
Semialgebraic Proofs and Efficient
Algorithm Design

Noah Fleming
Department of Computer Science

University of Toronto
Joint work with Pravesh Kothari and Toni Pitassi

Sum-of-Squares
Sum-of-Squares: Powerful proof system

— Proofs correspond to a family of SDPs

Sum-of-Squares
Sum-of-Squares: Powerful proof system

— Proofs correspond to a family of SDPs

Sum-of-Squares has become a popular tool in algorithm design

Sum-of-Squares

Powerful:

- Captures many famous approximation algorithms for NP hard

problems such as the Goemans Williamson algorithm for
MaxCut

- Gives optimal approximations of any CSP under the Unique
Games Conjecture [Raghavendra08]

Sum-of-Squares: Powerful proof system

— Proofs correspond to a family of SDPs

Sum-of-Squares has become a popular tool in algorithm design

Sum-of-Squares

Powerful:

- Captures many famous approximation algorithms for NP hard

problems such as the Goemans Williamson algorithm for
MaxCut

- Gives optimal approximations of any CSP under the Unique
Games Conjecture [Rag08]

Sum-of-Squares: Powerful proof system

— Proofs correspond to a family of SDPs

Simple Algorithm Design Strategy:

- Sum-of-Squares proofs are automatizable.

- Proofs that a solution exist automatically give efficient algorithms

for finding that solution. Main difficulty is rounding the solution.

Sum-of-Squares has become a popular tool in algorithm design

Outline
1. Developing the Sum-of-Squares Relaxation

2. Phrasing the Relaxation as an SDP

3. The Dual Sum-of-Squares Proofs and Completeness

4. Convergence and Strong Duality

5. Upper Bounds

6. Lower Bounds

Outline
1. Developing the Sum-of-Squares Relaxation

2. Phrasing the Relaxation as an SDP

3. The Dual Sum-of-Squares Proofs and Completeness

4. Convergence and Strong Duality

5. Upper Bounds

6. Lower Bounds

 max
x

r(x)

Polynomial Optimization Problems

p(x) ≥ 0 ∀p ∈ 𝒫 s.t.

 a set of polynomials, linear. 𝒫 ⊆ ℝ[x] r ∈ ℝ[x]

 max
x

r(x)

Polynomial Optimization Problems

r
K𝒫 := {x ∈ ℝn : pi(x) ≥ 0∀pi ∈ 𝒫}

p(x) ≥ 0 ∀p ∈ 𝒫 s.t.

 a set of polynomials, linear. 𝒫 ⊆ ℝ[x] r ∈ ℝ[x]

 max
x

r(x)

Polynomial Optimization Problems

Problem: Polynomial optimization problems are NP-hard to
solve in general.
Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about

r
K𝒫 := {x ∈ ℝn : pi(x) ≥ 0∀pi ∈ 𝒫}

p(x) ≥ 0 ∀p ∈ 𝒫 s.t.

 a set of polynomials, linear. 𝒫 ⊆ ℝ[x] r ∈ ℝ[x]

Standard approach is via convex programming.

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

Motivating the SoS Relaxation

Motivating the SoS Relaxation

Standard approach is via convex programming.
Thought Experiment:

conv(K𝒫)

r

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

Take the convex relaxation of K𝒫

Standard approach is via convex programming.

max
x∈K𝒫

r(x) = max
x∈conv(K𝒫)

r(x)

conv(K𝒫)

r

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

By linearity of , any optimal solution is a convex
combination of optimal

r(x) x ∈ conv(𝒫)
x ∈ K𝒫

Motivating the SoS Relaxation

Thought Experiment:
Take the convex relaxation of K𝒫

r

Distributional View: view the points in as distributions
supported on the points

conv(K𝒫) μ
K𝒫

p2

p3

p1

μ = {Pr[p2] = 2/3, Pr[p3] = 1/3}
conv(K𝒫)

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

Motivating the SoS Relaxation

r

max
x∈K𝒫

r(x) = max
x∈conv(K𝒫)

r(x) = max 𝔼μ[r(x)] : μ is supported on K𝒫

Distributional View: view the points in as distributions
supported on the points

conv(K𝒫) μ
K𝒫

p2

p3

p1

μ = {Pr[p2] = 2/3, Pr[p3] = 1/3}
conv(K𝒫)

Goal: Develop a tractable relaxation that achieves good
approximations to many problems we care about.

Motivating the SoS Relaxation

Distributions can be described by their moments
where

μ 𝔼μ[xI]
xI := Πi∈Ixi

Motivating the SoS Relaxation

Distributions can be described by their moments
where

μ 𝔼μ[xI]
xI := Πi∈Ixi

Suggests a relaxation

Relaxation: restrict attention to the degree moments of
these distributions, for

≤ d
𝔼[xI] | I | ≤ d

— Only such momentsnd

Motivating the SoS Relaxation

Distributions can be described by their moments
where

μ 𝔼μ[xI]
xI := Πi∈Ixi

Suggests a relaxation

Relaxation: restrict attention to the degree moments of
these distributions, for

≤ d
𝔼[xI] | I | ≤ d

However...

— Only such momentsnd

Motivating the SoS Relaxation

NP-hard to determine if there exists a distribution on which
agrees with a given set of moments

μ K𝒫
{𝔼[xI]}|I|≤d

Distributions can be described by their moments
where

μ 𝔼μ[xI]
xI := Πi∈Ixi

Suggests a relaxation

Relaxation: restrict attention to the degree moments of
these distributions, for

≤ d
𝔼[xI] | I | ≤ d

NP-hard to determine if there exists a distribution on which
agrees with a given set of moments

μ K𝒫
{𝔼[xI]}|I|≤d

Look for efficient tests which distinguish collections of moments
which belong to distributions supported on KP

However...

Therefore

— Only such momentsnd

Motivating the SoS Relaxation

 = linear function . {𝔼[xI]}|I|≤d �̃� : ℝ[x]≤d → ℝ

The Sum-of-Squares Relaxation

A set of efficient tests distinguishing that agree with the moments
of a true distribution on from those that do not.

�̃�
K𝒫

 = linear function . {𝔼[xI]}|I|≤d �̃� : ℝ[x]≤d → ℝ
Want:

The Sum-of-Squares Relaxation

A set of efficient tests distinguishing that agree with the moments
of a true distribution on from those that do not.

�̃�
K𝒫

 = linear function . {𝔼[xI]}|I|≤d �̃� : ℝ[x]≤d → ℝ
Want:

The Sum-of-Squares Relaxation

Obvious tests of consistency:

• �̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2

A set of efficient tests distinguishing that agree with the moments
of a true distribution on from those that do not.

�̃�
K𝒫

 = linear function . {𝔼[xI]}|I|≤d �̃� : ℝ[x]≤d → ℝ
Want:

The Sum-of-Squares Relaxation

Obvious tests of consistency:

•

•
�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2
�̃�[p(x)] ≥ 0 ∀p ∈ 𝒫

A set of efficient tests distinguishing that agree with the moments
of a true distribution on from those that do not.

�̃�
K𝒫

 = linear function . {𝔼[xI]}|I|≤d �̃� : ℝ[x]≤d → ℝ
Want:

The Sum-of-Squares Relaxation

Obvious tests of consistency:

•

•
�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2
�̃�[p(x)q2(x)] ≥ 0 ∀p ∈ 𝒫, ∀q ∈ ℝ[x]≤(d−deg(p))/2

A set of efficient tests distinguishing that agree with the moments
of a true distribution on from those that do not.

�̃�
K𝒫

 = linear function . {𝔼[xI]}|I|≤d �̃� : ℝ[x]≤d → ℝ
Want:

The Sum-of-Squares Relaxation

Obvious tests of consistency:

•

•
�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2
�̃�[p(x)q2(x)] ≥ 0 ∀p ∈ 𝒫, ∀q ∈ ℝ[x]≤(d−deg(p))/2

Degree-d Pseudo-Expectation for : Any linear function
 satisfying

1.

2.

3.

𝒫
�̃� : ℝ[x]≤d → ℝ

�̃�[1] = 1
�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2
�̃�[p(x)q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤(d−deg(p)/2, p ∈ 𝒫

K𝒫
Distributions on K𝒫
Pseudo-distributions

r

The Sum-of-Squares Relaxation
Degree-d Pseudo-Expectation for : Any linear function

 satisfying

1.

2.

3.

𝒫
�̃� : ℝ[x]≤d → ℝ

�̃�[1] = 1
�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2
�̃�[p(x)q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤(d−deg(p)/2, p ∈ 𝒫

s.t.

 for all

 for all ,

 is linear

max �̃�[r(x)]
�̃�[1] = 1
�̃�[q2(x)] ≥ 0 q ∈ ℝ[x]≤d/2
�̃�[p(x)q2(x)] ≥ 0 p ∈ 𝒫 q ∈ ℝ[x]≤(d−deg(p))/2
�̃�

 variables, one for each monomial.nd

The Sum-of-Squares Relaxation

The Sum-of-Squares Relaxation
Degree-d Pseudo-Expectation for : Any linear function

 satisfying

1.

2.

3.

𝒫
�̃� : ℝ[x]≤d → ℝ

�̃�[1] = 1
�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2
�̃�[p(x)q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤(d−deg(p)/2, p ∈ 𝒫

Outline
1. Developing the Sum-of-Squares Relaxation

2. Phrasing the Relaxation as an SDP

3. The Dual Sum-of-Squares Proofs and Completeness

4. Convergence and Strong Duality

5. Upper Bounds

6. Lower Bounds

Solving the Relaxation

s.t.

 for all

 for all ,

 is linear

max �̃�[r(x)]
�̃�[1] = 1
�̃�[q2(x)] ≥ 0 q ∈ ℝ[x]≤d/2
�̃�[p(x)q2(x)] ≥ 0 p ∈ 𝒫 q ∈ ℝ[x]≤(d−deg(p))/2
�̃�

Goal: Phrase as an SDP of size
|𝒫 | ⋅ nO(d)

Solving the Relaxation

s.t.

 for all

 for all ,

 is linear

max �̃�[r(x)]
�̃�[1] = 1
�̃�[q2(x)] ≥ 0 q ∈ ℝ[x]≤d/2
�̃�[p(x)q2(x)] ≥ 0 p ∈ 𝒫 q ∈ ℝ[x]≤(d−deg(p))/2
�̃�

Idea: rewrite polynomials as vector products

—Square polynomials become PSD constraints.

Goal: Phrase as an SDP of size
|𝒫 | ⋅ nO(d)

x2
1 + 3x2 + 4 =

1
x1
x2
x2

1
x1x2
x2

2

 4 0 3 1 0 0

Solving the Relaxation

⃗p

⃗v2

Monomial vector: where for

Any can be written as

 is the coefficient vector of the monomials in

vd (vd)I = xI | I | ≤ d
p ∈ ℝ[x]≤d

p(x) = ⃗p Tvd(x)
⃗p p(x)

For :n = 2

Goal: Phrase as an SDP of size |𝒫 | ⋅ nO(d)

Solving the Relaxation

�̃�[q2(x)] = �̃�[⃗q vT
d vd ⃗q T] = ⃗q �̃�[vT

d vd] ⃗q T ≥ 0

Rephrase :�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2

Monomial vector: where for

Any can be written as

 is the coefficient vector of the monomials in

vd (vd)I = xI | I | ≤ d
p ∈ ℝ[x]≤d

p(x) = ⃗p Tvd(x)
⃗p p(x)

Goal: Phrase as an SDP of size |𝒫 | ⋅ nO(d)

Solving the Relaxation

�̃�[q2(x)] = �̃�[⃗q vT
d vd ⃗q T] = ⃗q �̃�[vT

d vd] ⃗q T ≥ 0 PSD constraint!

Rephrase :�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2

Monomial vector: where for

Any can be written as

 is the coefficient vector of the monomials in

vd (vd)I = xI | I | ≤ d
p ∈ ℝ[x]≤d

p(x) = ⃗p Tvd(x)
⃗p p(x)

Goal: Phrase as an SDP of size |𝒫 | ⋅ nO(d)

Solving the Relaxation

�̃�[q2(x)] = �̃�[⃗q vT
d vd ⃗q T] = ⃗q �̃�[vT

d vd] ⃗q T ≥ 0 PSD constraint!

Rephrase :�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2

Moment Matrix: , then (Md)|I|,|J|≤d/2 = �̃�[xI+J] Md = �̃�[vT
d vd]

Monomial vector: where for

Any can be written as

 is the coefficient vector of the monomials in

vd (vd)I = xI | I | ≤ d
p ∈ ℝ[x]≤d

p(x) = ⃗p Tvd(x)
⃗p p(x)

Goal: Phrase as an SDP of size |𝒫 | ⋅ nO(d)

Solving the Relaxation

�̃�[q2(x)] = �̃�[⃗q vT
d vd ⃗q T] = ⃗q �̃�[vT

d vd] ⃗q T ≥ 0 PSD constraint!

Rephrase :�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2

 becomes �̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2 Md ⪰ 0

Monomial vector: where for

Any can be written as

 is the coefficient vector of the monomials in

vd (vd)I = xI | I | ≤ d
p ∈ ℝ[x]≤d

p(x) = ⃗p Tvd(x)
⃗p p(x)

Goal: Phrase as an SDP of size |𝒫 | ⋅ nO(d)

Moment Matrix: , then (Md)|I|,|J|≤d/2 = �̃�[xI+J] Md = �̃�[vT
d vd]

Solving the Relaxation
Goal: Phrase as an SDP of size |𝒫 | ⋅ nO(d)

 becomes �̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2 Md ⪰ 0

[M2 =]�̃�[1], �̃�[x1], …, �̃�[xn]
�̃�[x1], �̃�[x1x1], …, �̃�[x1xn]

⋮ ⋮ … ⋮
�̃�[xn], �̃�[xnx1], …, �̃�[xnxn]

Solving the Relaxation
Goal: Phrase as an SDP of size |𝒫 | ⋅ nO(d)

 becomes �̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2 Md ⪰ 0
Rephrase :�̃�[p(x)q2(x)] ≥ 0 ∀p ∈ 𝒫, q ∈ ℝ[x]≤(d−deg(p))/2

Solving the Relaxation

 becomes �̃�[p(x)q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤(d−deg(p))/2 Mp
d ⪰ 0

 where Mp
d := �̃�[p(x)vd′

vT
d′

] (Mp
d)I,J = ∑

|K|≤deg(p)

pK�̃�[xI+J+K]
Moment Matrix for :p ∈ 𝒫

 where | I | , |J | ≤ d′ d′ = (d − deg(p))/2

Goal: Phrase as an SDP of size |𝒫 | ⋅ nO(d)

 becomes �̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2 Md ⪰ 0
Rephrase :�̃�[p(x)q2(x)] ≥ 0 ∀p ∈ 𝒫, q ∈ ℝ[x]≤(d−deg(p))/2

Solving the Relaxation

 becomes �̃�[p(x)q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤(d−deg(p))/2 Mp
d ⪰ 0

SoS SDP Relaxation

s.t.

max �̃�[r(x)]
Md ⪰ 0
Mp

d ⪰ 0 ∀p ∈ 𝒫
�̃�[1] = 1{SOSd(𝒫) }

size SDP
|𝒫 | ⋅ nO(d)

 where Mp
d := �̃�[p(x)vd′

vT
d′

] (Mp
d)I,J = ∑

|K|≤deg(p)

pK�̃�[xI+J+K]
Moment Matrix for :p ∈ 𝒫

 where | I | , |J | ≤ d′ d′ = (d − deg(p))/2

Goal: Phrase as an SDP of size |𝒫 | ⋅ nO(d)

 becomes �̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤d/2 Md ⪰ 0
Rephrase :�̃�[p(x)q2(x)] ≥ 0 ∀p ∈ 𝒫, q ∈ ℝ[x]≤(d−deg(p))/2

Solving the Relaxation

s.t.

max �̃�[p(x)]
Md ⪰ 0
Mp

d ⪰ 0 ∀p ∈ 𝒫
�̃�[1] = 1{SOSd(𝒫)

Solvable by the Ellipsoid Method in time to
within an additive error

|𝒫 |nO(d) log(1/ε)
ε

Solving the Relaxation

s.t.

max �̃�[p(x)]
Md ⪰ 0
Mp

d ⪰ 0 ∀p ∈ 𝒫
�̃�[1] = 1{SOSd(𝒫)

Solvable by the Ellipsoid Method in time to
within an additive error

|𝒫 |nO(d) log(1/ε)
ε

A solution to is on variables.

Obtain an approximate solution to by projecting to

SOSd(𝒫) nd

𝒫 [n]

Solving the Relaxation

A solution to is on variables.

Obtain an approximate solution to by projecting to

SOSd(𝒫) nd

𝒫 [n]

K𝒫

SOSd(𝒫)

projn(SOSd(𝒫))

s.t.

max �̃�[p(x)]
Md ⪰ 0
Mp

d ⪰ 0 ∀p ∈ 𝒫
�̃�[1] = 1{SOSd(𝒫)

Solvable by the Ellipsoid Method in time to
within an additive error

|𝒫 |nO(d) log(1/ε)
ε

Max Cut
Degree-2 SOS Relaxation

SDP Formulation

s.t.

max ∑
i<j

wi,j(xi − xj)2

x2
i − xi ≥ 0

xi − x2
i ≥ 0

Max Cut POP

Moment Matrices

Max Cut
Degree-2 SOS Relaxation

s.t.

max ∑
i<j

wi,j�̃�[(xi − xj)2]

�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤1
�̃�[x2

i − xi] ≥ 0
�̃�[xi − x2

i] ≥ 0
�̃�[1] = 1

SDP Formulation

s.t.

max ∑
i<j

wi,j(xi − xj)2

x2
i − xi ≥ 0

xi − x2
i ≥ 0

Max Cut POP

Moment Matrices

s.t.

max ∑
i<j

wi,j�̃�[(xi − xj)2]

M2 ⪰ 0
Mxi−x2

i ≥0
2 ⪰ 0

Mx2
i −xi≥0

2 ⪰ 0
�̃�[1] = 1

Max Cut
Degree-2 SOS Relaxation

SDP Formulation

s.t.

max ∑
i<j

wi,j(xi − xj)2

x2
i − xi ≥ 0

xi − x2
i ≥ 0

Max Cut POP

[M2 =

Mx2
i −xi

2 = �̃�[x2
i − xi]

Mxi−x2
i

2 = �̃�[xi − x2
i]

]�̃�[1], �̃�[x1], …, �̃�[xn]
�̃�[x1], �̃�[x1x1], …, �̃�[x1xn]

⋮ ⋮ … ⋮
�̃�[xn], �̃�[xnx1], …, �̃�[xnxn]

Moment Matrices

s.t.

max ∑
i<j

wi,j�̃�[(xi − xj)2]

�̃�[q2(x)] ≥ 0 ∀q ∈ ℝ[x]≤1
�̃�[x2

i − xi] ≥ 0
�̃�[xi − x2

i] ≥ 0
�̃�[1] = 1

Hierarchy of Relaxations
The Sum-of-Squares relaxations form a hierarchy of ever-tightening
spectahedrons parameterized by the degree of the relaxationd

K𝒫
SOSd+1(𝒫)
SOSd(𝒫)

Hierarchy of Relaxations
The Sum-of-Squares relaxations form a hierarchy of ever-tightening
spectahedrons parameterized by the degree of the relaxationd

K𝒫
SOSd+1(𝒫)
SOSd(𝒫)

Can we guarantee convergence to ?

—Not known to be true in General.

—We will see later that convergence can be guaranteed under certain
assumptions on . This follows from duality.

K𝒫

𝒫

Outline
1. Developing the Sum-of-Squares Relaxation

2. Phrasing the Relaxation as an SDP

3. The Dual Sum-of-Squares Proofs and Completeness

4. Convergence and Strong Duality

5. Upper Bounds

6. Lower Bounds

Certifying a Good Solution
Given an SoS relaxation, how can we certify an upper bound on its
object?

Certifying a Good Solution
Given an SoS relaxation, how can we certify an upper bound on its
object? Duality!
—Find the minimum such that is non-negative over λ ∈ ℝ λ − r(x)
SOSd(𝒫)

Certifying a Good Solution

Dual program corresponds to finding a good sum-of-squares
decomposition of λ − r(x)

s.t.

min λ
λ − r(x) = ∑

p∈𝒫∪{1}

p(x)q2
p(x)

qp ∈ ℝ[x]≤(d−deg(p))/2
λ ∈ ℝ

Dual:

—Find the minimum such that is non-negative over λ ∈ ℝ λ − r(x)
SOSd(𝒫)

Given an SoS relaxation, how can we certify an upper bound on its
object? Duality!

Weak Duality

s.t.

 is linear

max �̃�[r(x)]
�̃�[1] = 1
�̃�[q2(x)] ≥ 0
�̃�[p(x)q2(x)] ≥ 0
�̃�

Primal Dual

s.t.

min λ
λ − r(x) = ∑

p∈𝒫∪{1}

p(x)q2
p(x)

qp ∈ ℝ[x]≤(d−deg(p))/2
λ ∈ ℝ

Weak Duality

s.t.

min λ
λ − r(x) = ∑

p∈𝒫∪{1}

p(x)q2
p(x)

qp ∈ ℝ[x]≤(d−deg(p))/2
λ ∈ ℝ

s.t.

 is linear

max �̃�[r(x)]
�̃�[1] = 1
�̃�[q2(x)] ≥ 0
�̃�[p(x)q2(x)] ≥ 0
�̃�

Weak Duality: Let and
then .

�̃� ∈ SOSd(𝒫) r(x) = λ − Σp∈𝒫∪{1}p(x)q2
p(x)

�̃�[r(x)] ≤ λ

Weak Duality

Proof: (Linearity)

 ()

 ()

�̃�[r(x)] = �̃�[λ] − ∑
p∈𝒫∪{1}

�̃�[p(x)q2
p(x)]

= λ − ∑
p∈𝒫∪{1}

�̃�[p(x)q2
p(x)] �̃�[1] = 1

≤ λ �̃�[p(x)q2
p(x)] ≥ 0

s.t.

 is linear

max �̃�[r(x)]
�̃�[1] = 1
�̃�[q2(x)] ≥ 0
�̃�[p(x)q2(x)] ≥ 0
�̃�

s.t.

min λ
λ − r(x) = ∑

p∈𝒫∪{1}

p(x)q2
p(x)

qp ∈ ℝ[x]≤(d−deg(p))/2
λ ∈ ℝ

Weak Duality: Let and
then .

�̃� ∈ SOSd(𝒫) r(x) = λ − Σp∈𝒫∪{1}p(x)q2
p(x)

�̃�[r(x)] ≤ λ

Weak Duality

Writing as a degree- sum of squares is a Sum-of-Squares
proof that the maximum over is at most

λ − r(x) d
SOSd(𝒫) λ

s.t.

 is linear

max �̃�[r(x)]
�̃�[1] = 1
�̃�[q2(x)] ≥ 0
�̃�[p(x)q2(x)] ≥ 0
�̃�

Proof: (Linearity)

 ()

 ()

�̃�[r(x)] = �̃�[λ] − ∑
p∈𝒫∪{1}

�̃�[p(x)q2
p(x)]

= λ − ∑
p∈𝒫∪{1}

�̃�[p(x)q2
p(x)] �̃�[1] = 1

≤ λ �̃�[p(x)q2
p(x)] ≥ 0

s.t.

min λ
λ − r(x) = ∑

p∈𝒫∪{1}

p(x)q2
p(x)

qp ∈ ℝ[x]≤(d−deg(p))/2
λ ∈ ℝ

Weak Duality: Let and
then .

�̃� ∈ SOSd(𝒫) r(x) = λ − Σp∈𝒫∪{1}p(x)q2
p(x)

�̃�[r(x)] ≤ λ

Sum-of-Squares Proofs
Sum-of-Squares Proof: A degree- SoS proof of from

 is a set of polynomials such that

d r ∈ ℝ[x]
𝒫 ⊆ ℝ[x] qp ∈ ℝ[x](d−deg(p))/2

r(x) = ∑
p∈𝒫∪{1}

p(x)q2
p(x)

Size: minimum number of bits needed to represent the proof

Sum-of-Squares Proofs
Sum-of-Squares Proof: A degree- SoS proof of from

 is a set of polynomials such that

d r ∈ ℝ[x]
𝒫 ⊆ ℝ[x] qp ∈ ℝ[x](d−deg(p))/2

r(x) = ∑
p∈𝒫∪{1}

p(x)q2
p(x)

Size: minimum number of bits needed to represent the proof

Sum-of-Squares Refutation: An SoS proof of from .

• certifies that .

−1 𝒫
K𝒫 = ∅

Sum-of-Squares Proofs
Sum-of-Squares Proof: A degree- SoS proof of from

 is a set of polynomials such that

d r ∈ ℝ[x]
𝒫 ⊆ ℝ[x] qp ∈ ℝ[x](d−deg(p))/2

r(x) = ∑
p∈𝒫∪{1}

p(x)q2
p(x)

Size: minimum number of bits needed to represent the proof

Weak Duality: If there exists a degree- pseudo-expectation for
, then there does not exist a degree- refutation of .

d
𝒫 d 𝒫

Sum-of-Squares Refutation: An SoS proof of from .

• certifies that .

−1 𝒫
K𝒫 = ∅

Sum-of-Squares Proofs
Sum-of-Squares Proof: A degree- SoS proof of from

 is a set of polynomials such that

d r ∈ ℝ[x]
𝒫 ⊆ ℝ[x] qp ∈ ℝ[x](d−deg(p))/2

r(x) = ∑
p∈𝒫∪{1}

p(x)q2
p(x)

Size: minimum number of bits needed to represent the proof

Weak Duality: If there exists a degree- pseudo-expectation for
, then there does not exist a degree- refutation of .

Proof: Let be a degree- refutation and
be a degree- pseudo-expectation for then

d
𝒫 d 𝒫

−1 = Σ𝒫∪{1}p(x)q2
p(x) d �̃�

d 𝒫
−1 = − �̃�[1] = �̃�[−1] = Σp∈𝒫∪{1}�̃�[p(x)q2

p(x)] ≥ 0

Sum-of-Squares Refutation: An SoS proof of from .

• certifies that .

−1 𝒫
K𝒫 = ∅

Sum-of-Squares Proofs
Proofs of CNF formulas: becomes .
Also include boolean axioms .

x1 ∨ x2 ∨ ¬x3 x1 + x2 + (1 − x3) − 1 ≥ 0
x2

i − xi = 0

SoS is a sound and complete proof system for any set of polynomials

 containing the boolean axioms𝒫

Sum-of-Squares Proofs
Proofs of CNF formulas: becomes .
Also include boolean axioms .

x1 ∨ x2 ∨ ¬x3 x1 + x2 + (1 − x3) − 1 ≥ 0
x2

i − xi = 0

Proofs of CNF formulas: becomes .
Also include boolean axioms .

x1 ∨ x2 ∨ ¬x3 x1 + x2 + (1 − x3) − 1 ≥ 0
x2

i − xi = 0

K𝒫 Radius r

Archimedean Assumption: contains a constraint of the form
 for some .

𝒫
r2 − Σi∈[n]x2

i ≥ 0 r

Sum-of-Squares Proofs

SoS is a sound and complete proof system for any set of polynomials

 satisfying the Archimedean Assumption𝒫

Proofs of CNF formulas: becomes .
Also include boolean axioms .

x1 ∨ x2 ∨ ¬x3 x1 + x2 + (1 − x3) − 1 ≥ 0
x2

i − xi = 0

K𝒫 Radius r

Archimedean Assumption: contains a constraint of the form
 for some .

𝒫
r2 − Σi∈[n]x2

i ≥ 0 r
—Axioms already satisfy Archimedean Assumptionx2

i − xi = 0

Sum-of-Squares Proofs

SoS is a sound and complete proof system for any set of polynomials

 satisfying the Archimedean Assumption𝒫

Sum-of-Squares Proofs
Proofs of CNF formulas: becomes .
Also include boolean axioms .

x1 ∨ x2 ∨ ¬x3 x1 + x2 + (1 − x3) − 1 ≥ 0
x2

i − xi = 0

Putinar’s Positivstellensatz: Let satisfy the Archimedean
assumption. Then for all iff

for some .

𝒫 ⊆ ℝ[x]
r(x) > 0 x ∈ K𝒫

r(x) = ∑
p∈𝒫∪{1}

p(x)q2
p(x)

qp ∈ ℝ[x]

—Axioms already satisfy Archimedean Assumptionx2
i − xi = 0

Archimedean Assumption: contains a constraint of the form
 for some .

𝒫
r2 − Σi∈[n]x2

i ≥ 0 r

SoS is a sound and complete proof system for any set of polynomials

 satisfying the Archimedean Assumption𝒫

Sum-of-Squares Proof of PHP
Pigeonhole Principle:

a.

b.

c.

Σj∈[n]pi,j − 1 ≥ 0 ∀i ∈ [n + 1]
1 − pi,j − pi′ ,j ≥ 0 ∀i ≠ i′ ∈ [n + 1], ∀j ∈ [n]
p2

i,j − pi,j = 0 ∀i ∈ [n + 1], j ∈ [n]

SoS Refutation of PhP:

1. Derive “Each hole has one pigeon”

2. Sum the constraints in 1 over

3. Sum the constraints in a. over to get.

4. Add 2 and 3 to derive .

1 − Σi∈[n+1]pi,j ∀j
j ∈ [n]

Σj∈[n](1 − Σi∈[n+1]pi,j) = n − Σi,jpi,j
i ∈ [n + 1]

Σi∈[n+1](Σj∈[n]pi,j − 1) = Σi,jpi,j − (n + 1)
−1

Proof of 1 as an SoS polynomial:

Σi≠i′ ∈[n](1 − pi,j − pi′ ,j)pi,j + (1 − Σi∈[n]pi,j)2 = 1 − Σi∈[n]pi,j

Outline
1. Developing the Sum-of-Squares Relaxation

2. Phrasing the Relaxation as an SDP

3. The Dual Sum-of-Squares Proofs and Completeness

4. Convergence and Strong Duality

5. Upper Bounds

6. Lower Bounds

Convergence of the SoS hierarchy
Can we guarantee that our hierarchy of SDP relaxations
converges to ?

— Does ?

K𝒫
lim
d→∞

max
Ẽ∈SOSd(𝒫)

�̃�[r(x)] = max
x∈K𝒫

r(x)

Convergence of the SoS hierarchy

Convergence is holds under the Archimedean Assumption.
Archimedean Assumption: contains a constraint of the form

 for some .
𝒫

r2 − Σi∈[n]x2
i ≥ 0 r

Convergence: Let satisfy the Archimedean Assumption

𝒫 ⊆ ℝ[x]
lim
d→∞

max
Ẽ∈SOSd(𝒫)

�̃�[r(x)] = max
x∈K𝒫

r(x)

Can we guarantee that our hierarchy of SDP relaxations
converges to ?

— Does ?

K𝒫
lim
d→∞

max
Ẽ∈SOSd(𝒫)

�̃�[r(x)] = max
x∈K𝒫

r(x)

Convergence of the SoS hierarchy

Convergence is holds under the Archimedean Assumption.
Archimedean Assumption: contains a constraint of the form

 for some .
𝒫

r2 − Σi∈[n]x2
i ≥ 0 r

Proof: Combine strong duality with completeness

Can we guarantee that our hierarchy of SDP relaxations
converges to ?

— Does ?

K𝒫
lim
d→∞

max
Ẽ∈SOSd(𝒫)

�̃�[r(x)] = max
x∈K𝒫

r(x)

Convergence: Let satisfy the Archimedean Assumption

𝒫 ⊆ ℝ[x]
lim
d→∞

max
Ẽ∈SOSd(𝒫)

�̃�[r(x)] = max
x∈K𝒫

r(x)

Convergence of the SoS hierarchy

Proof: Combine strong duality with completeness

Convergence: Let satisfy the Archimedean Assumption

𝒫 ⊆ ℝ[x]
lim
d→∞

max
Ẽ∈SOSd(𝒫)

�̃�[r(x)] = max
x∈K𝒫

r(x)

Convergence of the SoS hierarchy

Proof: Combine strong duality with completeness

Strong Duality: For all satisfying the Archimedean
Assumption

𝒫 ⊆ ℝ[x]
min

λ−r(x)=Σp(x)q2
p(x)

λ = max
�̃�∈SOSd(𝒫)

�̃�[p]

Convergence: Let satisfy the Archimedean Assumption

𝒫 ⊆ ℝ[x]
lim
d→∞

max
Ẽ∈SOSd(𝒫)

�̃�[r(x)] = max
x∈K𝒫

r(x)

Convergence of the SoS hierarchy

Proof: Combine strong duality with completeness

Strong Duality: For all satisfying the Archimedean
Assumption

𝒫 ⊆ ℝ[x]
min

λ−r(x)=Σp(x)q2
p(x)

λ = max
�̃�∈SOSd(𝒫)

�̃�[p]

Putinar’s Positivstellensatz: Let satisfy the Archimedean
assumption. Then for all iff

𝒫 ⊆ ℝ[x]
r(x) > 0 x ∈ K𝒫

r(x) = ∑
p∈𝒫∪{1}

p(x)q2
p(x)

Convergence: Let satisfy the Archimedean Assumption

𝒫 ⊆ ℝ[x]
lim
d→∞

max
Ẽ∈SOSd(𝒫)

�̃�[r(x)] = max
x∈K𝒫

r(x)

Convergence of the SoS hierarchy

When can we guarantee faster convergence?
— Inclusion of axioms such as

• (hypercube), or

• (hypersphere)

guarantee convergence in degree

x2
i − xi = 0 ∀i ∈ [n]

1 − x2
i = 0 ∀i ∈ [n]

2n + deg(𝒫)

Convergence: Let satisfy the Archimedean Assumption

𝒫 ⊆ ℝ[x]
lim
d→∞

max
Ẽ∈SOSd(𝒫)

�̃�[r(x)] = max
x∈K𝒫

r(x)

Strong Duality

Idea:

1. Write dual as an SDP searching for the coefficients in the proof.

2. Use SDP strong duality.

Strong Duality: For all satisfying the Archimedean
Assumption

𝒫 ⊆ ℝ[x]
min

λ−r(x)=Σp(x)q2
p(x)

λ = max
�̃�∈SOSd(𝒫)

�̃�[p]

Strong Duality

PSD Matrices define square polynomials:

By Cholesky Decomposition:

Then . Where

Z ∈ ℝnd×nd

Z = UUT

vT
d UUTvd = (vT

d U)2 = q2(x) (vd)I = Πi∈Ixi

Strong Duality: For all satisfying the Archimedean
Assumption

𝒫 ⊆ ℝ[x]
min

λ−r(x)=Σp(x)q2
p(x)

λ = max
�̃�∈SOSd(𝒫)

�̃�[p]

Idea:

1. Write dual as an SDP searching for the coefficients in the proof.

2. Use SDP strong duality.

Strong Duality

Rephrase asλ − r(x) = Σp∈𝒫∪{1}p(x)q2
p(x)

s.t.

min λ
λ − r(x) = ∑

p∈𝒫∪{1}

p(x)vT
dp

Zpvdp
dp := (d − deg(p))/2

Zp ⪰ 0 ∀p ∈ 𝒫

Strong Duality: For all satisfying the Archimedean
Assumption

𝒫 ⊆ ℝ[x]
min

λ−r(x)=Σp(x)q2
p(x)

λ = max
�̃�∈SOSd(𝒫)

�̃�[p]

PSD Matrices define square polynomials:

By Cholesky Decomposition:

Then . Where

Z ∈ ℝnd×nd

Z = UUT

vT
d UUTvd = (vT

d U)2 = q2(x) (vd)I = Πi∈Ixi

Idea:

1. Write dual as an SDP searching for the coefficients in the proof.

2. Use SDP strong duality.

Strong Duality

Rephrase asλ − r(x) = Σp∈𝒫∪{1}p(x)q2
p(x)

s.t.

min λ
λ − r(x) = ∑

p∈𝒫∪{1}

p(x)vT
dp

Zpvdp
dp := (d − deg(p))/2

Zp ⪰ 0 ∀p ∈ 𝒫

Strong Duality: For all satisfying the Archimedean
Assumption

𝒫 ⊆ ℝ[x]
min

λ−r(x)=Σp(x)q2
p(x)

λ = max
�̃�∈SOSd(𝒫)

�̃�[p]

Strong Duality

Rephrase asλ − r(x) = Σp∈𝒫∪{1}p(x)q2
p(x)

s.t.

min λ
λ − r(x) = ∑

p∈𝒫∪{1}

p(x)vT
dp

Zpvdp
dp := (d − deg(p))/2

Zp ⪰ 0 ∀p ∈ 𝒫

Strong Duality: For all satisfying the Archimedean
Assumption

𝒫 ⊆ ℝ[x]
min

λ−r(x)=Σp(x)q2
p(x)

λ = max
�̃�∈SOSd(𝒫)

�̃�[p]

s.t.

min λ
λ1[I=∅] − ⃗rI = ∑

p∈𝒫∪{1}
∑

S+T+K=I

⃗p K(Zp)S,T ∀ | I | ≤ deg(r)

Zp ⪰ 0 ∀p ∈ 𝒫

Removing variables, this becomesx

Strong Duality

Dual:

s.t.

min λ
λ1[I=∅] − ⃗rI = ∑

p∈𝒫∪{1}
∑

S+T+K=I

⃗p K(Zp)S,T ∀ | I | ≤ deg(r)

Zp ⪰ 0 ∀p ∈ 𝒫

Strong Duality: For all satisfying the Archimedean
Assumption

𝒫 ⊆ ℝ[x]
min

λ−r(x)=Σp(x)q2
p(x)

λ = max
�̃�∈SOSd(𝒫)

�̃�[p]

Primal:

s.t.

max �̃�[p(x)]
Md ⪰ 0
Mp

d ⪰ 0 ∀p ∈ 𝒫
�̃�[1] = 1

Strong duality follows by the SDP strong duality theorem

Outline
1. Developing the Sum-of-Squares Relaxation

2. Phrasing the Relaxation as an SDP

3. The Dual Sum-of-Squares Proofs and Completeness

4. Convergence and Strong Duality

5. Upper Bounds

6. Lower Bounds

Automatizability
Can we find a Sum-of-Squares proof efficiently if it exists?

Claimed: One can find a degree- Sum-of-Squares proof in time
 if it exists.

d
|𝒫 | ⋅ nO(d)

Automatizability
Can we find a Sum-of-Squares proof efficiently if it exists?

Reasoning: SoS dual is an -size SDP. Can be solved in
time by the Ellipsoid Method (up to additive error).

|𝒫 | ⋅ nO(d)

|𝒫 | ⋅ nO(d) ε

Claimed: One can find a degree- Sum-of-Squares proof in time
 if it exists.

d
|𝒫 | ⋅ nO(d)

Automatizability
Can we find a Sum-of-Squares proof efficiently if it exists?

Claimed: One can find a degree- Sum-of-Squares proof in time
 if it exists.

d
|𝒫 | ⋅ nO(d)

This claim is not known to be true in general

—Even for satisfying the Archimedean assumption.

—Even for containing for all

𝒫
𝒫 x2

i − xi = 0 i ∈ [n]

Reasoning: SoS dual is an -size SDP. Can be solved in
time by the Ellipsoid Method (up to additive error).

|𝒫 | ⋅ nO(d)

|𝒫 | ⋅ nO(d) ε

Automatizability

Ellipsoid Method: Let be a convex set with a polynomial-time
separation oracle. For and such that

, maximizing over to an additive error
 can be done in time .

C
r, R > 0 c ∈ ℝn

Ball(c, r) ⊆ C ⊆ Ball(0,R) C
ε > 0 poly(|C |) ⋅ log(R/rε)

R r

SOSd(𝒫)

Issue:

• Ellipsoid Method requires the feasible set of the SDP to be

contained within a ball of radius

• i.e. there must exist a proof with bit size

R = |𝒫 | ⋅ nO(d)

|𝒫 | ⋅ nO(d)

Automatizability

[RW17] Extending [O’Do17]: There exists small, degree 2
polynomials , such that

— has a degree-2 SoS proof from ,

— does not admit a degree proof of polynomial bit
length from .

𝒫 r(x)
r(x) 𝒫
r(x) o(n)

𝒫

Issue:

• Ellipsoid Method requires the feasible set of the SDP to be

contained within a ball of radius

• i.e. there must exist a proof with bit size

R = |𝒫 | ⋅ nO(d)

|𝒫 | ⋅ nO(d)

Automatizability

Good News: [RW17] provide a set of sufficient conditions under
which SoS derivations can be found in time .

—MaxCSP, MaxClique, Balanced Separator, MaxBisection

|𝒫 | ⋅ nO(d)

[RW17] Extending [O’Do17]: There exists small, degree 2
polynomials , such that

— has a degree-2 SoS proof from ,

— does not admit a degree proof of polynomial bit
length from .

𝒫 r(x)
r(x) 𝒫
r(x) o(n)

𝒫

Issue:

• Ellipsoid Method requires the feasible set of the SDP to be

contained within a ball of radius

• i.e. there must exist a proof with bit size

R = |𝒫 | ⋅ nO(d)

|𝒫 | ⋅ nO(d)

Automatizability
What about size automatizability?

Automatizability
What about size automatizability?

Open Problem: Is there an algorithm for finding a SoS proof of size
in time ?

s
poly(s)

Automatizability
What about size automatizability?

Open Problem: Is there an algorithm for finding a SoS proof of size
in time ?

s
poly(s)

Size-degree tradeoff [AH18]: Any SoS derivation of monomial size
 from implies a derivation of degree sm 𝒫 O(n log sm + deg(𝒫))

Monomial Size: the minimum number of monomials in any SoS
proof.

sm

Automatizability
What about size automatizability?

Open Problem: Is there an algorithm for finding a SoS proof of size
in time ?

s
poly(s)

Any SoS derivation of monomial size from a set satisfying the
conditions of [RW17] can be found in time .

sm 𝒫
nO(n log sm+deg(𝒫))

Size-degree tradeoff [AH18]: Any SoS derivation of monomial size
 from implies a derivation of degree sm 𝒫 O(n log sm + deg(𝒫))

Monomial Size: the minimum number of monomials in any SoS
proof.

sm

Upper Bounds via Sum-of-Squares
Upper bounds leverage strong duality and the -time SoS
algorithm to transform certificates that a solution exists into
algorithms for finding that solution.

— Combined with clever rounding schemes

nO(d)

Upper Bounds via Sum-of-Squares

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut.

—introduced the random hyperplane rounding technique

Upper bounds leverage strong duality and the -time SoS
algorithm to transform certificates that a solution exists into
algorithms for finding that solution.

— Combined with clever rounding schemes

nO(d)

Upper Bounds via Sum-of-Squares

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut.

—introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a -approximation
for the Sparsest Cut.

— first use of higher-order SoS relaxations.

O(log n)

Upper bounds leverage strong duality and the -time SoS
algorithm to transform certificates that a solution exists into
algorithms for finding that solution.

— Combined with clever rounding schemes

nO(d)

Upper Bounds via Sum-of-Squares

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut.

—introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a -approximation
for the Sparsest Cut.

— first use of higher-order SoS relaxations.

O(log n)

A line of work beginning with [KKMO07] uncovered a deep
connection between SoS and the Unique Games Conjecture

Upper bounds leverage strong duality and the -time SoS
algorithm to transform certificates that a solution exists into
algorithms for finding that solution.

— Combined with clever rounding schemes

nO(d)

Upper Bounds via Sum-of-Squares

[GW94]: Degree-2 SoS achieves a 0.878 approximation for MaxCut.

—introduced the random hyperplane rounding technique

[ARV04]: Uses degree-4 SoS to obtain a -approximation
for the Sparsest Cut.

— first use of higher-order SoS relaxations.

O(log n)

[Rag08]: Assuming the Unique Games Conjecture, degree-2 SoS
gives the optimal approximation ratio for every CSP.

— Does not tell us what this approximation ratio is.

A line of work beginning with [KKMO07] uncovered a deep
connection between SoS and the Unique Games Conjecture

Upper bounds leverage strong duality and the -time SoS
algorithm to transform certificates that a solution exists into
algorithms for finding that solution.

— Combined with clever rounding schemes

nO(d)

Upper Bounds via Sum-of-Squares
[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique
Games based on SoS.

—[BRS11,GS11] Introduced the global correlation rounding
technique.

Upper Bounds via Sum-of-Squares
[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique
Games based on SoS.

—[BRS11,GS11] Introduced the global correlation rounding
technique.

Global Correlation Rounding:

- Given a pseudo-expectation , one way to round it is to assign

each variable with probability . This can result in poor
solutions due to correlations.

- Global Correlation Rounding: for 2CSPs, in expectation, global
correlation drops under conditioning on the outcome of a set of
random variables, while the objective value remains the same.

�̃�
xi = 1 �̃�[xi]

Upper Bounds via Sum-of-Squares

[BKS13, BKS17]: Developed new rounding techniques for high-
dimensional SoS

— Obtained algorithms for problems in quantum information theory,
such as Best Separable State.

[ABS10,BRS11,GS11]: Subexponential-time algorithm for Unique
Games based on SoS.

—[BRS11,GS11] Introduced the global correlation rounding
technique.

Global Correlation Rounding:

- Given a pseudo-expectation , one way to round it is to assign

each variable with probability . This can result in poor
solutions due to correlations.

- Global Correlation Rounding: for 2CSPs, in expectation, global
correlation drops under conditioning on the outcome of a set of
random variables, while the objective value remains the same.

�̃�
xi = 1 �̃�[xi]

Average-Case Upper Bounds
Recently, lots of work on average-case algorithms using SoS

—Partly due to an average-case rounding framework introduced in
[BKS14]

Led to SoS-based algorithms for average-case problems including:

—Dictionary Learning [BKS14],

—Tensor Completion [BM16, PS16],

—Clustering Mixture Models [HL18, KS17],

—Outlier Robust Moment Estimation [KS17],

—Robust Linear Regression [KKM18],

—Attacking cryptographic PRGs [BBKK18, BHKS19].

Outline
1. Developing the Sum-of-Squares Relaxation

2. Phrasing the Relaxation as an SDP

3. The Dual Sum-of-Squares Proofs and Completeness

4. Convergence and Strong Duality

5. Upper Bounds

6. Lower Bounds

Comparison with other Proof Systems

Sum-of-Squares

Sherali-Adams Polynomial Calculus

Nullstellensatz

Simulations in terms of degree

Many of these separations as well as the simulation of PC by SoS
are due to [Ber18]

Comparison with other Proof Systems

Sum-of-Squares

Sherali-Adams Polynomial Calculus

Nullstellensatz Resolution

-Frege AC0

Frege

Cutting Planes

Open Questions:

—Does SoS simulate -Frege?

—How does SoS compare to Cutting Planes?

—How does SoS compare to Stabbing Planes / R(CP)?

AC0

Simulation in terms of size

Stabbing Planes

Lower Bounds on SoS
If degree- SoS cannot refute then maximizing
over the degree- SoS relaxation of attains a value of at least .

d 𝒫 ∪ {r(x) − λ} r(x)
d 𝒫 λ

— Lower bounds on the degree of SoS refutations imply
inapproximability results for the SoS hierarchy.

Lower Bounds on SoS
If degree- SoS cannot refute then maximizing
over the degree- SoS relaxation of attains a value of at least .

d 𝒫 ∪ {r(x) − λ} r(x)
d 𝒫 λ

To prove a degree lower bound of on refuting a set of polynomials
, one constructs a degree- pseudo-expectation for

d
𝒫 d 𝒫

— Lower bounds on the degree of SoS refutations imply
inapproximability results for the SoS hierarchy.

Lower Bounds on SoS

Random 3XOR: [Gri01, Sch08] systems of random 3XOR equations
require degree .

• Reduction to Resolution width lower bounds.

• Builds on earlier ideas [BGIP01, Gri98] for NS and PC.

• [Sch08] Implies lower bounds on Max3SAT, Max Ind Set.

Ω(n)

To prove a degree lower bound of on refuting a set of polynomials
, one constructs a degree- pseudo-expectation for

d
𝒫 d 𝒫

If degree- SoS cannot refute then maximizing
over the degree- SoS relaxation of attains a value of at least .

d 𝒫 ∪ {r(x) − λ} r(x)
d 𝒫 λ

— Lower bounds on the degree of SoS refutations imply
inapproximability results for the SoS hierarchy.

Lower Bounds on SoS — CSPs
Approximation Resistant: The best polynomial-time approximation
is a uniformly random assignment.

Lower Bounds on SoS — CSPs
Approximation Resistant: The best polynomial-time approximation
is a uniformly random assignment.

[Chan13]: Assuming , any predicate
that is pairwise independent and algebraically linear is approximation
resistant

• Pairwise Independent: supports a distribution such that

the pairwise marginals for is uniform over .

• Algebraically Linear: is also the uniform distribution over a
subspace .

P ≠ NP P : {0,1}k → {0,1}

P−1(1) μ
μiμj i ≠ j {0,1}2

μ
V ⊆ GF(2)

Lower Bounds on SoS — CSPs
Approximation Resistant: The best polynomial-time approximation
is a uniformly random assignment.

[AM09]: Assuming the UGC, any predicate that
is pairwise uniform is approximation resistant

P : {0,1}k → {0,1}

[Chan13]: Assuming , any predicate
that is pairwise independent and algebraically linear is approximation
resistant

• Pairwise Independent: supports a distribution such that

the pairwise marginals for is uniform over .

• Algebraically Linear: is also the uniform distribution over a
subspace .

P ≠ NP P : {0,1}k → {0,1}

P−1(1) μ
μiμj i ≠ j {0,1}2

μ
V ⊆ GF(2)

Lower Bounds on SoS — CSPs
Approximation Resistant CSP for Degree-d SoS: If there is an
instance such that

• A random assignment is essentially optimal

• Degree-d SoS believes fraction of constraints can be

satisfied
1 − o(1)

Lower Bounds on SoS — CSPs

 [Tul09]: Any CSP on pairwise uniform and algebraically linear
predicates is approximation resistant for degree SoS

• Method for doing reductions in SoS

• Lower bounds for problems such as Vertex Cover, IndSet

Ω(n)

Open Question: Prove that SoS cannot achieve better than a 2-
approximation for Vertex Cover.

Approximation Resistant CSP for Degree-d SoS: If there is an
instance such that

• A random assignment is essentially optimal

• Degree-d SoS believes fraction of constraints can be

satisfied
1 − o(1)

Lower Bounds on SoS — CSPs

[BCK15]: Any CSP defined on pairwise uniform predicates is
approximation resistant for degree SoSΩ(n)

Open Question: Prove that SoS cannot achieve better than a 2-
approximation for Vertex Cover.

 [Tul09]: Any CSP on pairwise uniform and algebraically linear
predicates is approximation resistant for degree SoS

• Method for doing reductions in SoS

• Lower bounds for problems such as Vertex Cover, IndSet

Ω(n)

Approximation Resistant CSP for Degree-d SoS: If there is an
instance such that

• A random assignment is essentially optimal

• Degree-d SoS believes fraction of constraints can be

satisfied
1 − o(1)

Average-Case Lower Bounds
Random CSPs: [KMOW17] Proved sharp lower bounds that tightly
characterize the number of clauses needed for SoS to refute
random CSP instances with a given predicate .

— Matches the upper bounds of [AOW15, RRS16].

P

Average-Case Lower Bounds
Random CSPs: [KMOW17] Proved sharp lower bounds that tightly
characterize the number of clauses needed for SoS to refute
random CSP instances with a given predicate .

— Matches the upper bounds of [AOW15, RRS16].

P

Planted Clique: [MPW15, HKPRS18], culminating in [BHKKMP18]
proved nearly tight lower bounds on the degree of SoS proofs of the
Planted Clique problem.

— Introduced the pseudo-calibration framework; a computational
bayesian approach to constructing pseudo-expectations.

Applications of Lower Bounds
(SDP) Extended Formulation: Of a polytope is any polytope
(spectahedron) such that there exists a linear projection such that

.

—Restriction: Polytope is instance independent

P
Q

proj(Q) = P

Applications of Lower Bounds
(SDP) Extended Formulation: Of a polytope is any polytope
(spectahedron) such that there exists a linear projection such that

.

—Restriction: Polytope is instance independent

P
Q

proj(Q) = P

[CLRS13, KMR17] For any CSP on variables, there is a
constant such that no size extended formulation can achieve
a better approximation than degree- Sherali-Adams.

N = n
c nc⋅d

d

Applications of Lower Bounds
(SDP) Extended Formulation: Of a polytope is any polytope
(spectahedron) such that there exists a linear projection such that

.

—Restriction: Polytope is instance independent

P
Q

proj(Q) = P

[CLRS13, KMR17] For any CSP on variables, there is a
constant such that no size extended formulation can achieve
a better approximation than degree- Sherali-Adams.

N = n
c nc⋅d

d

[LRS14] For any CSP, there exists a constant such that no size
 SDP extended formulation can achieve a better

approximation on any instance of variables than degree-
Sum-of-Squares can on variables.

c
c(n/log n)d/4

N = n4d d
n

Thank You!

