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problems such as the Goemans Williamson algorithm for 
MaxCut


- Gives optimal approximations of any CSP under the Unique 
Games Conjecture [Rag08]

Sum-of-Squares: Powerful proof system

— Proofs correspond to a family of SDPs

Simple Algorithm Design Strategy: 

- Sum-of-Squares proofs are automatizable. 

- Proofs that a solution exist automatically give efficient algorithms 

for finding that solution. Main difficulty is rounding the solution.

Sum-of-Squares has become a popular tool in algorithm design
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solve in general.
Goal: Develop a tractable relaxation that achieves good 
approximations to many problems we care about
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Standard approach is via convex programming.

max
x∈K𝒫

r(x) = max
x∈conv(K𝒫)

r(x)

conv(K𝒫)

r

Goal: Develop a tractable relaxation that achieves good 
approximations to many problems we care about.

By linearity of , any optimal solution  is a convex 
combination of optimal 

r(x) x ∈ conv(𝒫)
x ∈ K𝒫

Motivating the SoS Relaxation

Thought Experiment:
Take the convex relaxation of K𝒫
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Distributional View: view the points in  as distributions  
supported on the points 

conv(K𝒫) μ
K𝒫

p2

p3

p1

μ = {Pr[p2] = 2/3, Pr[p3] = 1/3}
conv(K𝒫)

Goal: Develop a tractable relaxation that achieves good 
approximations to many problems we care about.

Motivating the SoS Relaxation



r

max
x∈K𝒫

r(x) = max
x∈conv(K𝒫)

r(x) = max 𝔼μ[r(x)] : μ is supported on K𝒫

Distributional View: view the points in  as distributions  
supported on the points 

conv(K𝒫) μ
K𝒫

p2

p3

p1

μ = {Pr[p2] = 2/3, Pr[p3] = 1/3}
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Goal: Develop a tractable relaxation that achieves good 
approximations to many problems we care about.
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Distributions  can be described by their moments  
where 

μ 𝔼μ[xI]
xI := Πi∈Ixi

Suggests a relaxation

Relaxation: restrict attention to the degree  moments of 
these distributions,  for 

≤ d
𝔼[xI] | I | ≤ d

NP-hard to determine if there exists a distribution  on which 
agrees with a given set of moments 

μ K𝒫
{𝔼[xI]}|I|≤d

Look for efficient tests which distinguish collections of moments 
which belong to distributions supported on KP

However...

Therefore

— Only  such momentsnd

Motivating the SoS Relaxation
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       for all , 

       is linear

max �̃�[r(x)]
�̃�[1] = 1
�̃�[q2(x)] ≥ 0 q ∈ ℝ[x]≤d/2
�̃�[p(x)q2(x)] ≥ 0 p ∈ 𝒫 q ∈ ℝ[x]≤(d−deg(p))/2
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Idea: rewrite polynomials as vector products

—Square polynomials become PSD constraints. 

Goal: Phrase as an SDP of size  
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               4 0 3 1 0 0

Solving the Relaxation

⃗p

⃗v2

Monomial vector:  where  for 

Any  can be written as

                                          

  is the coefficient vector of the monomials in 

vd (vd)I = xI | I | ≤ d
p ∈ ℝ[x]≤d

p(x) = ⃗p Tvd(x)
⃗p p(x)

For :n = 2
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The Sum-of-Squares relaxations form a hierarchy of ever-tightening 
spectahedrons parameterized by the degree  of the relaxationd

K𝒫
SOSd+1(𝒫)
SOSd(𝒫)

Can we guarantee convergence to ?

—Not known to be true in General.

—We will see later that convergence can be guaranteed under certain 
assumptions on . This follows from duality.

K𝒫

𝒫
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Certifying a Good Solution

Dual program corresponds to finding a good sum-of-squares 
decomposition of λ − r(x)
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       is linear
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then .
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Proof:     (Linearity)
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Proofs of CNF formulas:  becomes . 
Also include boolean axioms . 

x1 ∨ x2 ∨ ¬x3 x1 + x2 + (1 − x3) − 1 ≥ 0
x2

i − xi = 0

Putinar’s Positivstellensatz: Let  satisfy the Archimedean 
assumption. Then  for all  iff

                            


for some .

𝒫 ⊆ ℝ[x]
r(x) > 0 x ∈ K𝒫

r(x) = ∑
p∈𝒫∪{1}

p(x)q2
p(x)

qp ∈ ℝ[x]

—Axioms  already satisfy Archimedean Assumptionx2
i − xi = 0
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 for some .
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Sum-of-Squares Proof of PHP
Pigeonhole Principle: 

a.               

b.             

c.                     

Σj∈[n]pi,j − 1 ≥ 0 ∀i ∈ [n + 1]
1 − pi,j − pi′ ,j ≥ 0 ∀i ≠ i′ ∈ [n + 1], ∀j ∈ [n]
p2

i,j − pi,j = 0 ∀i ∈ [n + 1], j ∈ [n]

SoS Refutation of PhP:

1. Derive         “Each hole has one pigeon”

2. Sum the constraints in 1 over 

                     

3.   Sum the constraints in a. over  to get.      

                 

4.   Add 2 and 3 to derive . 

1 − Σi∈[n+1]pi,j ∀j
j ∈ [n]

Σj∈[n](1 − Σi∈[n+1]pi,j) = n − Σi,jpi,j
i ∈ [n + 1]

Σi∈[n+1](Σj∈[n]pi,j − 1) = Σi,jpi,j − (n + 1)
−1

Proof of 1 as an SoS polynomial:

Σi≠i′ ∈[n](1 − pi,j − pi′ ,j)pi,j + (1 − Σi∈[n]pi,j)2 = 1 − Σi∈[n]pi,j
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Convergence of the SoS hierarchy

When can we guarantee faster convergence? 
— Inclusion of axioms such as 

•   (hypercube), or 


•   (hypersphere)

guarantee convergence in degree 

x2
i − xi = 0 ∀i ∈ [n]

1 − x2
i = 0 ∀i ∈ [n]

2n + deg(𝒫)
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Idea: 
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Strong Duality

Dual:
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Primal:



s.t.    

         

         

max �̃�[p(x)]
Md ⪰ 0
Mp

d ⪰ 0 ∀p ∈ 𝒫
�̃�[1] = 1

Strong duality follows by the SDP strong duality theorem
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Claimed: One can find a degree-  Sum-of-Squares proof in time 
 if it exists. 

d
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Automatizability
Can we find a Sum-of-Squares proof efficiently if it exists?

Claimed: One can find a degree-  Sum-of-Squares proof in time 
 if it exists. 

d
|𝒫 | ⋅ nO(d)

This claim is not known to be true in general

—Even for  satisfying the Archimedean assumption.

—Even for  containing  for all  

𝒫
𝒫 x2

i − xi = 0 i ∈ [n]

Reasoning: SoS dual is an -size SDP. Can be solved in 
time  by the Ellipsoid Method (up to additive error ). 

|𝒫 | ⋅ nO(d)

|𝒫 | ⋅ nO(d) ε



Automatizability

Ellipsoid Method: Let  be a convex set with a polynomial-time 
separation oracle. For  and  such that 

, maximizing over  to an additive error 
 can be done in time .

C
r, R > 0 c ∈ ℝn

Ball(c, r) ⊆ C ⊆ Ball(0,R) C
ε > 0 poly( |C | ) ⋅ log(R/rε)

R r

SOSd(𝒫)

Issue: 

• Ellipsoid Method requires the feasible set of the SDP to be 

contained within a ball of radius 

• i.e. there must exist a proof with bit size  

R = |𝒫 | ⋅ nO(d)

|𝒫 | ⋅ nO(d)



Automatizability

[RW17] Extending [O’Do17]: There exists small, degree 2 
polynomials ,  such that 

—  has a degree-2 SoS proof from , 

—  does not admit a degree  proof of polynomial bit 
length from . 
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Automatizability

Good News: [RW17] provide a set of sufficient conditions under 
which SoS derivations can be found in time .

—MaxCSP, MaxClique, Balanced Separator, MaxBisection
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proof.
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Automatizability
What about size automatizability?

Open Problem: Is there an algorithm for finding a SoS proof of size  
in time ? 

s
poly(s)

Any SoS derivation of monomial size  from a set  satisfying the 
conditions of [RW17] can be found in time . 

sm 𝒫
nO( n log sm+deg(𝒫))

Size-degree tradeoff [AH18]: Any SoS derivation of monomial size 
 from  implies a derivation of degree sm 𝒫 O( n log sm + deg(𝒫))

Monomial Size:  the minimum number of monomials in any SoS 
proof.

sm
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Upper bounds leverage strong duality and the -time SoS 
algorithm to transform certificates that a solution exists into 
algorithms for finding that solution.

— Combined with clever rounding schemes 
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A line of work beginning with [KKMO07] uncovered a deep 
connection between SoS and the Unique Games Conjecture 
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Upper Bounds via Sum-of-Squares

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut.

—introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a -approximation 
for the Sparsest Cut.

— first use of higher-order SoS relaxations.

O( log n)

[Rag08]: Assuming the Unique Games Conjecture, degree-2 SoS 
gives the optimal approximation ratio for every CSP.

— Does not tell us what this approximation ratio is. 

A line of work beginning with [KKMO07] uncovered a deep 
connection between SoS and the Unique Games Conjecture 

Upper bounds leverage strong duality and the -time SoS 
algorithm to transform certificates that a solution exists into 
algorithms for finding that solution.

— Combined with clever rounding schemes 

nO(d)



Upper Bounds via Sum-of-Squares
[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique 
Games based on SoS.

—[BRS11,GS11] Introduced the global correlation rounding 
technique.
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Global Correlation Rounding:

- Given a pseudo-expectation , one way to round it is to assign 

each variable  with probability . This can result in poor 
solutions due to correlations.


- Global Correlation Rounding: for 2CSPs, in expectation, global 
correlation drops under conditioning on the outcome of a set of 
random variables, while the objective value remains the same. 
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Upper Bounds via Sum-of-Squares

[BKS13, BKS17]: Developed new rounding techniques for high-
dimensional SoS 

— Obtained algorithms for problems in quantum information theory, 
such as Best Separable State.

[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique 
Games based on SoS.

—[BRS11,GS11] Introduced the global correlation rounding 
technique.

Global Correlation Rounding:

- Given a pseudo-expectation , one way to round it is to assign 

each variable  with probability . This can result in poor 
solutions due to correlations.


- Global Correlation Rounding: for 2CSPs, in expectation, global 
correlation drops under conditioning on the outcome of a set of 
random variables, while the objective value remains the same. 
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Average-Case Upper Bounds
Recently, lots of work on average-case algorithms using SoS

—Partly due to an average-case rounding framework introduced in 
[BKS14]

Led to SoS-based algorithms for average-case problems including:

—Dictionary Learning [BKS14], 

—Tensor Completion [BM16, PS16], 

—Clustering Mixture Models [HL18, KS17], 

—Outlier Robust Moment Estimation [KS17], 

—Robust Linear Regression [KKM18], 

—Attacking cryptographic PRGs [BBKK18, BHKS19].



Outline
1. Developing the Sum-of-Squares Relaxation

2. Phrasing the Relaxation as an SDP

3. The Dual Sum-of-Squares Proofs and Completeness

4. Convergence and Strong Duality

5. Upper Bounds 

6. Lower Bounds



Comparison with other Proof Systems

Sum-of-Squares

Sherali-Adams Polynomial Calculus

Nullstellensatz

Simulations in terms of degree


Many of these separations as well as the simulation of PC by SoS 
are due to [Ber18]



Comparison with other Proof Systems

Sum-of-Squares

Sherali-Adams Polynomial Calculus

Nullstellensatz Resolution

-Frege AC0

Frege

Cutting Planes

Open Questions:

—Does SoS simulate -Frege?

—How does SoS compare to Cutting Planes?

—How does SoS compare to Stabbing Planes / R(CP)?

AC0

Simulation in terms of size


Stabbing Planes



Lower Bounds on SoS
If degree-  SoS cannot refute  then maximizing  
over the degree-  SoS relaxation of  attains a value of at least .

d 𝒫 ∪ {r(x) − λ} r(x)
d 𝒫 λ

— Lower bounds on the degree of SoS refutations imply 
inapproximability results for the SoS hierarchy. 
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To prove a degree lower bound of  on refuting a set of polynomials 
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— Lower bounds on the degree of SoS refutations imply 
inapproximability results for the SoS hierarchy. 



Lower Bounds on SoS

Random 3XOR: [Gri01, Sch08] systems of random 3XOR equations 
require degree .

• Reduction to Resolution width lower bounds.

• Builds on earlier ideas [BGIP01, Gri98] for NS and PC.

• [Sch08] Implies lower bounds on Max3SAT, Max Ind Set.

Ω(n)

To prove a degree lower bound of  on refuting a set of polynomials 
, one constructs a degree-  pseudo-expectation for 

d
𝒫 d 𝒫

If degree-  SoS cannot refute  then maximizing  
over the degree-  SoS relaxation of  attains a value of at least .

d 𝒫 ∪ {r(x) − λ} r(x)
d 𝒫 λ

— Lower bounds on the degree of SoS refutations imply 
inapproximability results for the SoS hierarchy. 



Lower Bounds on SoS — CSPs
Approximation Resistant: The best polynomial-time approximation 
is a uniformly random assignment. 
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Approximation Resistant: The best polynomial-time approximation 
is a uniformly random assignment. 

[Chan13]: Assuming , any predicate   
that is pairwise independent and algebraically linear is approximation 
resistant

• Pairwise Independent:  supports a distribution  such that 

the pairwise marginals  for  is uniform over .


• Algebraically Linear:   is also the uniform distribution over a 
subspace .


P ≠ NP P : {0,1}k → {0,1}

P−1(1) μ
μiμj i ≠ j {0,1}2

μ
V ⊆ GF(2)



Lower Bounds on SoS — CSPs
Approximation Resistant: The best polynomial-time approximation 
is a uniformly random assignment. 

[AM09]: Assuming the UGC, any predicate  that 
is pairwise uniform is approximation resistant 

P : {0,1}k → {0,1}

[Chan13]: Assuming , any predicate   
that is pairwise independent and algebraically linear is approximation 
resistant

• Pairwise Independent:  supports a distribution  such that 

the pairwise marginals  for  is uniform over .


• Algebraically Linear:   is also the uniform distribution over a 
subspace .


P ≠ NP P : {0,1}k → {0,1}

P−1(1) μ
μiμj i ≠ j {0,1}2

μ
V ⊆ GF(2)



Lower Bounds on SoS — CSPs
Approximation Resistant CSP for Degree-d SoS: If there is an 
instance such that 

• A random assignment is essentially optimal

• Degree-d SoS believes  fraction of constraints can be 

satisfied
1 − o(1)



Lower Bounds on SoS — CSPs

 [Tul09]: Any CSP on pairwise uniform and algebraically linear 
predicates is approximation resistant for degree  SoS

• Method for doing reductions in SoS

• Lower bounds for problems such as Vertex Cover, IndSet

Ω(n)

Open Question: Prove that SoS cannot achieve better than a 2-
approximation for Vertex Cover. 

Approximation Resistant CSP for Degree-d SoS: If there is an 
instance such that 

• A random assignment is essentially optimal

• Degree-d SoS believes  fraction of constraints can be 

satisfied
1 − o(1)



Lower Bounds on SoS — CSPs

[BCK15]: Any CSP defined on pairwise uniform predicates is 
approximation resistant for degree  SoSΩ(n)

Open Question: Prove that SoS cannot achieve better than a 2-
approximation for Vertex Cover. 

 [Tul09]: Any CSP on pairwise uniform and algebraically linear 
predicates is approximation resistant for degree  SoS

• Method for doing reductions in SoS

• Lower bounds for problems such as Vertex Cover, IndSet

Ω(n)

Approximation Resistant CSP for Degree-d SoS: If there is an 
instance such that 

• A random assignment is essentially optimal

• Degree-d SoS believes  fraction of constraints can be 

satisfied
1 − o(1)



Average-Case Lower Bounds
Random CSPs: [KMOW17] Proved sharp lower bounds that tightly 
characterize the number of clauses needed for SoS to refute 
random CSP instances with a given predicate .

— Matches the upper bounds of [AOW15, RRS16].

P



Average-Case Lower Bounds
Random CSPs: [KMOW17] Proved sharp lower bounds that tightly 
characterize the number of clauses needed for SoS to refute 
random CSP instances with a given predicate .

— Matches the upper bounds of [AOW15, RRS16].

P

Planted Clique: [MPW15, HKPRS18], culminating in [BHKKMP18] 
proved nearly tight lower bounds on the degree of SoS proofs of the 
Planted Clique problem.

— Introduced the pseudo-calibration framework; a computational 
bayesian approach to constructing pseudo-expectations.



Applications of Lower Bounds
(SDP) Extended Formulation: Of a polytope  is any polytope 
(spectahedron)  such that there exists a linear projection such that 

.

—Restriction: Polytope is instance independent 

P
Q

proj(Q) = P
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P
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[CLRS13, KMR17] For any CSP on  variables, there is a 
constant  such that no size  extended formulation can achieve 
a better approximation than degree-  Sherali-Adams.

N = n
c nc⋅d

d



Applications of Lower Bounds
(SDP) Extended Formulation: Of a polytope  is any polytope 
(spectahedron)  such that there exists a linear projection such that 

.

—Restriction: Polytope is instance independent 

P
Q

proj(Q) = P

[CLRS13, KMR17] For any CSP on  variables, there is a 
constant  such that no size  extended formulation can achieve 
a better approximation than degree-  Sherali-Adams.

N = n
c nc⋅d

d

[LRS14] For any CSP, there exists a constant  such that no size 
 SDP extended formulation can achieve a better 

approximation on any instance of  variables than degree-  
Sum-of-Squares can on  variables.

c
c(n/log n)d/4

N = n4d d
n



Thank You!


