Semialgebraic Proofs and Efficient Algorithm Design

Noah Fleming Department of Computer Science University of Toronto Joint work with Pravesh Kothari and Toni Pitassi

Sum-of-Squares: Powerful proof system — Proofs correspond to a family of SDPs

Sum-of-Squares: Powerful proof system

Proofs correspond to a family of SDPs

Sum-of-Squares has become a popular tool in algorithm design

Sum-of-Squares: Powerful proof system

Proofs correspond to a family of SDPs

Sum-of-Squares has become a popular tool in algorithm design

Powerful:

- Captures many famous approximation algorithms for NP hard problems such as the Goemans Williamson algorithm for MaxCut
- Gives optimal approximations of any CSP under the Unique Games Conjecture [Raghavendra08]

Sum-of-Squares: Powerful proof system

Proofs correspond to a family of SDPs

Sum-of-Squares has become a popular tool in algorithm design

Powerful:

- Captures many famous approximation algorithms for NP hard problems such as the Goemans Williamson algorithm for MaxCut
- Gives optimal approximations of any CSP under the Unique Games Conjecture [Rag08]

Simple Algorithm Design Strategy:

- Sum-of-Squares proofs are automatizable.
- Proofs that a solution exist automatically give efficient algorithms for finding that solution. Main difficulty is rounding the solution.

Outline

- 1. Developing the Sum-of-Squares Relaxation
- 2. Phrasing the Relaxation as an SDP
- 3. The Dual Sum-of-Squares Proofs and Completeness
- 4. Convergence and Strong Duality
- 5. Upper Bounds
- 6. Lower Bounds

Outline

- 1. Developing the Sum-of-Squares Relaxation
- 2. Phrasing the Relaxation as an SDP
- 3. The Dual Sum-of-Squares Proofs and Completeness
- 4. Convergence and Strong Duality
- 5. Upper Bounds
- 6. Lower Bounds

Polynomial Optimization Problems

 $\mathscr{P} \subseteq \mathbb{R}[x]$ a set of polynomials, $r \in \mathbb{R}[x]$ linear.

 $\max_{x} r(x)$ s.t. $p(x) \ge 0 \quad \forall p \in \mathscr{P}$

Polynomial Optimization Problems

 $\mathscr{P} \subseteq \mathbb{R}[x]$ a set of polynomials, $r \in \mathbb{R}[x]$ linear.

Polynomial Optimization Problems

 $\mathscr{P} \subseteq \mathbb{R}[x]$ a set of polynomials, $r \in \mathbb{R}[x]$ linear.

Problem: Polynomial optimization problems are NP-hard to solve in general.

Goal: Develop a tractable relaxation that achieves good approximations to many problems we care about

Goal: Develop a tractable relaxation that achieves good approximations to many problems we care about.

Standard approach is via convex programming.

Goal: Develop a tractable relaxation that achieves good approximations to many problems we care about.

Standard approach is via convex programming.

Thought Experiment:

Take the convex relaxation of $K_{\mathcal{P}}$

Goal: Develop a tractable relaxation that achieves good approximations to many problems we care about.

Standard approach is via convex programming.

Thought Experiment:

Take the convex relaxation of $K_{\mathscr{P}}$

By linearity of r(x), any optimal solution $x \in conv(\mathscr{P})$ is a convex combination of optimal $x \in K_{\mathscr{P}}$

Goal: Develop a tractable relaxation that achieves good approximations to many problems we care about.

Distributional View: view the points in $Conv(K_{\mathcal{P}})$ as distributions μ supported on the points $K_{\mathcal{P}}$

Goal: Develop a tractable relaxation that achieves good approximations to many problems we care about.

Distributional View: view the points in $conv(K_{\mathcal{P}})$ as distributions μ supported on the points $K_{\mathcal{P}}$

 $\max_{x \in K_{\mathscr{P}}} r(x) = \max_{x \in conv(K_{\mathscr{P}})} r(x) = \max \mathbb{E}_{\mu}[r(x)] : \mu \text{ is supported on } K_{\mathscr{P}}$

Distributions μ can be described by their moments $\mathbb{E}_{\mu}[x^{I}]$ where $x^{I} := \prod_{i \in I} x_{i}$

Distributions μ can be described by their moments $\mathbb{E}_{\mu}[x^{I}]$ where $x^{I} := \prod_{i \in I} x_{i}$

Suggests a relaxation

Relaxation: restrict attention to the degree $\leq d$ moments of these distributions, $\mathbb{E}[x^{I}]$ for $|I| \leq d$

- Only n^d such moments

Distributions μ can be described by their moments $\mathbb{E}_{\mu}[x^{I}]$ where $x^{I}:=\Pi_{i\in I}x_{i}$

Suggests a relaxation

Relaxation: restrict attention to the degree $\leq d$ moments of these distributions, $\mathbb{E}[x^{I}]$ for $|I| \leq d$

- Only n^d such moments

However...

NP-hard to determine if there exists a distribution μ on $K_{\mathcal{P}}$ which agrees with a given set of moments $\{\mathbb{E}[x^I]\}_{|I| \leq d}$

Distributions μ can be described by their moments $\mathbb{E}_{\mu}[x^{I}]$ where $x^{I}:=\Pi_{i\in I}x_{i}$

Suggests a relaxation

Relaxation: restrict attention to the degree $\leq d$ moments of these distributions, $\mathbb{E}[x^{I}]$ for $|I| \leq d$

- Only n^d such moments

However...

NP-hard to determine if there exists a distribution μ on $K_{\mathcal{P}}$ which agrees with a given set of moments $\{\mathbb{E}[x^I]\}_{|I| \leq d}$

Therefore

Look for efficient tests which distinguish collections of moments which belong to distributions supported on K_P

 $\{\mathbb{E}[x^I]\}_{|I| \le d} = \text{linear function } \tilde{\mathbb{E}} : \mathbb{R}[x]_{\le d} \to \mathbb{R}.$

 $\{\mathbb{E}[x^I]\}_{|I| \le d} = \text{linear function } \tilde{\mathbb{E}} : \mathbb{R}[x]_{\le d} \to \mathbb{R}.$

Want:

A set of efficient tests distinguishing $\tilde{\mathbb{E}}$ that agree with the moments of a true distribution on $K_{\mathcal{P}}$ from those that do not.

 $\{\mathbb{E}[x^I]\}_{|I| \le d} = \text{linear function } \tilde{\mathbb{E}} : \mathbb{R}[x]_{\le d} \to \mathbb{R}.$

Want:

A set of efficient tests distinguishing $\tilde{\mathbb{E}}$ that agree with the moments of a true distribution on $K_{\mathcal{P}}$ from those that do not.

Obvious tests of consistency:

• $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\forall q \in \mathbb{R}[x]_{\le d/2}$

 $\{\mathbb{E}[x^I]\}_{|I| \le d} = \text{linear function } \tilde{\mathbb{E}} : \mathbb{R}[x]_{\le d} \to \mathbb{R}.$

Want:

A set of efficient tests distinguishing $\tilde{\mathbb{E}}$ that agree with the moments of a true distribution on $K_{\mathcal{P}}$ from those that do not.

Obvious tests of consistency:

- $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\forall q \in \mathbb{R}[x]_{\le d/2}$
- $\tilde{\mathbb{E}}[p(x)] \ge 0$ $\forall p \in \mathcal{P}$

 $\{\mathbb{E}[x^I]\}_{|I| \le d} = \text{linear function } \tilde{\mathbb{E}} : \mathbb{R}[x]_{\le d} \to \mathbb{R}.$

Want:

A set of efficient tests distinguishing $\tilde{\mathbb{E}}$ that agree with the moments of a true distribution on $K_{\mathcal{P}}$ from those that do not.

Obvious tests of consistency:

- $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\forall q \in \mathbb{R}[x]_{\le d/2}$
- $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0$ $\forall p \in \mathcal{P}, \forall q \in \mathbb{R}[x]_{\le (d-deg(p))/2}$

 $\{\mathbb{E}[x^I]\}_{|I| \le d} = \text{linear function } \tilde{\mathbb{E}} : \mathbb{R}[x]_{\le d} \to \mathbb{R}.$

Want:

A set of efficient tests distinguishing $\tilde{\mathbb{E}}$ that agree with the moments of a true distribution on $K_{\mathcal{P}}$ from those that do not.

Obvious tests of consistency:

- $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\forall q \in \mathbb{R}[x]_{\le d/2}$
- $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0$ $\forall p \in \mathcal{P}, \forall q \in \mathbb{R}[x]_{\le (d-deg(p))/2}$

Degree-d Pseudo-Expectation for \mathscr{P} : Any linear function $\tilde{\mathbb{E}} : \mathbb{R}[x]_{\leq d} \to \mathbb{R}$ satisfying 1. $\tilde{\mathbb{E}}[1] = 1$ 2. $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\forall q \in \mathbb{R}[x]_{\leq d/2}$ 3. $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0$ $\forall q \in \mathbb{R}[x]_{\leq (d-deg(p)/2)}, p \in \mathscr{P}$

Degree-d Pseudo-Expectation for \mathscr{P} : Any linear function

- $\tilde{\mathbb{E}}: \mathbb{R}[x]_{\leq d} \to \mathbb{R}$ satisfying
 - **1**. $\tilde{\mathbb{E}}[1] = 1$
 - 2. $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\forall q \in \mathbb{R}[x]_{\leq d/2}$
 - 3. $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq (d-deg(p)/2)}, p \in \mathscr{P}$

Degree-d Pseudo-Expectation for \mathscr{P} : Any linear function

- $\tilde{\mathbb{E}}: \mathbb{R}[x]_{\leq d} \to \mathbb{R}$ satisfying
 - **1**. $\tilde{\mathbb{E}}[1] = 1$
 - 2. $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\forall q \in \mathbb{R}[x]_{\leq d/2}$
 - 3. $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq (d-deg(p)/2)}, p \in \mathscr{P}$

The Sum-of-Squares Relaxation

$$\max \tilde{\mathbb{E}}[r(x)]$$
s.t. $\tilde{\mathbb{E}}[1] = 1$
 $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ for all $q \in \mathbb{R}[x]_{\le d/2}$
 $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0$ for all $p \in \mathscr{P}, q \in \mathbb{R}[x]_{\le (d-deg(p))/2}$
 $\tilde{\mathbb{E}}$ is linear

 n^d variables, one for each monomial.

Outline

- 1. Developing the Sum-of-Squares Relaxation
- 2. Phrasing the Relaxation as an SDP
- 3. The Dual Sum-of-Squares Proofs and Completeness
- 4. Convergence and Strong Duality
- 5. Upper Bounds
- 6. Lower Bounds

$$\begin{split} \max \tilde{\mathbb{E}}[r(x)] \\ \text{s.t. } \tilde{\mathbb{E}}[1] &= 1 \\ \tilde{\mathbb{E}}[q^2(x)] \geq 0 \quad \text{ for all } q \in \mathbb{R}[x]_{\leq d/2} \\ \tilde{\mathbb{E}}[p(x)q^2(x)] \geq 0 \text{ for all } p \in \mathscr{P}, q \in \mathbb{R}[x]_{\leq (d-deg(p))/2} \\ \tilde{\mathbb{E}} \text{ is linear} \end{split}$$

Goal: Phrase as an SDP of size $|\mathcal{P}| \cdot n^{O(d)}$

$$\begin{split} \max \tilde{\mathbb{E}}[r(x)] \\ \text{s.t. } \tilde{\mathbb{E}}[1] &= 1 \\ \tilde{\mathbb{E}}[q^2(x)] \geq 0 \quad \text{ for all } q \in \mathbb{R}[x]_{\leq d/2} \\ \tilde{\mathbb{E}}[p(x)q^2(x)] \geq 0 \text{ for all } p \in \mathscr{P}, q \in \mathbb{R}[x]_{\leq (d-deg(p))/2} \\ \tilde{\mathbb{E}} \text{ is linear} \end{split}$$

Goal: Phrase as an SDP of size $|\mathcal{P}| \cdot n^{O(d)}$

Idea: rewrite polynomials as vector products —Square polynomials become PSD constraints.

Goal: Phrase as an SDP of size $|\mathcal{P}| \cdot n^{O(d)}$

Monomial vector: v_d where $(v_d)_I = x^I$ for $|I| \le d$ Any $p \in \mathbb{R}[x]_{\le d}$ can be written as

$$p(x) = \overrightarrow{p}^T v_d(x)$$

 \overrightarrow{p} is the coefficient vector of the monomials in p(x)

Goal: Phrase as an SDP of size $|\mathcal{P}| \cdot n^{O(d)}$

Monomial vector: v_d where $(v_d)_I = x^I$ for $|I| \le d$ Any $p \in \mathbb{R}[x]_{\le d}$ can be written as $p(x) = \overrightarrow{p}^T v_d(x)$ \overrightarrow{p} is the coefficient vector of the monomials in p(x)

 $\begin{aligned} & \operatorname{\mathsf{Rephrase}}\,\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq d/2}: \\ & \tilde{\mathbb{E}}[q^2(x)] = \tilde{\mathbb{E}}[\overrightarrow{q}v_d^T v_d \overrightarrow{q}^T] = \overrightarrow{q}\tilde{\mathbb{E}}[v_d^T v_d] \overrightarrow{q}^T \ge 0 \end{aligned}$

Goal: Phrase as an SDP of size $|\mathcal{P}| \cdot n^{O(d)}$

Monomial vector: v_d where $(v_d)_I = x^I$ for $|I| \le d$ Any $p \in \mathbb{R}[x]_{\le d}$ can be written as $p(x) = \overrightarrow{p}^T v_d(x)$ \overrightarrow{p} is the coefficient vector of the monomials in p(x)

Rephrase $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\le d/2}$: $\tilde{\mathbb{E}}[q^2(x)] = \tilde{\mathbb{E}}[\overrightarrow{q}v_d^T v_d \overrightarrow{q}^T] = \overrightarrow{q} \tilde{\mathbb{E}}[v_d^T v_d] \overrightarrow{q}^T \ge 0$ PSD constraint!

Goal: Phrase as an SDP of size $|\mathcal{P}| \cdot n^{O(d)}$

Monomial vector: v_d where $(v_d)_I = x^I$ for $|I| \le d$ Any $p \in \mathbb{R}[x]_{\le d}$ can be written as $p(x) = \overrightarrow{p}^T v_d(x)$ \overrightarrow{p} is the coefficient vector of the monomials in p(x)

Rephrase $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\le d/2}$: $\tilde{\mathbb{E}}[q^2(x)] = \tilde{\mathbb{E}}[\overrightarrow{q}v_d^T v_d \overrightarrow{q}^T] = \overrightarrow{q} \tilde{\mathbb{E}}[v_d^T v_d] \overrightarrow{q}^T \ge 0$ PSD constraint! Moment Matrix: $(M_d)_{|I|,|J|\le d/2} = \tilde{\mathbb{E}}[x^{I+J}]$, then $M_d = \tilde{\mathbb{E}}[v_d^T v_d]$

Goal: Phrase as an SDP of size $|\mathcal{P}| \cdot n^{O(d)}$

Monomial vector: v_d where $(v_d)_I = x^I$ for $|I| \le d$ Any $p \in \mathbb{R}[x]_{\le d}$ can be written as $p(x) = \overrightarrow{p}^T v_d(x)$ \overrightarrow{p} is the coefficient vector of the monomials in p(x)

Rephrase $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\le d/2}$: $\tilde{\mathbb{E}}[q^2(x)] = \tilde{\mathbb{E}}[\overrightarrow{q}v_d^T v_d \overrightarrow{q}^T] = \overrightarrow{q} \tilde{\mathbb{E}}[v_d^T v_d] \overrightarrow{q}^T \ge 0$ PSD constraint! Moment Matrix: $(M_d)_{|I|,|J|\le d/2} = \tilde{\mathbb{E}}[x^{I+J}]$, then $M_d = \tilde{\mathbb{E}}[v_d^T v_d]$

 $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq d/2} \text{ becomes } M_d \ge 0$

Goal: Phrase as an SDP of size $|\mathscr{P}| \cdot n^{O(d)}$ $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq d/2}$ becomes $M_d \ge 0$

$$M_2 = \begin{bmatrix} \tilde{\mathbb{E}}[1], & \tilde{\mathbb{E}}[x_1], & \dots, & \tilde{\mathbb{E}}[x_n] \\ \tilde{\mathbb{E}}[x_1], & \tilde{\mathbb{E}}[x_1x_1], & \dots, & \tilde{\mathbb{E}}[x_1x_n] \\ & \vdots & \vdots & \dots & \vdots \\ & \tilde{\mathbb{E}}[x_n], & \tilde{\mathbb{E}}[x_nx_1], & \dots, & \tilde{\mathbb{E}}[x_nx_n] \end{bmatrix}$$

Goal: Phrase as an SDP of size $|\mathcal{P}| \cdot n^{O(d)}$

 $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq d/2} \text{ becomes } M_d \ge 0$

Rephrase $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0 \quad \forall p \in \mathscr{P}, q \in \mathbb{R}[x]_{\leq (d-deg(p))/2}$:

Goal: Phrase as an SDP of size $|\mathscr{P}| \cdot n^{O(d)}$ $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq d/2}$ becomes $M_d \ge 0$ Rephrase $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0 \quad \forall p \in \mathscr{P}, q \in \mathbb{R}[x]_{\leq (d-deg(p))/2}$:

Moment Matrix for $p \in \mathscr{P}$: $M_d^p := \tilde{\mathbb{E}}[p(x)v_{d'}v_{d'}^T]$ where $(M_d^p)_{I,J} = \sum_{|K| \le deg(p)} p_K \tilde{\mathbb{E}}[x^{I+J+K}]$

 $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq (d-deg(p))/2} \text{ becomes } M^p_d \ge 0$

Goal: Phrase as an SDP of size $|\mathscr{P}| \cdot n^{O(d)}$ $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq d/2}$ becomes $M_d \ge 0$ Rephrase $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0 \quad \forall p \in \mathscr{P}, q \in \mathbb{R}[x]_{\leq (d-deg(p))/2}$:

Moment Matrix for $p \in \mathscr{P}$: $M_d^p := \tilde{\mathbb{E}}[p(x)v_{d'}v_{d'}^T]$ where $(M_d^p)_{I,J} = \sum_{|K| \le deg(p)} p_K \tilde{\mathbb{E}}[x^{I+J+K}]$

 $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\leq (d-deg(p))/2} \text{ becomes } M^p_d \ge 0$

SoS SDP Relaxation

$$SOS_{d}(\mathcal{P}) \qquad \begin{array}{l} \max \ \tilde{\mathbb{E}}[r(x)] \\ \text{s.t.} \ M_{d} \geq 0 \\ M_{d}^{p} \geq 0 \\ \tilde{\mathbb{E}}[1] = 1 \end{array} \quad \forall p \in \mathcal{P} \qquad \begin{array}{c} |\mathcal{P}| \cdot n^{O(d)} \\ \text{size SDP} \\ \text{size SDP} \end{array}$$

 $SOS_d(\mathcal{P})$

Solvable by the Ellipsoid Method in time $|\mathcal{P}| n^{O(d)} \log(1/\varepsilon)$ to within an additive error ε

 $SOS_d(\mathcal{P})$

 $\max \quad \tilde{\mathbb{E}}[p(x)]$ s.t. $M_d \ge 0$ $M_d^p \ge 0 \quad \forall p \in \mathscr{P}$ $\tilde{\mathbb{E}}[1] = 1$

Solvable by the Ellipsoid Method in time $|\mathcal{P}| n^{O(d)} \log(1/\varepsilon)$ to within an additive error ε

A solution to $SOS_d(\mathcal{P})$ is on n^d variables.

Obtain an approximate solution to \mathscr{P} by projecting to [n]

 $SOS_d(\mathcal{P})$

 $\begin{array}{ll} \max \ \tilde{\mathbb{E}}[p(x)] \\ \text{s.t.} & M_d \geq 0 \\ & M_d^p \geq 0 \quad \forall p \in \mathscr{P} \\ & \tilde{\mathbb{E}}[1] = 1 \end{array} \end{array}$

Solvable by the Ellipsoid Method in time $|\mathcal{P}| n^{O(d)} \log(1/\varepsilon)$ to within an additive error ε

A solution to $SOS_d(\mathcal{P})$ is on n^d variables.

Obtain an approximate solution to \mathscr{P} by projecting to [n] $SOS_d(\mathscr{P})$

Max Cut POP

$$\max \sum_{i < j} w_{i,j} (x_i - x_j)^2$$

s.t. $x_i^2 - x_i \ge 0$
 $x_i - x_i^2 \ge 0$

SDP Formulation

Degree-2 SOS Relaxation

Moment Matrices

Max Cut POP

$$\max \sum_{i < j} w_{i,j} (x_i - x_j)^2$$

s.t. $x_i^2 - x_i \ge 0$
 $x_i - x_i^2 \ge 0$

Degree-2 SOS Relaxation

$$\max \sum_{i < j} w_{i,j} \tilde{\mathbb{E}}[(x_i - x_j)^2]$$

s.t. $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\le 1}$
 $\tilde{\mathbb{E}}[x_i^2 - x_i] \ge 0$
 $\tilde{\mathbb{E}}[x_i - x_i^2] \ge 0$
 $\tilde{\mathbb{E}}[1] = 1$

SDP Formulation

Moment Matrices

Max Cut POP

$$\max \sum_{i < j} w_{i,j} (x_i - x_j)^2$$

s.t. $x_i^2 - x_i \ge 0$
 $x_i - x_i^2 \ge 0$

Degree-2 SOS Relaxation

$$\max \sum_{i < j} w_{i,j} \tilde{\mathbb{E}}[(x_i - x_j)^2]$$

s.t. $\tilde{\mathbb{E}}[q^2(x)] \ge 0 \quad \forall q \in \mathbb{R}[x]_{\le 1}$
 $\tilde{\mathbb{E}}[x_i^2 - x_i] \ge 0$
 $\tilde{\mathbb{E}}[x_i - x_i^2] \ge 0$
 $\tilde{\mathbb{E}}[1] = 1$

SDP Formulation

$$\max \sum_{i < j} w_{i,j} \tilde{\mathbb{E}}[(x_i - x_j)^2]$$

s.t. $M_2 \ge 0$
 $M_2^{x_i - x_i^2 \ge 0} \ge 0$
 $M_2^{x_i^2 - x_i \ge 0} \ge 0$
 $\tilde{\mathbb{E}}[1] = 1$

Moment Matrices

$$M_{2} = \tilde{\mathbb{E}}[1], \tilde{\mathbb{E}}[x_{1}], ..., \tilde{\mathbb{E}}[x_{n}] \\ \tilde{\mathbb{E}}[x_{1}], \tilde{\mathbb{E}}[x_{1}x_{1}], ..., \tilde{\mathbb{E}}[x_{1}x_{n}] \\ \vdots \vdots ... \vdots \\ \tilde{\mathbb{E}}[x_{n}], \tilde{\mathbb{E}}[x_{n}x_{1}], ..., \tilde{\mathbb{E}}[x_{n}x_{n}] \\ M_{2}^{x_{i}^{2}-x_{i}} = \tilde{\mathbb{E}}[x_{i}^{2}-x_{i}] \\ M_{2}^{x_{i}-x_{i}^{2}} = \tilde{\mathbb{E}}[x_{i}-x_{i}^{2}]$$

Hierarchy of Relaxations

The Sum-of-Squares relaxations form a hierarchy of ever-tightening spectahedrons parameterized by the degree d of the relaxation

Hierarchy of Relaxations

The Sum-of-Squares relaxations form a hierarchy of ever-tightening spectahedrons parameterized by the degree d of the relaxation

Can we guarantee convergence to $K_{\mathcal{P}}$?

-Not known to be true in General.

—We will see later that convergence can be guaranteed under certain assumptions on \mathscr{P} . This follows from duality.

Outline

- 1. Developing the Sum-of-Squares Relaxation
- 2. Phrasing the Relaxation as an SDP
- 3. The Dual Sum-of-Squares Proofs and Completeness
- 4. Convergence and Strong Duality
- 5. Upper Bounds
- 6. Lower Bounds

Certifying a Good Solution

Given an SoS relaxation, how can we certify an upper bound on its object?

Certifying a Good Solution

Given an SoS relaxation, how can we certify an upper bound on its object? Duality!

-Find the minimum $\lambda \in \mathbb{R}$ such that $\lambda - r(x)$ is non-negative over $SOS_d(\mathcal{P})$

Certifying a Good Solution

Given an SoS relaxation, how can we certify an upper bound on its object? Duality!

-Find the minimum $\lambda \in \mathbb{R}$ such that $\lambda - r(x)$ is non-negative over $SOS_d(\mathcal{P})$

Dual program corresponds to finding a good sum-of-squares decomposition of $\lambda - r(x)$

Dual:

$$\min \lambda$$

s.t. $\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$
 $q_p \in \mathbb{R}[x]_{\leq (d - deg(p))/2}$
 $\lambda \in \mathbb{R}$

 $\max \tilde{\mathbb{E}}[r(x)]$ s.t. $\tilde{\mathbb{E}}[1] = 1$ $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0$ $\tilde{\mathbb{E}}$ is linear $\min \lambda$ s.t. $\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$ $q_p \in \mathbb{R}[x]_{\leq (d - deg(p))/2}$ $\lambda \in \mathbb{R}$

Primal

Dual

 $\max \tilde{\mathbb{E}}[r(x)]$ s.t. $\tilde{\mathbb{E}}[1] = 1$ $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0$ $\tilde{\mathbb{E}}$ is linear $\min \lambda$ s.t. $\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$ $q_p \in \mathbb{R}[x]_{\leq (d - deg(p))/2}$ $\lambda \in \mathbb{R}$

Weak Duality: Let $\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})$ and $r(x) = \lambda - \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$ then $\tilde{\mathbb{E}}[r(x)] \leq \lambda$.

 $\max \tilde{\mathbb{E}}[r(x)]$ s.t. $\tilde{\mathbb{E}}[1] = 1$ $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0$ $\tilde{\mathbb{E}}$ is linear $\min \lambda$ s.t. $\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$ $q_p \in \mathbb{R}[x]_{\leq (d - deg(p))/2}$ $\lambda \in \mathbb{R}$

Weak Duality: Let $\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})$ and $r(x) = \lambda - \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$ then $\tilde{\mathbb{E}}[r(x)] \leq \lambda$.

Proof:
$$\tilde{\mathbb{E}}[r(x)] = \tilde{\mathbb{E}}[\lambda] - \sum_{\substack{p \in \mathscr{P} \cup \{1\}\\ p \in \mathscr{P} \cup \{1\}}} \tilde{\mathbb{E}}[p(x)q_p^2(x)]$$
 (Linearity)
$$= \lambda - \sum_{\substack{p \in \mathscr{P} \cup \{1\}\\ \leq \lambda}} \tilde{\mathbb{E}}[p(x)q_p^2(x)]$$
 ($\tilde{\mathbb{E}}[1] = 1$)
($\tilde{\mathbb{E}}[p(x)q_p^2(x)] \ge 0$)

 $\max \tilde{\mathbb{E}}[r(x)]$ s.t. $\tilde{\mathbb{E}}[1] = 1$ $\tilde{\mathbb{E}}[q^2(x)] \ge 0$ $\tilde{\mathbb{E}}[p(x)q^2(x)] \ge 0$ $\tilde{\mathbb{E}}$ is linear $\min \lambda$ s.t. $\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$ $q_p \in \mathbb{R}[x]_{\leq (d - deg(p))/2}$ $\lambda \in \mathbb{R}$

Weak Duality: Let $\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})$ and $r(x) = \lambda - \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$ then $\tilde{\mathbb{E}}[r(x)] \leq \lambda$.

$$\begin{array}{l} \text{Proof: } \tilde{\mathbb{E}}[r(x)] = \tilde{\mathbb{E}}[\lambda] - \sum_{\substack{p \in \mathscr{P} \cup \{1\} \\ p \in \mathscr{P} \cup \{1\} \\ \end{array}} \tilde{\mathbb{E}}[p(x)q_p^2(x)] & \text{(Linearity)} \\ \end{array}$$
$$= \lambda - \sum_{\substack{p \in \mathscr{P} \cup \{1\} \\ \end{array}} \tilde{\mathbb{E}}[p(x)q_p^2(x)] & \text{(}\tilde{\mathbb{E}}[1] = 1\text{)} \\ \leq \lambda & \text{(}\tilde{\mathbb{E}}[p(x)q_p^2(x)] \geq 0\text{)} \end{array}$$

Writing $\lambda - r(x)$ as a degree-*d* sum of squares is a Sum-of-Squares proof that the maximum over $SOS_d(\mathcal{P})$ is at most λ

Sum-of-Squares Proof: A degree-d SoS proof of $r \in \mathbb{R}[x]$ from $\mathscr{P} \subseteq \mathbb{R}[x]$ is a set of polynomials $q_p \in \mathbb{R}[x]_{(d-deg(p))/2}$ such that $r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$

Size: minimum number of bits needed to represent the proof

Sum-of-Squares Proof: A degree-d SoS proof of $r \in \mathbb{R}[x]$ from $\mathscr{P} \subseteq \mathbb{R}[x]$ is a set of polynomials $q_p \in \mathbb{R}[x]_{(d-deg(p))/2}$ such that $r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$

Size: minimum number of bits needed to represent the proof

Sum-of-Squares Refutation: An SoS proof of -1 from \mathcal{P} .

• certifies that $K_{\mathcal{P}} = \emptyset$.

Sum-of-Squares Proof: A degree-d SoS proof of $r \in \mathbb{R}[x]$ from $\mathscr{P} \subseteq \mathbb{R}[x]$ is a set of polynomials $q_p \in \mathbb{R}[x]_{(d-deg(p))/2}$ such that $r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$

Size: minimum number of bits needed to represent the proof

Sum-of-Squares Refutation: An SoS proof of -1 from \mathcal{P} .

• certifies that $K_{\mathcal{P}} = \emptyset$.

Weak Duality: If there exists a degree-d pseudo-expectation for \mathscr{P} , then there does not exist a degree-d refutation of \mathscr{P} .

Sum-of-Squares Proof: A degree-d SoS proof of $r \in \mathbb{R}[x]$ from $\mathscr{P} \subseteq \mathbb{R}[x]$ is a set of polynomials $q_p \in \mathbb{R}[x]_{(d-deg(p))/2}$ such that $r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$

Size: minimum number of bits needed to represent the proof

Sum-of-Squares Refutation: An SoS proof of -1 from \mathcal{P} .

• certifies that
$$K_{\mathcal{P}} = \emptyset$$
.

Weak Duality: If there exists a degree-*d* pseudo-expectation for \mathscr{P} , then there does not exist a degree-*d* refutation of \mathscr{P} . Proof: Let $-1 = \sum_{\mathscr{P} \cup \{1\}} p(x) q_p^2(x)$ be a degree-*d* refutation and $\tilde{\mathbb{E}}$ be a degree-*d* pseudo-expectation for \mathscr{P} then $-1 = -\tilde{\mathbb{E}}[1] = \tilde{\mathbb{E}}[-1] = \sum_{p \in \mathscr{P} \cup \{1\}} \tilde{\mathbb{E}}[p(x)q_p^2(x)] \ge 0$

Proofs of CNF formulas: $x_1 \lor x_2 \lor \neg x_3$ becomes $x_1 + x_2 + (1 - x_3) - 1 \ge 0$. Also include boolean axioms $x_i^2 - x_i = 0$.

Proofs of CNF formulas: $x_1 \lor x_2 \lor \neg x_3$ becomes $x_1 + x_2 + (1 - x_3) - 1 \ge 0$. Also include boolean axioms $x_i^2 - x_i = 0$.

SoS is a sound and complete proof system for any set of polynomials ${\mathscr P}$ containing the boolean axioms

Proofs of CNF formulas: $x_1 \lor x_2 \lor \neg x_3$ becomes $x_1 + x_2 + (1 - x_3) - 1 \ge 0$. Also include boolean axioms $x_i^2 - x_i = 0$.

SoS is a sound and complete proof system for any set of polynomials ${\mathscr P}$ satisfying the Archimedean Assumption

Archimedean Assumption: \mathscr{P} contains a constraint of the form $r^2 - \sum_{i \in [n]} x_i^2 \ge 0$ for some r.

Proofs of CNF formulas: $x_1 \lor x_2 \lor \neg x_3$ becomes $x_1 + x_2 + (1 - x_3) - 1 \ge 0$. Also include boolean axioms $x_i^2 - x_i = 0$.

SoS is a sound and complete proof system for any set of polynomials ${\mathscr P}$ satisfying the Archimedean Assumption

Archimedean Assumption: \mathscr{P} contains a constraint of the form $r^2 - \sum_{i \in [n]} x_i^2 \ge 0$ for some r.

-Axioms $x_i^2 - x_i = 0$ already satisfy Archimedean Assumption

Proofs of CNF formulas: $x_1 \lor x_2 \lor \neg x_3$ becomes $x_1 + x_2 + (1 - x_3) - 1 \ge 0$. Also include boolean axioms $x_i^2 - x_i = 0$.

SoS is a sound and complete proof system for any set of polynomials ${\mathscr P}$ satisfying the Archimedean Assumption

Archimedean Assumption: \mathscr{P} contains a constraint of the form $r^2 - \sum_{i \in [n]} x_i^2 \ge 0$ for some r.

-Axioms $x_i^2 - x_i = 0$ already satisfy Archimedean Assumption

Putinar's Positivstellensatz: Let $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfy the Archimedean assumption. Then r(x) > 0 for all $x \in K_{\mathscr{P}}$ iff $r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$ for some $q_p \in \mathbb{R}[x]$.

Sum-of-Squares Proof of PHP

Pigeonhole Principle:

a. $\Sigma_{j \in [n]} p_{i,j} - 1 \ge 0$ b. $1 - p_{i,j} - p_{i',j} \ge 0$ c. $p_{i,j}^2 - p_{i,j} = 0$ $\begin{aligned} \forall i \in [n+1] \\ \forall i \neq i' \in [n+1], \forall j \in [n] \\ \forall i \in [n+1], j \in [n] \end{aligned}$

SoS Refutation of PhP:

- 1. Derive $1 \sum_{i \in [n+1]} p_{i,j}$ $\forall j$ "Each hole has one pigeon"
- 2. Sum the constraints in 1 over $j \in [n]$

$$\Sigma_{j\in[n]}(1-\Sigma_{i\in[n+1]}p_{i,j})=n-\Sigma_{i,j}p_{i,j}$$

3. Sum the constraints in a. over $i \in [n + 1]$ to get. $\Sigma_{i \in [n+1]} \left(\Sigma_{j \in [n]} p_{i,j} - 1 \right) = \Sigma_{i,j} p_{i,j} - (n + 1)$

4. Add 2 and 3 to derive -1.

Proof of 1 as an SoS polynomial: $\sum_{i \neq i' \in [n]} (1 - p_{i,j} - p_{i',j}) p_{i,j} + (1 - \sum_{i \in [n]} p_{i,j})^2 = 1 - \sum_{i \in [n]} p_{i,j}$

Outline

- 1. Developing the Sum-of-Squares Relaxation
- 2. Phrasing the Relaxation as an SDP
- 3. The Dual Sum-of-Squares Proofs and Completeness
- 4. Convergence and Strong Duality
- 5. Upper Bounds
- 6. Lower Bounds

Can we guarantee that our hierarchy of SDP relaxations converges to $K_{\mathcal{P}}$?

- Does $\lim_{d\to\infty} \max_{\tilde{E}\in SOS_d(\mathscr{P})} \widetilde{\mathbb{E}}[r(x)] = \max_{x\in K_{\mathscr{P}}} r(x)$?

Can we guarantee that our hierarchy of SDP relaxations converges to $K_{\mathcal{P}}$?

- Does $\lim_{d\to\infty} \max_{\tilde{E}\in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[r(x)] = \max_{x\in K_{\mathscr{P}}} r(x)?$

Convergence is holds under the Archimedean Assumption.

Archimedean Assumption: \mathscr{P} contains a constraint of the form $r^2 - \sum_{i \in [n]} x_i^2 \ge 0$ for some *r*.

Convergence: Let $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfy the Archimedean Assumption $\lim_{d \to \infty} \max_{\tilde{E} \in SOS_d(\mathscr{P})} \widetilde{\mathbb{E}}[r(x)] = \max_{x \in K_{\mathscr{P}}} r(x)$

Can we guarantee that our hierarchy of SDP relaxations converges to $K_{\mathcal{P}}$?

- Does $\lim_{d\to\infty} \max_{\tilde{E}\in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[r(x)] = \max_{x\in K_{\mathscr{P}}} r(x)?$

Convergence is holds under the Archimedean Assumption.

Archimedean Assumption: \mathscr{P} contains a constraint of the form $r^2 - \sum_{i \in [n]} x_i^2 \ge 0$ for some *r*.

Convergence: Let $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfy the Archimedean Assumption $\lim_{d \to \infty} \max_{\tilde{E} \in SOS_d(\mathscr{P})} \widetilde{\mathbb{E}}[r(x)] = \max_{x \in K_{\mathscr{P}}} r(x)$

Proof: Combine strong duality with completeness

Convergence: Let $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfy the Archimedean Assumption $\lim_{d \to \infty} \max_{\tilde{E} \in SOS_d(\mathscr{P})} \widetilde{\mathbb{E}}[r(x)] = \max_{x \in K_{\mathscr{P}}} r(x)$

Proof: Combine strong duality with completeness

Convergence: Let $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfy the Archimedean Assumption $\lim_{d \to \infty} \max_{\tilde{E} \in SOS_d(\mathscr{P})} \widetilde{\mathbb{E}}[r(x)] = \max_{x \in K_{\mathscr{P}}} r(x)$

Proof: Combine strong duality with completeness

Strong Duality: For all $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfying the ArchimedeanAssumption $\min_{\lambda - r(x) = \Sigma p(x)q_p^2(x)} \lambda = \max_{\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[p]$

Convergence: Let $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfy the Archimedean Assumption $\lim_{d \to \infty} \max_{\tilde{E} \in SOS_d(\mathscr{P})} \widetilde{\mathbb{E}}[r(x)] = \max_{x \in K_{\mathscr{P}}} r(x)$

Proof: Combine strong duality with completeness

Strong Duality: For all $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfying the Archimedean Assumption $\min_{\lambda - r(x) = \Sigma p(x)q_p^2(x)} \lambda = \max_{\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[p]$

Putinar's Positivstellensatz: Let $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfy the Archimedean assumption. Then r(x) > 0 for all $x \in K_{\mathscr{P}}$ iff $r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x)q_p^2(x)$

Convergence of the SoS hierarchy

Convergence: Let $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfy the Archimedean Assumption $\lim_{d \to \infty} \max_{\tilde{E} \in SOS_d(\mathscr{P})} \widetilde{\mathbb{E}}[r(x)] = \max_{x \in K_{\mathscr{P}}} r(x)$

When can we guarantee faster convergence?

- Inclusion of axioms such as
- $x_i^2 x_i = 0 \ \forall i \in [n]$ (hypercube), or
- $1 x_i^2 = 0 \ \forall i \in [n]$ (hypersphere)

guarantee convergence in degree $2n + deg(\mathcal{P})$

Strong Duality: For all $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfying the Archimedean Assumption $\min_{\lambda - r(x) = \Sigma p(x)q_p^2(x)} \lambda = \max_{\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[p]$

Idea:

Write dual as an SDP searching for the coefficients in the proof.
 Use SDP strong duality.

Strong Duality: For all $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfying the Archimedean Assumption $\min_{\lambda = r(x) = \Sigma p(x)q_p^2(x)} \lambda = \max_{\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[p]$

Idea:

Write dual as an SDP searching for the coefficients in the proof.
 Use SDP strong duality.

PSD Matrices $Z \in \mathbb{R}^{n^d \times n^d}$ define square polynomials: By Cholesky Decomposition: $Z = UU^T$ Then $v_d^T U U^T v_d = (v_d^T U)^2 = q^2(x)$. Where $(v_d)_I = \prod_{i \in I} x_i$

Strong Duality: For all $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfying the Archimedean Assumption $\min_{\lambda = r(x) = \Sigma p(x)q_p^2(x)} \lambda = \max_{\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[p]$

Idea:

Write dual as an SDP searching for the coefficients in the proof.
 Use SDP strong duality.

PSD Matrices $Z \in \mathbb{R}^{n^d \times n^d}$ define square polynomials: By Cholesky Decomposition: $Z = UU^T$ Then $v_d^T U U^T v_d = (v_d^T U)^2 = q^2(x)$. Where $(v_d)_I = \prod_{i \in I} x_i$

Rephrase $\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x) q_p^2(x)$ as

 $\min \lambda$ s.t. $\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x) v_{d_p}^T Z_p v_{d_p} \qquad d_p := (d - deg(p))/2$ $Z_p \ge 0 \qquad \qquad \forall p \in \mathscr{P}$

Strong Duality: For all $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfying the Archimedean Assumption $\min_{\lambda - r(x) = \Sigma p(x)q_p^2(x)} \lambda = \max_{\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[p]$

Rephrase
$$\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x) q_p^2(x)$$
 as

$$\min \lambda$$

s.t. $\lambda - r(x) = \sum_{p \in \mathcal{P} \cup \{1\}} p(x) v_{d_p}^T Z_p v_{d_p} \qquad d_p := (d - deg(p))/2$
 $Z_p \ge 0 \qquad \qquad \forall p \in \mathcal{P}$

Strong Duality: For all $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfying the Archimedean Assumption $\min_{\lambda - r(x) = \Sigma p(x)q_p^2(x)} \lambda = \max_{\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[p]$

Rephrase
$$\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x) q_p^2(x)$$
 as
min λ
s.t. $\lambda - r(x) = \sum_{p \in \mathscr{P} \cup \{1\}} p(x) v_{d_p}^T Z_p v_{d_p}$ $d_p := (d - deg(p))$
 $Z_p \ge 0$ $\forall p \in \mathscr{P}$

Removing x variables, this becomes

 $\begin{array}{ll} \min \ \lambda \\ \text{s.t.} & \lambda 1_{[I=\varnothing]} - \vec{r}_I = \sum_{p \in \mathscr{P} \cup \{1\}} \sum_{S+T+K=I} \overrightarrow{p}_K (Z_p)_{S,T} \quad \forall |I| \leq deg(r) \\ & Z_p \geq 0 \qquad \qquad \forall p \in \mathscr{P} \end{array}$

Strong Duality: For all $\mathscr{P} \subseteq \mathbb{R}[x]$ satisfying the Archimedean Assumption $\min_{\lambda = r(x) = \Sigma p(x)q_p^2(x)} \lambda = \max_{\tilde{\mathbb{E}} \in SOS_d(\mathscr{P})} \tilde{\mathbb{E}}[p]$

Dual:

 $\min \lambda$ s.t. $\lambda 1_{[I=\emptyset]} - \vec{r}_I = \sum_{p \in \mathscr{P} \cup \{1\}} \sum_{S+T+K=I} \vec{p}_K (Z_p)_{S,T} \quad \forall |I| \le deg(r)$ $Z_p \ge 0 \qquad \qquad \forall p \in \mathscr{P}$

Primal:

 $\begin{array}{ll} \max \ \tilde{\mathbb{E}}[p(x)] \\ \text{s.t.} & M_d \geq 0 \\ & M_d^p \geq 0 \quad \forall p \in \mathscr{P} \\ & \tilde{\mathbb{E}}[1] = 1 \end{array}$

Strong duality follows by the SDP strong duality theorem

Outline

- 1. Developing the Sum-of-Squares Relaxation
- 2. Phrasing the Relaxation as an SDP
- 3. The Dual Sum-of-Squares Proofs and Completeness
- 4. Convergence and Strong Duality
- 5. Upper Bounds
- 6. Lower Bounds

Can we find a Sum-of-Squares proof efficiently if it exists?

Claimed: One can find a degree-d Sum-of-Squares proof in time $|\mathcal{P}| \cdot n^{O(d)}$ if it exists.

Can we find a Sum-of-Squares proof efficiently if it exists?

Claimed: One can find a degree-d Sum-of-Squares proof in time $|\mathcal{P}| \cdot n^{O(d)}$ if it exists.

Reasoning: SoS dual is an $|\mathscr{P}| \cdot n^{O(d)}$ -size SDP. Can be solved in time $|\mathscr{P}| \cdot n^{O(d)}$ by the Ellipsoid Method (up to additive error ε).

Can we find a Sum-of-Squares proof efficiently if it exists?

Claimed: One can find a degree-d Sum-of-Squares proof in time $|\mathcal{P}| \cdot n^{O(d)}$ if it exists.

Reasoning: SoS dual is an $|\mathscr{P}| \cdot n^{O(d)}$ -size SDP. Can be solved in time $|\mathscr{P}| \cdot n^{O(d)}$ by the Ellipsoid Method (up to additive error ε).

This claim is not known to be true in general -Even for \mathscr{P} satisfying the Archimedean assumption. -Even for \mathscr{P} containing $x_i^2 - x_i = 0$ for all $i \in [n]$

Issue:

- Ellipsoid Method requires the feasible set of the SDP to be contained within a ball of radius $R = |\mathcal{P}| \cdot n^{O(d)}$
- i.e. there must exist a proof with bit size $|\mathcal{P}| \cdot n^{O(d)}$

Ellipsoid Method: Let *C* be a convex set with a polynomial-time separation oracle. For r, R > 0 and $c \in \mathbb{R}^n$ such that $Ball(c, r) \subseteq C \subseteq Ball(0, R)$, maximizing over *C* to an additive error $\varepsilon > 0$ can be done in time $poly(|C|) \cdot \log(R/r\varepsilon)$.

Issue:

- Ellipsoid Method requires the feasible set of the SDP to be contained within a ball of radius $R = |\mathcal{P}| \cdot n^{O(d)}$
- i.e. there must exist a proof with bit size $|\mathcal{P}| \cdot n^{O(d)}$

[RW17] Extending [O'Do17]: There exists small, degree 2 polynomials \mathscr{P} , r(x) such that -r(x) has a degree-2 SoS proof from \mathscr{P} , -r(x) does not admit a degree $o(\sqrt{n})$ proof of polynomial bit length from \mathscr{P} .

Issue:

- Ellipsoid Method requires the feasible set of the SDP to be contained within a ball of radius $R = |\mathcal{P}| \cdot n^{O(d)}$
- i.e. there must exist a proof with bit size $|\mathcal{P}| \cdot n^{O(d)}$

[RW17] Extending [O'Do17]: There exists small, degree 2 polynomials \mathscr{P} , r(x) such that -r(x) has a degree-2 SoS proof from \mathscr{P} , -r(x) does not admit a degree $o(\sqrt{n})$ proof of polynomial bit length from \mathscr{P} .

Good News: [RW17] provide a set of sufficient conditions under which SoS derivations can be found in time $|\mathscr{P}| \cdot n^{O(d)}$. —MaxCSP, MaxClique, Balanced Separator, MaxBisection

What about size automatizability?

What about size automatizability?

Open Problem: Is there an algorithm for finding a SoS proof of size s in time poly(s)?

What about size automatizability?

Open Problem: Is there an algorithm for finding a SoS proof of size s in time poly(s)?

Monomial Size: s_m the minimum number of monomials in any SoS proof.

Size-degree tradeoff [AH18]: Any SoS derivation of monomial size s_m from \mathscr{P} implies a derivation of degree $O(\sqrt{n \log s_m} + deg(\mathscr{P}))$

What about size automatizability?

Open Problem: Is there an algorithm for finding a SoS proof of size s in time poly(s)?

Monomial Size: s_m the minimum number of monomials in any SoS proof.

Size-degree tradeoff [AH18]: Any SoS derivation of monomial size s_m from \mathscr{P} implies a derivation of degree $O(\sqrt{n \log s_m} + deg(\mathscr{P}))$

Any SoS derivation of monomial size s_m from a set \mathscr{P} satisfying the conditions of [RW17] can be found in time $n^{O(\sqrt{n \log s_m} + deg(\mathscr{P}))}$.

Upper bounds leverage strong duality and the $n^{O(d)}$ -time SoS algorithm to transform certificates that a solution exists into algorithms for finding that solution.

Combined with clever rounding schemes

Upper bounds leverage strong duality and the $n^{O(d)}$ -time SoS algorithm to transform certificates that a solution exists into algorithms for finding that solution.

Combined with clever rounding schemes

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut. —introduced the random hyperplane rounding technique

Upper bounds leverage strong duality and the $n^{O(d)}$ -time SoS algorithm to transform certificates that a solution exists into algorithms for finding that solution.

Combined with clever rounding schemes

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut. —introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a $O(\sqrt{\log n})$ -approximation for the Sparsest Cut.

- first use of higher-order SoS relaxations.

Upper bounds leverage strong duality and the $n^{O(d)}$ -time SoS algorithm to transform certificates that a solution exists into algorithms for finding that solution.

Combined with clever rounding schemes

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut. —introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a $O(\sqrt{\log n})$ -approximation for the Sparsest Cut.

- first use of higher-order SoS relaxations.

A line of work beginning with [KKMO07] uncovered a deep connection between SoS and the Unique Games Conjecture

Upper bounds leverage strong duality and the $n^{O(d)}$ -time SoS algorithm to transform certificates that a solution exists into algorithms for finding that solution.

Combined with clever rounding schemes

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut. —introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a $O(\sqrt{\log n})$ -approximation for the Sparsest Cut.

- first use of higher-order SoS relaxations.

A line of work beginning with [KKMO07] uncovered a deep connection between SoS and the Unique Games Conjecture

[Rag08]: Assuming the Unique Games Conjecture, degree-2 SoS gives the optimal approximation ratio for every CSP. — Does not tell us what this approximation ratio is.

[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique Games based on SoS.

-[BRS11,GS11] Introduced the global correlation rounding technique.

[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique Games based on SoS.

-[BRS11,GS11] Introduced the global correlation rounding technique.

Global Correlation Rounding:

- Given a pseudo-expectation $\tilde{\mathbb{E}}$, one way to round it is to assign each variable $x_i = 1$ with probability $\tilde{\mathbb{E}}[x_i]$. This can result in poor solutions due to correlations.
- Global Correlation Rounding: for 2CSPs, in expectation, global correlation drops under conditioning on the outcome of a set of random variables, while the objective value remains the same.

[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique Games based on SoS.

-[BRS11,GS11] Introduced the global correlation rounding technique.

Global Correlation Rounding:

- Given a pseudo-expectation $\tilde{\mathbb{E}}$, one way to round it is to assign each variable $x_i = 1$ with probability $\tilde{\mathbb{E}}[x_i]$. This can result in poor solutions due to correlations.
- Global Correlation Rounding: for 2CSPs, in expectation, global correlation drops under conditioning on the outcome of a set of random variables, while the objective value remains the same.

[BKS13, BKS17]: Developed new rounding techniques for highdimensional SoS

 Obtained algorithms for problems in quantum information theory, such as Best Separable State.

Average-Case Upper Bounds

Recently, lots of work on average-case algorithms using SoS —Partly due to an average-case rounding framework introduced in [BKS14]

Led to SoS-based algorithms for average-case problems including:

- -Dictionary Learning [BKS14],
- -Tensor Completion [BM16, PS16],
- -Clustering Mixture Models [HL18, KS17],
- -Outlier Robust Moment Estimation [KS17],
- -Robust Linear Regression [KKM18],
- -Attacking cryptographic PRGs [BBKK18, BHKS19].

Outline

- 1. Developing the Sum-of-Squares Relaxation
- 2. Phrasing the Relaxation as an SDP
- 3. The Dual Sum-of-Squares Proofs and Completeness
- 4. Convergence and Strong Duality
- 5. Upper Bounds
- 6. Lower Bounds

Comparison with other Proof Systems

Simulations in terms of degree

Many of these separations as well as the simulation of PC by SoS are due to [Ber18]

Comparison with other Proof Systems

Simulation in terms of size

Open Questions:

- -Does SoS simulate AC^0 -Frege?
- -How does SoS compare to Cutting Planes?
- -How does SoS compare to Stabbing Planes / R(CP)?

Lower Bounds on SoS

If degree-*d* SoS cannot refute $\mathscr{P} \cup \{r(x) - \lambda\}$ then maximizing r(x) over the degree-*d* SoS relaxation of \mathscr{P} attains a value of at least λ .

 Lower bounds on the degree of SoS refutations imply inapproximability results for the SoS hierarchy.

Lower Bounds on SoS

If degree-*d* SoS cannot refute $\mathscr{P} \cup \{r(x) - \lambda\}$ then maximizing r(x) over the degree-*d* SoS relaxation of \mathscr{P} attains a value of at least λ .

 Lower bounds on the degree of SoS refutations imply inapproximability results for the SoS hierarchy.

To prove a degree lower bound of d on refuting a set of polynomials \mathscr{P} , one constructs a degree-d pseudo-expectation for \mathscr{P}

Lower Bounds on SoS

If degree-*d* SoS cannot refute $\mathscr{P} \cup \{r(x) - \lambda\}$ then maximizing r(x) over the degree-*d* SoS relaxation of \mathscr{P} attains a value of at least λ .

 Lower bounds on the degree of SoS refutations imply inapproximability results for the SoS hierarchy.

To prove a degree lower bound of d on refuting a set of polynomials \mathscr{P} , one constructs a degree-d pseudo-expectation for \mathscr{P}

Random 3XOR: [Gri01, Sch08] systems of random 3XOR equations require degree $\Omega(n)$.

- Reduction to Resolution width lower bounds.
- Builds on earlier ideas [BGIP01, Gri98] for NS and PC.
- [Sch08] Implies lower bounds on Max3SAT, Max Ind Set.

Approximation Resistant: The best polynomial-time approximation is a uniformly random assignment.

Approximation Resistant: The best polynomial-time approximation is a uniformly random assignment.

[Chan13]: Assuming $P \neq NP$, any predicate $P : \{0,1\}^k \rightarrow \{0,1\}$ that is pairwise independent and algebraically linear is approximation resistant

- Pairwise Independent: $P^{-1}(1)$ supports a distribution μ such that the pairwise marginals $\mu_i \mu_j$ for $i \neq j$ is uniform over $\{0,1\}^2$.
- Algebraically Linear: μ is also the uniform distribution over a subspace $V \subseteq GF(2)$.

Approximation Resistant: The best polynomial-time approximation is a uniformly random assignment.

[Chan13]: Assuming $P \neq NP$, any predicate $P : \{0,1\}^k \rightarrow \{0,1\}$ that is pairwise independent and algebraically linear is approximation resistant

- Pairwise Independent: $P^{-1}(1)$ supports a distribution μ such that the pairwise marginals $\mu_i \mu_j$ for $i \neq j$ is uniform over $\{0,1\}^2$.
- Algebraically Linear: μ is also the uniform distribution over a subspace $V \subseteq GF(2)$.

[AM09]: Assuming the UGC, any predicate $P : \{0,1\}^k \rightarrow \{0,1\}$ that is pairwise uniform is approximation resistant

Approximation Resistant CSP for Degree-d SoS: If there is an instance such that

- A random assignment is essentially optimal
- Degree-d SoS believes 1 o(1) fraction of constraints can be satisfied

Approximation Resistant CSP for Degree-d SoS: If there is an instance such that

- A random assignment is essentially optimal
- Degree-d SoS believes 1 o(1) fraction of constraints can be satisfied

[Tul09]: Any CSP on pairwise uniform and algebraically linear predicates is approximation resistant for degree $\Omega(n)$ SoS

- Method for doing reductions in SoS
- Lower bounds for problems such as Vertex Cover, IndSet

Open Question: Prove that SoS cannot achieve better than a 2approximation for Vertex Cover.

Approximation Resistant CSP for Degree-d SoS: If there is an instance such that

- A random assignment is essentially optimal
- Degree-d SoS believes 1 o(1) fraction of constraints can be satisfied

[Tul09]: Any CSP on pairwise uniform and algebraically linear predicates is approximation resistant for degree $\Omega(n)$ SoS

- Method for doing reductions in SoS
- Lower bounds for problems such as Vertex Cover, IndSet

[BCK15]: Any CSP defined on pairwise uniform predicates is approximation resistant for degree $\Omega(n)$ SoS

Open Question: Prove that SoS cannot achieve better than a 2approximation for Vertex Cover.

Average-Case Lower Bounds

Random CSPs: [KMOW17] Proved sharp lower bounds that tightly characterize the number of clauses needed for SoS to refute random CSP instances with a given predicate *P*. — Matches the upper bounds of [AOW15, RRS16].

Average-Case Lower Bounds

Random CSPs: [KMOW17] Proved sharp lower bounds that tightly characterize the number of clauses needed for SoS to refute random CSP instances with a given predicate *P*. — Matches the upper bounds of [AOW15, RRS16].

Planted Clique: [MPW15, HKPRS18], culminating in [BHKKMP18] proved nearly tight lower bounds on the degree of SoS proofs of the Planted Clique problem.

 Introduced the pseudo-calibration framework; a computational bayesian approach to constructing pseudo-expectations.

Applications of Lower Bounds

(SDP) Extended Formulation: Of a polytope P is any polytope (spectahedron) Q such that there exists a linear projection such that proj(Q) = P.

-Restriction: Polytope is instance independent

Applications of Lower Bounds

(SDP) Extended Formulation: Of a polytope P is any polytope (spectahedron) Q such that there exists a linear projection such that proj(Q) = P.

-Restriction: Polytope is instance independent

[CLRS13, KMR17] For any CSP on N = n variables, there is a constant c such that no size $n^{c \cdot d}$ extended formulation can achieve a better approximation than degree-d Sherali-Adams.

Applications of Lower Bounds

(SDP) Extended Formulation: Of a polytope P is any polytope (spectahedron) Q such that there exists a linear projection such that proj(Q) = P.

-Restriction: Polytope is instance independent

[CLRS13, KMR17] For any CSP on N = n variables, there is a constant c such that no size $n^{c \cdot d}$ extended formulation can achieve a better approximation than degree-d Sherali-Adams.

[LRS14] For any CSP, there exists a constant *c* such that no size $c(n/\log n)^{d/4}$ SDP extended formulation can achieve a better approximation on any instance of $N = n^{4d}$ variables than degree-*d* Sum-of-Squares can on *n* variables.

Thank You!