfy the Archimedean
assumption. Then r(x) > O for all x € K iff

=) pxgix)

pePuU{l}

Convergence of the SoS hierarchy

Convergence: Let & C R[x] satisfy the Archimedean Assumption

lim max [E[r(x)] = max r(x)
d— oo EESOS(9P) x€K 4

When can we guarantee faster convergence?

— |nclusion of axioms such as

. i2 —x; = 0 Vi € [n] (hypercube), or

o | — xl.2 = 0 Vi € [n] (hypersphere)
guarantee convergence in degree 2n + deg()

Strong Duality

Strong Duality: For all & C R[x] satisfying the Archimedean

Assumption min A= max [E[p]
A—r(xX)=Zp(x)q;(x) E€SOS ()

ldea:
1. Write dual as an SDP searching for the coefficients in the proof.

2. Use SDP strong duality.

Strong Duality

Strong Duality: For all & C R[x] satisfying the Archimedean

Assumption min A= max [E[p]
A—r(xX)=Zp(x)q;(x) E€SOS ()

ldea:
1. Write dual as an SDP searching for the coefficients in the proof.

2. Use SDP strong duality.

PSD Matrices Z € R™ ™ define square polynomials:

By Cholesky Decomposition: Z = UU!

Then vdTU U Tvd = (vdTU)2 = g?(x). Where (v;); = IL._;x;

Strong Duality

Strong Duality: For all & C R[x] satisfying the Archimedean

Assumption min A= max [E[p]
A—r(xX)=Zp(x)q;(x) E€SOS ()

ldea:
1. Write dual as an SDP searching for the coefficients in the proof.

2. Use SDP strong duality.

PSD Matrices Z € R™ ™ define square polynomials:
By Cholesky Decomposition: Z = UU!
Then vdTU U Tvd = (vdTU)2 = g?(x). Where (v;); = 11,.;x;

Rephrase 4 — r(x) = 2P {1}p(x)q5(x) as

min A
st. A—r(@) =) O AN d, := (d — deg(p))/2
peELPU{1}
Z >0 Vpe &P

P

Strong Duality

Strong Duality: For all & C R[x] satisfying the Archimedean

Assumption min A= max [E[p]
A—r(xX)=Zp(x)q;(x) E€SOS ()

Rephrase A — r(x) = Z ¢ oo 1,P(X)g, (x) as

min A
st. A—r(x)= Z p(x)vUZvadp d, = (d—deg(p))/2
pePU{1}
Z >0 Vp e &

P

Strong Duality

Strong Duality: For all & C R[x] satisfying the Archimedean

Assumption min A= max :[p]
A—r(xX)=Zp(x)q;(x) E€SOS ()

Rephrase 4 — r(x) = 2, e, {1}p(x)qp (x) as

min A
st. A—rx) = Z p(x)vUZvadp d, = (d — deg(p))/2
pePU{1}
Z,>0 Vp e &
Removing x variables, this becomes
min A
st. Ay_gi—=F=) Y TPxZ)sr V|| <deg(r)
pePU{l} S+T+K=I
Z,>0 Vpe &P

Strong Duality

Strong Duality: For all & C R[x] satisfying the Archimedean

Assumption min A= max [E[p]
A—r(xX)=Zp(x)q;(x) E€SOS ()
Dual:
min A

st. Aly_g—F = Z 2 PZ)sr VII| < deg(r)
pePU{l} S+T+K=I

Z,> 0 Vpe &P
Primal:
max E[p(x)]
st. M;>0
MI=0 VpeR
—[1] =1

Strong duality follows by the SDP strong duality theorem

Outline

Developing the Sum-of-Squares Relaxation

Phrasing the Relaxation as an SDP

The Dual Sum-of-Squares Proofs and Completeness
Convergence and Strong Duality

Upper Bounds

2 A

Lower Bounds

Automatizability

Can we find a Sum-of-Squares proof efficiently if it exists?

Claimed: One can find a degree-d Sum-of-Squares proof in time
| P | - n9%9 if it exists.

Automatizability

Can we find a Sum-of-Squares proof efficiently if it exists?

Claimed: One can find a degree-d Sum-of-Squares proof in time
| P | - n9%9 if it exists.

Reasoning: SoS dual is an | 2| - n%¥-size SDP. Can be solved in
time | 2| - n%9 by the Ellipsoid Method (up to additive error &).

Automatizability

Can we find a Sum-of-Squares proof efficiently if it exists?

Claimed: One can find a degree-d Sum-of-Squares proof in time
| P | - n9%9 if it exists.

Reasoning: SoS dual is an | 2| - n%¥-size SDP. Can be solved in

time | 2| - n%9 by the Ellipsoid Method (up to additive error &).

This claim is not known to be true in general
—Even for & satisfying the Archimedean assumption.

—Even for & containing xl.2 —x;, =0 foralli € [n]

Automatizability

Issue:
* Ellipsoid Method requires the feasible set of the SDP to be

contained within a ball of radius R = | & | - n0@d
e i.e. there must exist a proof with bit size | | - n 9@

SOS (P)

Ellipsoid Method: Let C be a convex set with a polynomial-time
separation oracle. For r, R > 0 and ¢ € R” such that

Ball(c,r) € C C Ball(0,R), maximizing over C to an additive error
¢ > 0 can be done in time poly(|C|) - log(R/re).

Automatizability

Issue:

* Ellipsoid Method requires the feasible set of the SDP to be
contained within a ball of radius R = | & | - n0@d

e i.e. there must exist a proof with bit size | 2| - n??

[IRW17] Extending [O’Do17]: There exists small, degree 2
polynomials &, r(x) such that

—r(x) has a degree-2 SoS proof from £,

—r(x) does not admit a degree 0(\/%) proof of polynomial bit
length from .

Automatizability

Issue:

* Ellipsoid Method requires the feasible set of the SDP to be
contained within a ball of radius R = | & | - n0@d

e i.e. there must exist a proof with bit size | 2| - n??

[IRW17] Extending [O’Do17]: There exists small, degree 2
polynomials &, r(x) such that

—r(x) has a degree-2 SoS proof from £,

—r(x) does not admit a degree 0(\/%) proof of polynomial bit
length from .

Good News: [RW17] provide a set of sufficient conditions under
which SoS derivations can be found in time | 2| - n9@.
—MaxCSP, MaxClique, Balanced Separator, MaxBisection

Automatizability

What about size automatizability?

Automatizability

What about size automatizability?

Open Problem: Is there an algorithm for finding a SoS proof of size s
in time poly(s)?

Automatizability

What about size automatizability?
Open Problem: Is there an algorithm for finding a SoS proof of size s

in time poly(s)?

Monomial Size: s,, the minimum number of monomials in any SoS
proof.

Size-degree tradeoff [AH18]: Any SoS derivation of monomial size
s, from & implies a derivation of degree 0(\/71 log s, + deg(%))

Automatizability

What about size automatizability?
Open Problem: Is there an algorithm for finding a SoS proof of size s

in time poly(s)?

Monomial Size: s,, the minimum number of monomials in any SoS
proof.

Size-degree tradeoff [AH18]: Any SoS derivation of monomial size
s, from & implies a derivation of degree 0(\/71 log s, + deg(%))

Any SoS derivation of monomial size s,, from a set & satisfying the
conditions of [RW17] can be found in time nO(ynlogs, +deg(#))

Upper Bounds via Sum-of-Squares

Upper bounds leverage strong duality and the n%?_time SoS
algorithm to transform certificates that a solution exists into
algorithms for finding that solution.

— Combined with clever rounding schemes

Upper Bounds via Sum-of-Squares

Upper bounds leverage strong duality and the n%?_time SoS
algorithm to transform certificates that a solution exists into
algorithms for finding that solution.

— Combined with clever rounding schemes

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut.
—Introduced the random hyperplane rounding technique

Upper Bounds via Sum-of-Squares

Upper bounds leverage strong duality and the n%?_time SoS
algorithm to transform certificates that a solution exists into

algorithms for finding that solution.
— Combined with clever rounding schemes

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut.
—Introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a 0(\/ log n)-approximation

for the Sparsest Cut.
— first use of higher-order SoS relaxations.

Upper Bounds via Sum-of-Squares

Upper bounds leverage strong duality and the n%?_time SoS
algorithm to transform certificates that a solution exists into

algorithms for finding that solution.
— Combined with clever rounding schemes

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut.
—Introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a 0(\/ log n)-approximation

for the Sparsest Cut.
— first use of higher-order SoS relaxations.

A line of work beginning with [KKMOOQO7] uncovered a deep
connection between SoS and the Unique Games Conjecture

Upper Bounds via Sum-of-Squares

Upper bounds leverage strong duality and the n%?_time SoS
algorithm to transform certificates that a solution exists into
algorithms for finding that solution.

— Combined with clever rounding schemes

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut.
—Introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a 0(\/ log n)-approximation

for the Sparsest Cut.
— first use of higher-order SoS relaxations.

A line of work beginning with [KKMOOQO7] uncovered a deep
connection between SoS and the Unique Games Conjecture

[Rag08]: Assuming the Unigue Games Conjecture, degree-2 SoS
gives the optimal approximation ratio for every CSP.
— Does not tell us what this approximation ratio is.

Upper Bounds via Sum-of-Squares

[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique
Games based on SoS.

—[BRS11,GS11] Introduced the global correlation rounding
technique.

Upper Bounds via Sum-of-Squares

[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique
Games based on SoS.

—[BRS11,GS11] Introduced the global correlation rounding
technique.

Global Correlation Rounding:
- Given a pseudo-expectation I, one way to round it is to assign

each variable x; = 1 with probability E[x;]. This can result in poor

solutions due to correlations.

- Global Correlation Rounding: for 2CSPs, in expectation, global
correlation drops under conditioning on the outcome of a set of
random variables, while the objective value remains the same.

Upper Bounds via Sum-of-Squares

[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique
Games based on SoS.

—[BRS11,GS11] Introduced the global correlation rounding
technique.

Global Correlation Rounding:
- Given a pseudo-expectation I, one way to round it is to assign

each variable x; = 1 with probability E[x;]. This can result in poor

solutions due to correlations.

- Global Correlation Rounding: for 2CSPs, in expectation, global
correlation drops under conditioning on the outcome of a set of
random variables, while the objective value remains the same.

IBKS13, BKS17]: Developed new rounding techniques for high-
dimensional SoS

— Obtained algorithms for problems in quantum information theory,
such as Best Separable State.

Average-Case Upper Bounds

Recently, lots of work on average-case algorithms using SoS

—Partly due to an average-case rounding framework introduced in
IBKS14]

Led to SoS-based algorithms for average-case problems including:
— Dictionary Learning [BKS14],

—Tensor Completion [BM16, PS16],

— Clustering Mixture Models [HL18, KS17],

— Outlier Robust Moment Estimation [KS17],

—Robust Linear Regression [KKM18],

— Attacking cryptographic PRGs [BBKK18, BHKS19].

Outline

Developing the Sum-of-Squares Relaxation

Phrasing the Relaxation as an SDP

The Dual Sum-of-Squares Proofs and Completeness
Convergence and Strong Duality

Upper Bounds

o Ok L Dd =

Lower Bounds

Comparison with other Proof Systems

Simulations in terms of degree

Sum-of-Squares

Sherali-Adams Polynomial Calculus
Nullstellensatz

Many of these separations as well as the simulation of PC by SoS
are due to [Ber18]

Comparison with other Proof Systems

Simulation in terms of size

Stabbing Planes Frege
Cutting Planes Sum-of-Squares AC"-Frege
Sherali-Adams Polynomial Calculus
Nullstellensatz Resolution

Open Questions:

—Does SoS simulate ACV-Frege?
—How does SoS compare to Cutting Planes?
—How does SoS compare to Stabbing Planes / R(CP)?

Lower Bounds on SoS

If degree-d SoS cannot refute &P U {r(x) — A} then maximizing r(x)
over the degree-d SoS relaxation of & attains a value of at least A.

— Lower bounds on the degree of SoS refutations imply
inapproximability results for the SoS hierarchy.

Lower Bounds on SoS

If degree-d SoS cannot refute &P U {r(x) — A} then maximizing r(x)
over the degree-d SoS relaxation of & attains a value of at least A.

— Lower bounds on the degree of SoS refutations imply
inapproximability results for the SoS hierarchy.

To prove a degree lower bound of d on refuting a set of polynomials
P, one constructs a degree-d pseudo-expectation for &

Lower Bounds on SoS

If degree-d SoS cannot refute &P U {r(x) — A} then maximizing r(x)
over the degree-d SoS relaxation of & attains a value of at least A.

— Lower bounds on the degree of SoS refutations imply
inapproximability results for the SoS hierarchy.

To prove a degree lower bound of d on refuting a set of polynomials
P, one constructs a degree-d pseudo-expectation for &

Random 3XOR: [Gri01, Sch08] systems of random 3XOR equations
require degree €2(n).
* Reduction to Resolution width lower bounds.

* Builds on earlier ideas [BGIP0O1, Gri98] for NS and PC.
e [Sch08] Implies lower bounds on Max3SAT, Max Ind Set.

Lower Bounds on SoS — CSPs

Approximation Resistant: The best polynomial-time approximation
IS a uniformly random assignment.

Lower Bounds on SoS — CSPs

Approximation Resistant: The best polynomial-time approximation
IS a uniformly random assignment.

[Chan13]: Assuming P # NP, any predicate P : {0,1}* — {0,1}

that is pairwise independent and algebraically linear is approximation
resistant

e Pairwise Independent: P~1(1) supports a distribution x such that
the pairwise marginals y;u; for i # j is uniform over {0, 1 12,

e Algebraically Linear: u is also the uniform distribution over a
subspace V C GF(2).

Lower Bounds on SoS — CSPs

Approximation Resistant: The best polynomial-time approximation
IS a uniformly random assignment.

[Chan13]: Assuming P # NP, any predicate P : {0,1}* — {0,1}

that is pairwise independent and algebraically linear is approximation
resistant

e Pairwise Independent: P~1(1) supports a distribution x such that
the pairwise marginals y;u; for i # j is uniform over {0, 1 12,

e Algebraically Linear: u is also the uniform distribution over a
subspace V C GF(2).

[AMO09]: Assuming the UGC, any predicate P : {0,1}* — {0,1} that
IS pairwise uniform is approximation resistant

Lower Bounds on SoS — CSPs

Approximation Resistant CSP for Degree-d SoS: If there is an
instance such that

e A random assignment is essentially optimal

e Degree-d SoS believes 1 — o(1) fraction of constraints can be
satisfied

Lower Bounds on SoS — CSPs

Approximation Resistant CSP for Degree-d SoS: If there is an
instance such that

e A random assignment is essentially optimal

e Degree-d SoS believes 1 — o(1) fraction of constraints can be
satisfied

[Tul09]: Any CSP on pairwise uniform and algebraically linear

predicates is approximation resistant for degree £2(71) SoS
e Method for doing reductions in SoS

| ower bounds for problems such as Vertex Cover, IndSet

Open Question: Prove that SoS cannot achieve better than a 2-
approximation for Vertex Cover.

Lower Bounds on SoS — CSPs

Approximation Resistant CSP for Degree-d SoS: If there is an
instance such that

e A random assignment is essentially optimal

e Degree-d SoS believes 1 — o(1) fraction of constraints can be
satisfied

[Tul09]: Any CSP on pairwise uniform and algebraically linear

predicates is approximation resistant for degree £2(71) SoS
e Method for doing reductions in SoS
| ower bounds for problems such as Vertex Cover, IndSet

[BCK15]: Any CSP defined on pairwise uniform predicates is
approximation resistant for degree £2(n) SoS

Open Question: Prove that SoS cannot achieve better than a 2-
approximation for Vertex Cover.

Average-Case Lower Bounds

Random CSPs: [KMOW17] Proved sharp lower bounds that tightly
characterize the number of clauses needed for SoS to refute

random CSP instances with a given predicate P.
— Matches the upper bounds of [AOW15, RRS16].

Average-Case Lower Bounds

Random CSPs: [KMOW17] Proved sharp lower bounds that tightly
characterize the number of clauses needed for SoS to refute

random CSP instances with a given predicate P.
— Matches the upper bounds of [AOW15, RRS16].

Planted Clique: [MPW15, HKPRS18], culminating in [BHKKMP18]
proved nearly tight lower bounds on the degree of SoS proofs of the
Planted Clique problem.

— Introduced the pseudo-calibration framework; a computational
bayesian approach to constructing pseudo-expectations.

Applications of Lower Bounds

(SDP) Extended Formulation: Of a polytope P is any polytope
(spectahedron) () such that there exists a linear projection such that

proj(Q) = P.
— Restriction: Polytope is instance independent

Applications of Lower Bounds

(SDP) Extended Formulation: Of a polytope P is any polytope
(spectahedron) () such that there exists a linear projection such that

proj(Q) = P.
— Restriction: Polytope is instance independent

[CLRS13, KMR17] For any CSP on N = n variables, there is a
constant ¢ such that no size n¢¢ extended formulation can achieve
a better approximation than degree-d Sherali-Adams.

Applications of Lower Bounds

(SDP) Extended Formulation: Of a polytope P is any polytope
(spectahedron) () such that there exists a linear projection such that

proj(Q) = P.
— Restriction: Polytope is instance independent

[CLRS13, KMR17] For any CSP on N = n variables, there is a
constant ¢ such that no size n¢¢ extended formulation can achieve
a better approximation than degree-d Sherali-Adams.

[LRS14] For any CSP, there exists a constant ¢ such that no size
c(n/log n)¥* SDP extended formulation can achieve a better
approximation on any instance of N = n*? variables than degree-d
Sum-of-Squares can on n variables.

Thank You!

