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Abstract

Proof complexity provides a promising approach aimed at resolving the P versus NP question by estab-

lishing the nonexistence of propositional proof systems which admit short proofs of every tautology. Proof

complexity suggests an incremental program of proving lower bounds on the size of proofs in successively

stronger proof systems as a means of building towards a resolution to the central question. The complexity

of specific proof systems is also deeply connected to the analysis of practical algorithms. A proof system

corresponds to a family of efficient algorithms. Thus, lower bounds for a proof system reveals the limitations

inherent to the associated algorithms.

In this thesis we develop and study proof systems which formalize modern algorithms for integer pro-

gramming. Our contributions are as follows.

A major conjecture in proof complexity is that random k-CNF formulas are hard to prove in every proof

system. This conjecture has been confirmed for a number of proof systems [4, 40, 137, 139]. One notable

exception is the Cutting Planes system, which formalizes classical algorithms for integer programming. In

this thesis we confirm this conjecture for Cutting Planes.

Modern algorithms for integer programming, known as branch-and-cut, improve upon Cutting Planes by

combining it with a branch-and-bound procedure. We introduce Stabbing Planes as an elegant proof system

which formalizes branch-and-cut algorithms. In doing so, we show that Stabbing Planes can simulate Cutting

Planes and surprisingly, that a partial converse exists as well. Using this converse we are able to obtain

exponential lower bounds on branch-and-cut, as well as exhibit small Cutting Planes proofs of any systems

of linear equations over a prime finite field, generalizing [48].

One striking feature of these Cutting Planes proofs of linear equations is that their depth far exceeds

worst-case. This suggests that these formulas may yield a supercritical size/depth tradeoff for Cutting Planes

— formulas for which short proofs require depth beyond worst-case. We make two contributions towards

this. First, we develop a geometric technique for proving depth lower bounds and apply it to a “semantic”

generalization of Cutting Planes. Second, generalizing [132], we establish supercritical size/depth tradeoffs

for Cutting Planes.
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Chapter 1

Introduction

Given a tautological statement — a theorem — what is the shortest proof of its validity in some proof system?

This is an intrinsic question of logic and its propositional version is deeply linked to fundamental questions
in computational complexity.

Understanding the length of proofs in every propositional proof system is connected to resolving the P

versus NP question, a question of profound importance to computer science and mathematics. As formalized
by Cook and Reckhow [43], a propositional proof system is exactly an NP-verifier for the coNP-complete
language of propositional tautologies. It follows that there does not exists a propositional proof system which
admits short (polynomial-size) proofs of every tautology if and only if NP is different from its complement,
coNP — and therefore P 6= NP. Thus, proof complexity provides an approach aimed at ultimately proving
P 6= NP by leveraging tools from both mathematical logic and computational complexity.

In their seminal work on this subject, Cook and Reckhow proposed an incremental approach — which has
come to be known as Cook’s program — of systematically proving lower bounds on the length of proofs in
increasingly more powerful proof systems as a means of building towards a resolution to the central question.
Since its inception, this program has produced celebrated lower bounds for many natural proof systems (see
Figure 1.1). As well, deep connections with other areas of theoretical computer science have emerged, which
have led to breakthroughs in areas such as circuit complexity, combinatorics, and the design and analysis of
efficient algorithms.

In order to tackle the NP vs. coNP question, one needs to first formulate a candidate family of “hard”
formulas; i.e., a family of propositional tautologies which is believed to be hard to prove in every proof
system. While it is a folklore conjecture that almost every formula should be hard to prove in any proof
system, it has been challenging to find concrete tautologies which do not have short proofs in strong proof
systems such as Frege systems (see e.g., [27,101] for excellent expositions on this topic). Because of this, the
principal family of formulas which are conjectured to be hard for every proof system are uniformly random

CNF formulas. This has given rise to a line of work that seeks to prove lower bounds on the complexity of
proving random formulas in restricted proof systems.

While lower bounds on every proof system would imply P 6= NP, the length of proofs in particular
proof systems is intimately tied to understanding large classes of practical algorithms for solving NP-hard
problems. A proof system, in a specific formal sense, corresponds to a family of efficient, provably correct
algorithms. Thus proving lower bounds on the length of proofs in this proof system rules out large classes
of algorithms for solving NP-hard optimization problems. For example, the resolution proof system captures

1



CHAPTER 1. INTRODUCTION 2

the reasoning employed in practical SAT solvers, while lower bounds on the Cutting Planes proof system
imply lower bounds on the runtime of an important class of integer programming algorithms. As well, broad
classes of linear and semi-definite programs can be viewed as generic translations of Sherali-Adams and
Sum-of-Squares proofs of the existence of a solution into algorithms for finding a solution. Proving lower
bounds on the length of proofs in these systems has ruled out many of the most promising algorithms for
NP-hard problems. Conversely, short proofs in certain proof systems such as Sum-of-Squares have given rise
to state-of-the-art algorithms for a wide range of exact and approximate optimization problems.

In this thesis we develop and study proof systems which formalize modern algorithms for solving NP-
hard optimization problems using the framework of integer programming. By extending deep connections
with circuit and communication complexity, we establish strong lower bounds on the size of proofs of random
CNF formulas in these proof systems. As well, we prove tradeoffs between the size and the depth of proofs
which go far beyond the worst-case.

ResolutionNullstellensatz

Cutting PlanesSherali-Adams Res(k)Polynomial Calculus

Sum-of-Squares Stabbing PlanesAC0-Frege

R(CP)

Frege

Extended Frege

Figure 1.1: A selection of standard proof systems. There is an arrow from a proof system P1 to P2 if P2

p-simulates P1. Proof systems in green have established exponential lower bounds, while those in yellow do
not.

1.1 Proof Complexity and Algorithm Design and Analysis.

Over the past several decades proof complexity has emerged as a systematic way to analyze and develop
algorithms for exact and approximate problems. There are two high level themes underlying the connection
between proofs and algorithms.

The first theme is that lower bounds on the length of proofs in certain proof systems imply lower bounds
on the runtime of a broad class of related algorithms. For simplicity, we will describe this theme for exact
algorithms solving the boolean satisfiability problem, SAT, however this framework can be readily extended
to approximation algorithms and to other NP-hard problems. Since any polynomial-time algorithm that solves
SAT must classify all unsatisfiable boolean formulas, it follows that the complexity of the SAT problem is
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x1

10

x2 x3

0 1 0 1

x1 ∨ x2 x1 ∨ ¬x2 ¬x1 ∨ ¬x3x2

0 1

¬x1 ∨ x2 ∨ x3 ¬x1 ∨ ¬x2

(a) DPLL

Λ

x1 ¬x1

x1 ∨ x2 x1 ∨ ¬x2 ¬x1 ∨ ¬x3¬x1 ∨ x3

¬x1 ∨ x2 ∨ x3 ¬x1 ∨ ¬x2

(b) tree-like resolution

Figure 1.2: DPLL and tree-like resolution refutations of the CNF formula (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨
x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x3).

intimately connected with the study of refuting unsatisfiable formulas, which by negation is equivalent the
study of proving tautogies. More precisely, suppose that we have a correct algorithm A — meaning that it
is guaranteed to output the correct answer — for solving SAT (or some other NP-hard problem). Since the
algorithm is correct we can view the computation of the algorithm, given an unsatisfiable formula F as input,
as a proof of the unsatisfiability of F . Furthermore, if A runs efficiently on F , then A provides us with a
short proof that F is unsatisfiable. This proof belongs to some proof system, which we will denote by PA. It
follows that super-polynomial lower bounds on PA imply that A cannot be a polynomial time algorithm for
SAT.

A simple example of this phenomenon is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[53, 54] which underlies modern algorithms for solving instances of SAT that occur in practice. DPLL is
the standard backtracking search algorithm for deciding satisfiability of a CNF formula, F . It proceeds by
choosing a variable xi (according to some heuristic) and then recursing on F with xi fixed to 1 and F with
xi fixed to 0. If ever a clause of F becomes falsified, we halt that recursive branch and label it with the
falsified clause. Whenever F is unsatisfiable, the transcript of the algorithm procedures a decision tree over
the underlying variables, where each leaf of the tree is labelled with some clause Ci ∈ F such that the partial
truth assignment of the variables queried along the path to that leaf falsifies Ci (see Figure 1.2a). Such a
decision tree, in turn, is actually a tree-like resolution proof of C.

The resolution proof system is one of the most well-studied proof systems. It proves the validity of a
tautology by refuting its negation. Because every formula can be efficiently encoded in conjunctive normal
form (CNF), we may assume that the input is an unsatisfiable set of clauses F = {Ci}i∈[m]. From these
clauses, one can derive new clauses using the following rule.

• Resolution Rule. From clauses Cj containing a variable x and Ck containing ¬x, deduce the clause
(Cj \ x) ∨ (Ck \ ¬x).

To refute a formula in resolution, one derives the empty clause Λ which is falsified by every truth assignment.
A resolution proof is tree-like if every clause not in F can be used at most once before it must be re-derived
(see Figure 1.2b). As shown in Figure 1.2, the transcript of the DPLL algorithm on an unsatisfiable formula
F is exactly a tree-like resolution refutation of F , up to a relabelling of the nodes and edges. Therefore,
running the DPLL algorithm on an unsatisfiable formula yields a tree-like Resolution refutation.



CHAPTER 1. INTRODUCTION 4

The theme of using proof complexity for algorithm analysis has been successfully applied to a number
of other prominent classes of algorithms, including: modern conflict driven clause learning algorithms for
solving SAT [92, 115, 142], linear and semi-definite programming algorithms such as the lift-and-project
hierarchies of Lovász-Schrijver [107], Sherali-Adams [141], and Lasserre [105,122], and the classic Gomory-
Chvátal cutting planes algorithms for integer programming [37, 76].

The second theme of this connection is that upper bounds in certain proof systems can automatically give
rise to efficient algorithms. A proof system is said to be automatable if there is an algorithm that can produce
proofs in that system efficiently in the size of the shortest proof. An early example of this phenomenon was
observed by Beame and Pitassi [17], building on [41], who showed that any resolution proof of size s could be
found in time 2O(

√
n log s). Another highly influential example is the Sum-of-Squares proof system in which

efficient proofs give rise to a broad class semi-definite programs via its connection to the Lasserre hierarchy.
The past decade has seen a flurry of work designing upper bounds in Sum-of-Squares as a means of creating
efficient algorithms for many unsupervised learning and optimization problems. This theme will play only a
minor role in this thesis, and we refer the interested reader to [67] for a survey.

1.2 The Proof Complexity of Integer Programming

This thesis studies proof systems which formalize algorithms for integer programming. Recall that an integer
programming problem is one where we are given a polytope P , represented by system of integer linear
inequalitiesAx ≤ b, and a vector c ∈ Rn, and our goal is to find a point x ∈ P ∩Zn such that xmaximizes c ·
x.1 Integer programming represents one of the most prominent approaches for solving NP-hard optimization
problems. In spite of the fact that integer programming is NP-complete, there has been extraordinary success
in designing efficient algorithms which are able to produce good approximate or exact solutions to typical
instances of integer programming that occur in practice [42].

The classical approach for solving an integer program — pioneered by Gomory [76] — is to introduce
cutting planes to P . A Chvátal-Gomory (CG) cutting plane for P is any inequality of the form ax ≤ bbc,
where a is an integral vector, and b is rational, and every point of P is satisfies ax ≤ b. See Figure 1.3 for an
illustration. By the integrality of a, it follows that CG cutting planes preserve the integral points of P while
potentially removing non-integral points. Cutting planes algorithms proceed by heuristically choosing “good”
cutting planes to refine P until an exact or approximate solution can be found by a linear programming solver.

1We note that all of the ideas in this thesis can also be extended in a straightforward manner to mixed integer programming.
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ax ≤ b ax ≤ bbc

Figure 1.3: A CG cut ax ≤ bbc, the shift of a valid halfspace ax ≤ b to the nearest integer point. The grid
intersection points represent integer points.

These algorithms can naturally be formalized as the Cutting Planes proof system, originally proposed by
Chvátal [37]. A Cutting Planes (CP) refutation of a polytope P is a sequence of polytopes P1, . . . , Ps such
that Ps is the empty polytope ∅, and each polytope Pi is derived by intersecting Pi−1 with a CG cutting plane
for Pi−1. Since CG cutting planes preserve integral points, such a refutation is only possible if P does not
contain any integral points (i.e., P ∩ Zn = ∅).

Cutting Planes has grown to be an influential proof system in proof complexity. The first exponential
lower bounds on Cutting Planes refutations were established by Pudlák [127], building on the work of Bonet,
Pitassi, and Raz [30] who established the same lower bounds for CP∗ — Cutting Planes proofs in which the
coefficients of each cutting plane are bounded. Both of these lower bounds are instantiations of the method of
feasible interpolation, a general technique formalized by Krajı́ček [98]. They proceed by first showing that
short refutations of certain split formulas F can be transformed into small circuits computing an associated
monotone function IF :

• [30]: Any size s CP∗ refutations of F imply a size poly(s) monotone circuit — circuits operating with
∧ and ∨ gates — computing IF .

• [127]: Any size s CP refutation of F gives rise to a size poly(s) monotone real circuit — circuits in
which each gate is a fanin-2 monotone function g : R× R→ R — computing IF .

The lower bounds on proof size follow by modifying the celebrated monotone circuit lower bounds due to
Razborov [131] to apply to monotone real circuits.

Despite the success of feasible interpolation, it is limited to proving lower bounds on split formulas.
Prior to this thesis, the only family of formulas which were known to be hard for Cutting Planes were the
clique-coclique formulas [30, 127] and the broken mosquito screen formulas [83] and it was a long-standing
open problem to establish lower bounds on the size of Cutting Planes proofs of formulas which are typically
studied, in particular random CNF formulas [18] and the Tseitin formulas [45].

Beyond Cutting Planes. While Cutting Planes has become a influential proof system in proof complexity,
the original cutting planes algorithms suffered from numerical instabilities, as well as difficulties in finding
good heuristics for the next cutting planes to introduce [76]. Modern integer programming algorithms im-
prove on the classical cutting planes by combining it with a branch-and-bound procedure [10, 104], giving
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rise to an algorithmic paradigm known as branch-and-cut [121]. These algorithms solve an integer pro-
gramming problem by repeating the following two procedures: (i) branching: the current polytope P is split
into sub-polytopes P1, . . . , Pk containing the integer points of P , (ii) cutting: additional cutting planes are
added to further refine the polytopes. In practice, branching typically done by choosing a variable xi and
branching on all possible integer values that it can take. More general branching has also been considered,
such as branching on the hamming weight of a subset of coordinates [65], or more general linear inequali-
ties [1,2,94,102,112,120]. However, the additional strength provided by the branching procedure means that
these algorithms are no longer captured by the Cutting Planes proof system, and the extensive work that has
been done on Cutting Planes does not apply to modern integer programming algorithms.

1.3 Contributions

Chapter 3: Random Θ(log n)-CNFs are Hard for Cutting Planes

Random SAT formulas represent the principal family of formulas that is conjectured to be hard to refute in
every proof system. The most well-studied model is the random k-SAT model F(m,n, k), where a k-CNF
formula on m clauses and n variables is chosen uniformly at random. Feige’s Hypothesis [63] links the
complexity of refuting random k-CNF formulas to worst-case inapproximability, and average-case hardness
of circuit lower bounds [136].

Beginning with the seminal work of Chvátal and Szemerédi [40], a line of work has sought to estab-
lish lower bounds on the complexity of refuting random k-CNF formulas in restricted proof systems. Such
lower bounds have been established for a number of proof systems, including resolution [16, 40], k-DNF
resolution [3, 8, 88], the Polynomial Calculus [4, 21], and Sum-of-Squares [137]. However, it has remained a
long-standing open problem to establish lower bounds on random k-CNF formulas for Cutting Planes [18].

The first major contribution of this thesis is an exponential lower bound on the complexity of refuting ran-
dom CNF formulas in Cutting Planes. This was also established independently and concurrently by Hrubeš
and Pudlák [86].

Theorem 1.3.1. There exists constants c, d such that the following holds. Let n be a sufficiently large positive

integer, k = c log n and m = n2dk. Then with high probability, any Cutting Planes refutation of a random

k-CNF formula F ∼ F(m,n, k) requires 2Ω̃(n) lines 2.

While lower bounds were previously known for Cutting Planes, the technique used to establish these
bounds (the method of feasible interpolation) was only applicable to the restricted class of split formulas,
which does not contain random k-CNF formulas. Because of this, it has remained an important open problem
to develop a lower bound technique for Cutting Planes that can be applied to more general classes of formulas.
To prove Theorem 1.3.1, we significantly generalize Pudlák’s feasible interpolation for Cutting Planes [127]
so that it can be applied to any unsatisfiable CNF formula, rather than only split formulas. We show that
for any unsatisfiable CNF formula F , if there is a Cutting Planes refutation of F , then there is a monotone
real circuit of the same size computing an associated monotone function mCSP-SATF . In fact, we establish
a more general connection that holds not only for Cutting Planes, but for the stronger RCC1 proof system
(defined in Section 3.2). The next theorem characterizes the size of RCC1 for any unsatisfiable CNF formula
by the size of monotone real circuits for computing mCSP-SATF .

2The notation Ω̃ ignores factors of logn.
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Theorem 1.3.2. Let F be any unsatisfiable CNF formula. There is an RCC1 refutation of F of size s if and

only if there is a monotone real circuit with poly(s) gates computing mCSP-SATF .

To obtain Theorem 1.3.1 from Theorem 1.3.2, we prove lower bounds on the size of monotone real cir-
cuits computing the mCSP-SATF instance obtained from a random k-CNF formula F . To do so, we would
like to employ standard techniques for proving monotone real circuit lower bounds [23,83,93]. However, we
are unable to apply these techniques to mCSP-SATF directly. Instead, we carefully design a reduction to a
more well-structured instance of mCSP-SAT which is amenable to these lower bound techniques.

This chapter is based on the following publication:

[68]: Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random Θ(log n)-CNFs
are hard for cutting planes. In 58th IEEE Annual Symposium on Foundations of Computer Sci-

ence, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 109–120, 2017.

Chapter 4: Stabbing Planes

As mentioned in the introduction, modern algorithms for integer programming are primarily based on the
branch-and-cut paradigm which combines cutting planes deductions with a branch-and-bound procedure. As
a result, modern integer programming algorithms are not modelled by the Cutting Planes proof system.

As the second major contribution of this thesis, we introduce and develop the Stabbing Planes proof
system in order to model practical branch-and-cut algorithms. Stabbing Planes refutations are simple: given a
polytope P containing no integer points, a Stabbing Planes refutation of P proceeds by choosing an arbitrary
integer vector a, an integer b, and branching on ax ≥ b and its integer negation ax ≤ b − 1. That is, we
replace P by P ∩ {x ∈ Rn : ax ≥ b} and P ∩ {x ∈ Rn : ax ≤ b − 1}. Then we recurse on these two
polytopes, continuing until all descendant polytope are empty (that is, they do not contain any real solutions).
The majority of branching schemes used in practical branch-and-cut algorithms (including all of the concrete
schemes mentioned before) are examples of this general branching rule.

Branch-and-cut allows for Stabbing Planes-style branching as well as Cutting Planes deductions, hence it
is not immediate that Stabbing Planes formalizes branch-and-cut. We show that from the perspective of proof
complexity, these additional cutting planes are superfluous: Stabbing Planes can efficiently simulate Cutting
Planes. In fact, we characterize Cutting Planes as a non-trivial sub-system of Stabbing Planes. A Stabbing
Planes query is facelike if one of the sets P ∩ {x : ax ≤ b − 1} or P ∩ {x : ax ≥ b} is either empty or a
face of the polytope P , and a Facelike Stabbing Planes is a Stabbing Planes proof which uses only facelike
queries.

Theorem 1.3.3. The proof systems Cutting Planes and Facelike Stabbing Planes are polynomially equivalent.

This is surprising in part because the graphs underlying Stabbing Planes proofs are trees, while the graphs
corresponding to Cutting Planes proofs may be dags: intuitively, this means that Cutting Planes proofs can
“re-use” their intermediate steps, while Stabbing Planes proofs cannot. One may object, that this comparison
is not fair as Cutting Planes is “deductive”, meaning that new lines are inferred from previous ones, while
Stabbing Planes queries are independent of previous queries. However, we show that Stabbing Planes can
be viewed as a deductive system; in fact, it is equivalent to a tree-like variant of the R(CP) proof system of
Krajı́ček [99]. While Stabbing Planes is equivalent to a proof system which is already in the literature, we
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show that the perspective offered by Stabbing Planes is quite valuable. Indeed, none of our results, including
the simulation of CP by SP or the next theorem, were known for treeR(CP).

As a second demonstration of the remarkable power of Stabbing Planes, we show that it admits short
(quasipolynomial size) refutations of any unsatisfiable system of linear equations over a prime finite field.

Theorem 1.3.4. Let F be the CNF encoding of an unsatisfiable system of m linear equations over a prime

finite field. There is a Stabbing Planes refutation of F of size |F |O(logm) and depth O(log2 |F |).

This stands in contrast to many of the standard proof systems that have been considered in the literature,
such as Sum-of-Squares and AC0-Frege, for which unsatisfiable systems of linear equations over a prime
finite field are the class of formulas that are hard to refute [20, 81, 84, 124].

These results suggest that Stabbing Planes might be significantly more powerful than Cutting Planes.
However, the following simulation shows that unless the Stabbing Planes proof makes use of large coefficients
there can only be at most a quasipolynomial separation between the two.

Theorem 1.3.5. Let F be any unsatisfiable CNF formula on n variables and suppose that there is an SP∗

refutation of F in size s and maximum coefficient size c. Then there is a Cutting Planes refutation of F of size

s(cn)log s.

As a consequence, of this simulation we obtain short Cutting Planes refutations of any unsatisfiable
system of linear equations over a prime finite field.

Corollary 1.3.6. Let F be the CNF encoding of an unsatisfiable system of m linear equations over a prime

finite field. Then there is a Cutting Planes refutation of F of size |F |O(logm).

This is unexpected; until recently it was believed that Cutting Planes could not efficiently reason over
prime finite fields. Indeed, it was a long-standing conjecture that the Tseitin formulas — canonical systems
of linear equations over F2 — required exponential size Cutting Planes proofs. This was recently refuted
by Dadush and Tiwari [48] who showed that Cutting Planes admits quasipolynomial size refutations of the
Tseitin formulas.

Additionally, Theorem 1.3.5 allows us to lift much of the analysis that has been done on Cutting Planes
to branch-and-cut algorithms, including the lower bound on random CNF formulas from Theorem 1.3.1. Let
SP∗ denote the family of Stabbing Planes proofs in which each coefficient has at most quasipolynomial (that
is, nlogO(1) n) magnitude.

Theorem 1.3.7. There exists a family of unsatisfiable CNF formulas {Fn} for which any SP∗ refutation of

F requires size 2n
ε

for constant ε > 0.

Finally, an important problem left open by this work is to prove super-polynomial size lower bounds for
unrestricted Stabbing Planes proofs. As a step towards this, we show how to obtain near-maximal lower
bounds on the depth of Stabbing Planes refutations — the length of the longest root-to-leaf path in the proof
tree. This is a natural measure of a proof, which captures the degree to which it can be parallelized.

Theorem 1.3.8. There exists a family of unsatisfiable CNF formulas {Fn} for which any SP refutation

requires depth Ω(n/ log2 n)

We complement this lower bound with a number of results which rule out natural approaches for proving
lower bounds on the size of unrestricted Stabbing Planes proofs. In particular, those that seek to leverage
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this depth lower bound in order to prove size lower bounds. In doing so, we prove that real communication
complexity protocols cannot be balanced and establish the first lower bound on the real communication com-
plexity of the famous set-disjointness problem.

This chapter is based on the following publications:

[15]: Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov, To-
niann Pitassi, and Robert Robere. Stabbing planes. In 9th Innovations in Theoretical Computer

Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 10:1–10:20,
2018.

[66]: Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang Tan,
and Avi Wigderson. On the Power and Limitations of Branch and Cut. Accepted to CCC 2021.

Chapter 5: Lowerbounds and Supercritical Tradeoffs for Depth

Depth captures the inherent sequentialism in proofs, and therefore algorithms which employ the reasoning
used in those proofs. For Cutting Planes, depth is closely related to the Chátal rank of polytopes, which has
been extensively studied in integer programming theory.

Our simulation of Facelike Stabbing Planes by Cutting Planes (Theorem 1.3.3) suggests an interesting
interplay between the depth and size of Cutting Planes proofs. First, we note that any CNF formula on n
variables has a (trivial) depth n and exponential size refutation in Cutting Planes. However, the simulation of
Facelike Stabbing Planes by Cutting Planes causes an explosion in the depth. For example, this simulation
converts depth O(log2 n) Stabbing Planes proofs of the Tseitin formulas — certain systems of F2 linear
equations — into quasipolynomial depth Cutting Planes proofs. This is quite unusual since simulations
between proof systems typically preserve the structure of the proofs. Thus, this brings up the possibility that
the Tseitin formulas yield a supercritical size/depth tradeoff for Cutting Planes — formulas for which short
proofs require superlinear depth.

Conjecture 1.3.9. There exists a family of unsatisfiable formulas {Fn} such that Fn has quasipolynomial

size CP proofs, but any quasipolynomial-size proof requires superlinear depth. Furthermore, {Fn} can be

taken to be the Tseitin formulas on some family of graphs.

Besides this question being interesting in its own right, connections between proof complexity and other
areas, such as circuit complexity, raises the possibility that techniques used to establish this conjecture could
allow us to establish tradeoffs which go beyond critical thresholds in other areas as well.

While Cutting Planes can somewhat efficiently reason about systems of linear inequalities over prime
finite fields, the quasipolynomial depth of these proofs makes them prohibitive to implement. This raises
another important question: how much additional strength needs to be added to Cutting Planes before the
proofs of the Tseitin formulas can be parallelized. A natural candidate is the semantic Cutting Planes system,
which augments the CG cut rule by allowing for any sound deduction from two previously derived linear
inequalities. Semantic Cutting Planes proofs are known to be significantly more powerful than Cutting Planes
[64].

In this chapter we make progress towards resolving both of these questions. Our first contribution is a
novel geometric argument for proving lower bounds on the depth of semantic Cutting Planes proofs. As a
consequence, we are able to establish a maximal lower bound on the depth of refuting the Tseitin formulas.
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Theorem 1.3.10 (Informal). For all sufficiently large n, there exists an unsatisfiable instance of the Tseitin

formulas which requires semantic Cutting Planes refutations of depth Ω(n).

All prior depth lower bounds for Cutting Planes proceed by either reducing to communication complexity,
or reducing to lower bounds on Chvátal rank. Since there is an O(log n) upper bound on the Tseitin formulas
in communication complexity, this approach will be unable to prove a supercritical tradeoff for the Tseitin
formulas. Similarly, it is known that the Chvátal rank of any CNF formula is bounded above by n. Our
technique does not appear to suffer from these inherent counter examples, and therefore we hope that it is a
step towards resolving the conjecture for the Tseitin formulas.

Our second contribution is a partial resolution to Conjecture 1.3.9. We establish supercritical size/depth
tradeoffs for resolution (Res), k-DNF resolution (Res(k)), and Cutting Planes (CP).

Theorem 1.3.11. For any constant ε > 0, positive integers k, n sufficiently large, P ∈ {Res,Res(k),CP},
and any arbitrary real parameter 1 ≤ c < n

1−ε
2+ε , there is a CNF formula F on n variables and nO(c) clauses

such that

• There is a P-refutation of F of size nO(c).

• If Π is a P-refutation of F with size(Π) = 2o
(
n

1−ε
2+ε /c

)
then

depth(Π) log2 size(Π) = Ω

(
nc/(2+ε)

c log n

)
.

Varying the parameter c between O(1) and nδ , for some small constant δ, allows us to obtain a family of
tradeoff results. In one extreme, when c = O(1) we obtain a formula F which has refutations of size poly(n),
however any proof of size� 2n

1−ε
must have depth polynomial depth. In the other extreme, setting c = nδ

implies an exponential blowup in the depth. To prove this theorem, we give a simplified proof of a supercrit-
ical tradeoff between resolution size and width [132]. Combining this with known lifting theorems [72, 139]
establishes the tradeoff.

This chapter is based on the following publications:

[66]: Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang Tan,
and Avi Wigderson. On the Power and Limitations of Branch and Cut. In 36th Computational

Complexity Conference, CCCC 2021 July 20-23, 2021. Toronto, Ontario, Canada, pages 6:1–
6:30, 2021.

[119]: Noah Fleming, Toniann Pitassi, Robert Robere. Deep Proofs. Unpublished 2021.



Chapter 2

Preliminaries

A boolean function is a mapping f : {0, 1}n → {0, 1} of strings of bits to a bit. An assignment or restriction

is a map ρ : [n] → {0, 1, ∗} to variables which is interpreted as fixing the variables indexed by [n] \ ρ−1(∗)
and leaving the variables indexed by ρ−1(∗) free. An assignment is total if |ρ−1(∗)| = 0 and is partial

otherwise. From a function f and a restriction ρ we can obtain a new function f �ρ : {0, 1}|ρ−1(∗)| → {0, 1},
where for any α ∈ {0, 1}|ρ−1(∗)| we define f �ρ(α) = f(α◦ρ). For total assignments, we will abuse notation
and denote them as strings of bits ρ ∈ {0, 1}n, in which case we will denote f � ρ by f(ρ). An assignment
ρ is an accepting input or yes instance of f if f(ρ) = 1, while if f(ρ) = 0 then we say that ρ is a rejecting

input or no instance.
Any boolean function can be encoded as a propositional logic formula using connectives ∧,∨,¬. For

simplicity, we will be particularly interested in encodings in conjunctive normal form (CNF) as a conjunction
C1 ∧ . . . ∧ Cm of clauses Ci = (`1 ∨ . . . ∨ `k), where each literal `j is either xj or ¬xj . A k-CNF, or
k-SAT formula is a CNF formula in which every clause has width at most k, meaning that it contains at most
k literals. For example, the following is an encoding of an F2 linear equation as a 3-CNF formula:

x1 ⊕ x2 ⊕ x3 = 1 ⇒ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

Similarly, a formula can be encoded in disjunctive normal form (DNF) as a disjunction of T1 ∨ . . . ∨ Tm of
terms Ti = (`1 ∧ . . . `k), and a DNF is a k-DNF if every term contains at most k literals.

A formula F is satisfiable if there exists an assignment ρ ∈ {0, 1}n such that F (ρ) = 1, and is unsatisfi-

able otherwise. It is a tautology if it is satisfied by every assignment.

2.1 Proof Complexity

Propositional proof complexity is concerned with the task of proving the validity of tautological formulas in
certain propositional proof systems (henceforth proof systems)1. By negation, this is equivalent to the task
of refuting unsatisfiable formulas, and we will focus on the latter task. Furthermore, since every formula
can be efficiently encoded in CNF, we will restrict attention to CNF formulas without loss of generality. Let
Unsat ⊆ {0, 1}∗ denote the language of all unsatisfiable CNF formulas.

Proof System. A proof system for Unsat is a function P : {0, 1}∗ → Unsat satisfying the following:

1See [67] or [18] for a more in-depth introduction to proof complexity.

11
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• Soundness. For every Π ∈ {0, 1}∗, P(Π) ∈ Unsat.

• Completeness. For every F ∈ Unsat there exists Π ∈ {0, 1}∗ such that P(Π) = F .

• Verifiability. P is polynomial-time computable.

A proof system can be thought of as an efficient algorithm that checks whether the input string Π is a valid
P-proof; if it is, then the proof system outputs the formula F ∈ Unsat that it is a proof of. Otherwise, if the
input is not a legal proof, then it simply outputs some fixed unsatisfiable formula, such as x∧¬x. Soundness
guarantees that the proof system only produces proofs of F ∈ Unsat, while completeness ensures that every
F ∈ Unsat has a proof.

The complexity of a proof system P is measured by the size of its proofs. For a proof Π, size(Π) will
denote the number of bits needed to write it down. The size of refuting some F ∈ Unsat is the size of the
shortest P-proof of F , which we denote by sizeP(F ).

Resolution. A standard example of a proof system is resolution, which forms the basis for many well-known
automated theorem provers and algorithms for SAT. A resolution refutation of an unsatisfiable CNF formula
F is a sequence of clauses {Ci}i∈[s] such that the final clause Cs is the empty clause Λ, and every Ci is either
a clause from F or is deduced by one of the following rules.

• Resolution Rule. From clauses Cj containing a variable x and Ck containing ¬x, deduce the clause
(Cj \ x) ∨ (Ck \ ¬x).

• Weakening. From Ci deduce Cj such that Cj ⊇ Ci.

We will encode a resolution refutation by encoding each clause in the sequence; since each clause contains
at most n literals, the number of clauses in the refutation is polynomially related to the bit-length encoding.
Thus, without loss of generality we take the number of clauses to be the size of a resolution refutation. The
size of refuting F , sizeRes(F ), is the minimum size of any resolution refutation of F . Another measure
of resolution complexity, which is closely related to size [20], is the maximum width of a proof Π — the
maximum number of literals in any clause occurring in Π — denoted width(Π). The width of refuting F ,
denoted widthRes(F ) is the minimum width of any resolution refutation of F .

It is helpful to visualize a resolution proof as a directed acyclic graph (dag) where the nodes correspond
to clauses Ci for i ∈ [s] and there are directed edges from Ci and Cj to Ck if Ck was derived by resolving Ci
and Cj . With this in mind, the depth of a resolution proof Π (denoted depth(Π)) is the length of the longest
root-to-leaf path in the proof dag. The resolution depth depthRes(F ) of refuting F is the minimum depth of
any resolution refutation of F . As well, we will say that a resolution proof is tree-like if its dag is a tree, and
denote by treeRes the proof system which produces only tree-like resolution proofs.

Resolution is among the weakest proof systems studied in proof complexity. We compare the strength of
proof systems using the notion of polynomial simulation.

Polynomial Simulation. For proof systems P1 and P2, we say that P1 polynomially simulates P2 if there
exists a polynomial q such that for sufficiently large n and for all F ∈ Unsat with |F | ≥ n, sizeP1(F ) ≤
q(sizeP2(F )).

In other words, P1 polynomially simulates P2 if the size of the shortest P1 proof of F is at most polyno-
mially smaller than the size of the shortest P2 proof of F .
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2.2 Proof Complexity of Integer Programming

A proof system can be defined more generally for any language L ⊆ {0, 1}∗. In this thesis, we will study
proof systems for the language of unsatisfiable integer programming problems.

Let us first recall up some terminology. A polyhedron P ⊆ [0, 1]n is a convex set formed by the intersec-
tion of a system of linear inequalities Ax ≤ b; i.e., P = {x ∈ Rn : Ax ≤ b}. Throughout this thesis, we
will restrict attention to rational polyhedrons; i.e., those with A ∈ Qm×n and b ∈ Qm. A polyhedron P is a
polytope if it is bounded. A hyperplane ax = b is supporting for P if b = max{ax : x ∈ P}, and if ax = b

is a supporting hyperplane then the set P ∩ {x ∈ Rn : ax = b} is called a face of P . An inequality ax ≤ b

is valid for P if every point of P satisfies the inequality.
In an integer programming problem, we are given a polyhedron P and a vector c ∈ Zn, and our goal is

to find a point x ∈ Zn ∩ P maximizing c · x. An integer program is unsatisfiable if the polytope contains no
integer points; i.e., P∩Zn = ∅. In this thesis, we will be interested in proof systems for refuting unsatisfiable
integer programs. This language is coNP-complete, and therefore by standard reductions between this lan-
guage and UNSAT, we can consider these systems as propositional proof systems. Formally, to relate these
proof systems to proof systems for Unsat, we will use the following simple encoding of a CNF formula as a
system of linear inequalities which preserves satisfiability.

Proposition 2.2.1. Let F = C1∧. . .∧Cm be a CNF formula. Construct the system of inequalitiesAx ≤ b as

follows: first, for each variable xi add the inequalities 0 ≤ xi and xi ≤ 1. Next, ifCi :=
∧
i∈S xi∧

∧
j∈T ¬xj

is a clause in F then add the inequality ∑
i∈P

xi +
∑
j∈N

(1− xj) ≥ 1.

Then, Ax ≤ b is satisfiable if and only if F is.

Proof. Suppose that α ∈ Zn satisfies Ax ≤ b. By the inequalities xi ≥ 0 and xi ≤ 1, α ∈ {0, 1}n. Now,
consider an inequality encoding a clause C ∈ F . Since α satisfies this inequality, it must set a variables xi
with i ∈ P to 1, or xi with i ∈ N to 0. It follows that α satisfies C. The converse is similar.

The canonical proof system for integer programming is the Cutting Planes system [37].

Cutting Planes. A Cutting Planes (CP) proof of an inequality cx ≤ d from a polytope P , defined by a
system of integer linear inequalities Ax ≤ b, is given by a sequence of inequalities {cix ≤ di}i∈[s] such that
cs = c, ds = d, and each inequality cix ≤ di is either a defining inequality of P , or is deduced from earlier
inequalities in the sequence by applying one of the following two deduction rules:

• Conic Combination. From inequalities c1x ≤ d1, c2x ≤ d2, deduce any nonnegative linear combina-
tion of these two inequalities with integer coefficients.

• Division. From an inequality cx ≤ d, if δ ∈ Z with δ ≥ 0 divides all entries of c then deduce
(c/δ)x ≤ bd/δc.

A Cutting Planes refutation of P is a derivation of the inequality 1 ≤ 0 from the inequalities defining P .
Similarly, a Cutting Planes refutation of a CNF formula F is a refutation of the system of linear inequalities
corresponding to F given by Proposition 2.2.1.
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1 ≤ 0

x1 + x2 + x3 ≤ 1

2x1 + 2x2 + 2x3 ≤ 3

2x1 + x2 + x3 ≤ 2

x1 + x2 ≤ 1 x1 + x3 ≤ 1 x2 + x3 ≤ 1 −x1 − x2 − x3 ≤ −2

Figure 2.1: A Cutting Planes refutation of the inequalities labelling the leaves of the tree.

The size of a Cutting Planes proof Π, denoted size(Π) is the number of inequalities in it, and the size of
refuting F , sizeCP(Π), is the minimum size of any CP refutation of F . It is known that for unsatisfiable CNF
formulas that this measure is polynomially related to the length of the bit-encoding of the proof [45]).

As with resolution, it is natural to arrange Cutting Planes proofs into dags (see Figure 2.1). As well, a
proof is tree-like if the underlying dag is a tree, and we denote by treeCP the restriction of Cutting Planes to
tree-like proofs. With this dag in mind, we define the depth of a Cutting Planes refutation to be the longest
root-to-leaf path in the proof, and let depthCP(F ) be the minimum depth of any Cutting Planes refutation of
F . It is known that any polytope contained in the unit cube [0, 1]n has CP depth at most O(n2 log n) [61].
However, for unsatisfiable CNF formulas, the CP-depth is at most n [25].

As stated in the introduction, an alternative characterization of Cutting Planes uses the notion of Chvátal-

Gomory cuts (or simply CG cuts) [37, 45].

CG cut. Let P be a polytope, and let cx ≤ d be any valid inequality for P such that all coefficients in c are
integers. The halfspace {x ∈ Rn : cx ≤ bdc} is called a CG cut for P . We will abuse notation and also refer
to the inequality cx ≤ bdc as a CG cut.

If cx ≤ bdc is a CG cut for the polytope P , then we can efficiently deduce a constraint which is at least
as strong as cx ≤ bdc in Cutting Planes.

Proposition 2.2.2. Let P be any polytope and cx ≤ bdc be a valid CG cut from P , then there is a CP

derivation of cx ≤ bdc+ δ for some δ > 0 in O(n) steps. Conversely, any Cutting Planes deduction is a CG

cut.

The proof follows from Farkas’ Lemma, which will be used throughout this thesis.

Farkas’ Lemma. Let A ∈ Qm×n and b ∈ Qm. Then exactly one of the following holds:

(i) There exists x ∈ Rn such that Ax ≤ b.

(ii) There exists y ∈ Zm with y ≥ 0 such that y>A = 0 and y>b < 0. Moreover, y has at most n + 2

non-zero coordinates.
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The “moreover” part in (ii) follows from Carathéodory’s Theorem. Proofs of both Farkas’ Lemma and
Carathéodory’s Theorem can be found in [42].

Proof of Proposition 2.2.2. Let P be a polytope defined by a system of integer linear inequalities Ax ≥ b,
and assume for simplicity that P is non-empty. As well, let cx ≤ bdc be a CG cut from P . Then cx ≤ d

is valid for P , and so P ′ := P ∩ {x ∈ Rn : −cx ≤ −(d + ε)} is empty for every ε > 0. By Farkas’
Lemma there exists y ∈ Zm, ỹ ∈ Z such that y>A − ỹc = 0 and y>b − ỹ(d + ε) < 0. Furthermore,
because P is non-empty, ỹ 6= 0. It follows that (y>/ỹ)A = c and (y>/ỹ)b < d + ε. Therefore, we can
derive cx ≤ (y>/ỹ)b by O(n) applications of the conic combination rule from P . Applying division, we
have deduced cx ≤ b(y>/ỹ)bc ≤ bd+ εc. By choosing 0 < ε < 1 so that d+ ε < min(dde, d+ 1), we have
derived CG cut cx ≤ b(y>/ỹ)bc ≤ bdc.

Finally, note that the converse direction is immediate because the inequalities derived by conic combina-
tion are valid for P and those derived by division are CG cuts by definition.

For algebraic proof systems, it is standard to use an asterisk to denote the restriction of that proof system
to require that the coefficients have only quasipolynomial magnitude.

Bounded Weight Cutting Planes. A CP∗ proof is a CP proof {cix ≤ di}i∈[s] such that the weight ‖ci‖1 of
each inequality in the proof is quasipolynomially bounded, i.e., at most nlogO(1)(n).

We will also be interested in the following semantic generalization of Cutting Planes.

Semantic Cutting Planes. The semantic Cutting Planes (denoted sCP or semantic CP) proof system is
defined only for 0-1 integer programming problems (such as encodings of unsatisfiable CNF formulas) where
you are asked to find a solution x ∈ {0, 1}n, rather than Zn. Semantic Cutting Planes is a strengthening of
Cutting Planes proofs to allow any deduction that is sound over points in {0, 1}n [30]. Like Cutting Planes, an
sCP proof from a polytope P is given by a sequence of halfspaces {cix ≤ di}i∈[s], such that each inequality
is either in P or or is deduced from earlier inequalities by the following very powerful semantic deduction

rule:

• Semantic Deduction. From c1x ≤ d1 and c2x ≤ d2 deduce cx ≤ d if every {0, 1}-assignment
satisfying both c1x ≤ d1 and c2x ≤ d2 also satisfies cx ≤ d.

Analogous to CP, the size of refuting F in sCP is the minimum number lines of any sCP refutation of F , and
the depth depthsCP(F ) is the minimum depth of any sCP refutation of F .

Filmus et al. [64] showed that sCP is extremely strong: there are instances for which any refutation in CP

requires exponential size, and yet these instances admit polynomial-size refutation in sCP. In fact, they show
that this deduction rule is so strong that it is only polynomial-time verifiable if P = NP. Therefore, sCP is
not a proof system as defined above. Even so, exponential lower bounds on the size of sCP proofs have been
established [30, 64].

2.3 Hard Formulas

To prove lower bounds on a proof system, we first require a candidate family of hard formulas. In this
subsection we will give a brief overview of the two main formulas that we will focus on in this thesis:
random k-CNF formulas and the Tseitin formulas.



CHAPTER 2. PRELIMINARIES 16

e1 e2

e3 e4 e5

e6 e7

e8 e9 e10

e11 e12

v1
v2 v3

v6v4

v5

v7 v8
v9

v1 : e1 ⊕ e3 = 1

v2 : e1 ⊕ e2 ⊕ e4 = 1

v3 : e2 ⊕ e5 = 1

v4 : e3 ⊕ e6 ⊕ e8 = 1

v5 : e4 ⊕ e6 ⊕ e7 ⊕ e9 = 1

v6 : e5 ⊕ e7 ⊕ e10 = 1
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v9 : e12 ⊕ e10 = 1

Figure 2.2: An unsatisfiable instance of the Tseitin formulas on a 3 × 3 grid graph with l(v) = 1 for all
v ∈ V .

Random k-CNF Formulas. Let F(m,n, k) denote the distribution over k-CNF formulas sampled as fol-
lows: select m clauses uniformly at random from the set of all possible 2k

(
n
k

)
clauses of width k over n

variables. Denote by F ∼ F(m,n, k) that the formula F is drawn from this distribution.
The unsatisfiability of F ∼ F(m,n, k) is controlled by the clause-density ∆k := m/n. This control

exhibits a threshold phenomenon: as the density increases, F ∼ F(m,n, k) transitions from being being
almost surely satisfiable to almost surely unsatisfiable. The density parameter also plays a role in lower
bounds for refuting F ∼ F(m,n, k): the hardest formulas are generated for ∆k near this threshold. A more
detailed discussion of these formulas can be found in Chapter 3.

The second family of formulas that will feature prominently in this thesis is the Tseitin formulas. For
many algebraic proof systems, the Tseitin formulas, and more generally systems of linear equations over a
prime finite field, are the canonical family of hard formulas [32, 80, 81, 137] (see [69] for a survey).

Tseitin Formulas. For any graph G and any {0, 1}-labelling ` of the vertices of G, the Tseitin formula of
(G, `) is the following system of F2-linear equations: for each edge e we introduce a variable xe, and for
each vertex v we have an equation ⊕

u:uv∈E
xuv = `(v)

asserting that the sum of the edge variables incident with v must agree with its label `(v) (note that such a
system is unsatisfiable as long as

∑
v `(v) is odd).

2.4 Communication Complexity and the CNF Search Problem

In order to prove lower bounds for a family of unsatisfiable formulas it has been fruitful to study the following
associated search problem.

CNF Search Problem. Let F = C1 ∧ . . . ∧ Cm be a CNF formula and let (X,Y ) be any partition of its
variables. The associated CNF search problem Search

(X,Y )
F ⊆ {0, 1}|X| × {0, 1}|Y | × [m] is defined as

(x, y, i) ∈ Search
(X,Y )
F if and only if Ci(x, y) = 0.

Lovász et al. [108] introduced the CNF search problem as a proof complexity analogue of the celebrated
Karchmer-Wigderson game [95] for circuit complexity. Following this, Impagliazzo et al. [89] observed that
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lower bounds on the cost of solving the CNF search problem in certain models of communication complexity
implied lower bounds on the size of tree-like CP refutations. The basic notion of communication is as follows;
for a more detailed introduction we recommend the excellent book of Kushilevitz and Nisan [103].

Deterministic Communication. A deterministic communication protocol for a search problem S ⊆ X ×
Y × O consists of two players, Alice and Bob. Alice receives an input x ∈ X and Bob receives y ∈ Y;
their aim is to agree on some o ∈ O for which (x, y, o) ∈ S . To do so, they are allowed to communicate
by sending messages to each other (in the form of a single bit) according to some protocol, which they agree
on before seeing their inputs. The transcript of bits sent by the two players on some input (x, y) is known as
the history of the protocol. We can model this combinatorially: every step in the communication protocol is
associated with rectangle of inputs X ′×Y ′ ⊆ X ×Y consistent with the communication thus far; X ′ models
what Bob knows about Alice’s input, and Y ′ models what Alice knows about Bob’s. If Alice communicates
a bit, then this partitions X ′ into X ′0 and X ′1 corresponding to whether the bit Alice sent was 0 or 1; similarly,
if Bob communicated then this partitions Y ′ into Y ′0 and Y ′1. The communication ends when X ′ × Y ′ is
monochromatic, meaning that there is some o ∈ O such that (x, y, o) ∈ S for every (x, y) ∈ X ′ × Y ′.

Thus, we can define a communication protocol formally as a full binary tree where every node is labelled
with a rectangle (the root is labelled with X × Y), the leaves are labelled with outputs o ∈ O which are
monochromatic for their rectangles, and the non-leaf nodes are labelled with a player, and have two outgoing
edges labelled 0 and 1. If a node with rectangle X ′ × Y ′ is owned by Alice then the rectangles of the two
children of the node partition X ′×Y ′ into X ′0×Y ′ and X ′1×Y ′; similarly, if the node is owned by Bob then
the children partition the rectangle along the Y-inputs (see Figure 2.3). Every root-to-leaf path in this tree
corresponds to a history of Alice and Bob’s communication for some subset of inputs (x, y).

A

o1o2

o1o3

0 1 0 1

10

BB

o1o2o1o3

Figure 2.3: A communication protocol labelled with the corresponding rectangles. Alice speaks at the nodes
labelled A and Bob speaks at the nodes labelled B. The outgoing edges of each node correspond to the bit
sent by the player who owns that node. The leaf rectangles are labelled by their output oi to denote that they
are oi-monochromatic.

The (deterministic) communication complexity of computing S is the minimum number of bits commu-
nicated, or rounds of communication, needed to solve S on any input (x, y) ∈ X ×Y . Alternatively, it is the
minimum depth of any communication protocol for S.

Observe that for x, y ∈ {0, 1}n, any integer linear inequality ax + by ≥ d can be evaluated in w =

log ‖a‖1 +log ‖b‖1 bits by Alice communicating ax to Bob, and Bob responding with by. Thus, for example,
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a Cutting Planes refutation of a CNF formula F of depth d in which the size of the coefficients in every
inequality is bounded by 2w gives rise to aO(dw)-round communication protocol for solving Search

(X,Y )
F for

any partition (X,Y ) of the variables. If the coefficients in the CP proof are not too large, then we can obtain
depth lower lower bounds via lower bounds on the communication complexity of Search

(X,Y )
F . Furthermore,

by strengthening the underlying communication protocol we can simulate arbitrary linear inequalities; the
following notion of a real communication protocol was introduced by Krajı́ček [100].

Real Communication. A real communication protocol for S ⊆ X × Y × O generalizes the deterministic
communication model. Now, the players Alice and Bob communicate via a “referee”. In each round, Alice
and Bob send real numbers rA, rB to the referee who responds with a single bit b which is 1 if rA > rB , and
0 otherwise. The real communication complexity of computing S is the number minimum number of rounds
needed to communication needed to solve S on any input (x, y) ∈ X × Y .

Observe that any linear inequality ax+ by ≥ d can be computed in a single round of real communication
by Alice sending d− ax to the referee and Bob sending by.



Chapter 3

Random CNF Formulas are Hard for
Cutting Planes

3.1 Introduction

In this chapter we study the complexity of refuting randomly generated SAT instances. The most well-studied
random SAT distribution is the random k-SAT model F(m,n, k) where a random k-CNF over n-variables is
chosen by uniformly at random selectingm clauses from the set of all possible clauses on k distinct variables.
This is an intrinsically natural distribution of instances similar to the Erdös-Rényi random graph model, and
it is closely related to phase transitions and structural phenomenon in statistical physics (e.g., [96, 140]). As
well, this model has close connections to complexity theory through Feige’s Hypothesis: if F(m,n, k) is
hard to refute on average for the “right” choice of m,n, k then worst-case inapproximability results follow
for many NP-hard optimization problems [63], as well as average-case hardness of circuit lower bounds [136]
and related problems [85].

In proof complexity, random k-CNF formulas make up the family of formulas which is most widely be-
lieved to be hard to refute in every propositional proof system, and this has already been confirmed for a
number of weak proof systems. The first example was given by Chvátal and Szemerédi [40], who showed
that random k-CNF instances require resolution refutations of size exp(Ω(n)) with high probability. Super-
polynomial lower bounds for random k-CNF formulas have been shown for a number of other proof systems,
including Polynomial Calculus [4, 21], Res(k) [3, 139], and Sum-of-Squares [137].

It is a well-known open problem to prove superpolynomial lower bounds on the size of Cutting Planes
refutations of random k-CNF formulas (see, e.g., [18]), especially because superpolynomial lower bounds
for other formulas have been shown [30, 127]. The main contribution of this chapter is the first lower bound
on the size of refutations of random k-CNF formulas in Cutting Planes, provided k is large enough.

Theorem 1.3.1. There exists constants c, d such that the following holds. Let n be a sufficiently large positive

integer, k = c log n and m = n2dk. Then with high probability, any Cutting Planes refutation of a random

k-CNF formula F ∼ F(m,n, k) requires 2Ω̃(n) lines 1.

In fact, our exponential lower bounds even apply to some stronger proof systems than Cutting Planes —
see Section 3.2 for details. This lower bound has been independently obtained by Pavel Hrubeš and Pavel

1The notation Ω̃ ignores factors of logn.

19
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Pudlák [86] using similar techniques.
Our proof technique is a divergence from previous lower bounds on random k-CNF formulas. These have,

with the exception of lower bounds for the Polynomial Calculus over F2 [4], proceeded by first showing lower
bounds on systems of random F2-linear equations and then use formulas can be viewed as over-constrained
versions of k-CNF formulas (detailed in Chapter 5). Indeed, this is the first lower bound on random k-CNF
formulas for a proof system which can efficiently refute systems of linear equations over any rpime finite
field, as we show in Chapter 4.

Proof Technique. To obtain our lower bounds we introduce a new technique for proving Cutting Planes
lower bounds. Our technique is a significant generalization of the classic (and prior to this work, only) lower
bound technique for Cutting Planes: the method of feasible interpolation [30, 98, 100, 127, 130]. As our
technique generalizes it, let us first describe feasible interpolation. Suppose we are given an unsatisfiable
CNF formula F (x, y, z) on three sets of variables x, y, z of the following “split” form

F (x, y, z) = A(x, z) ∧B(y, z),

where A and B are themselves CNF formulas. Then, given an assignment α to the z variables it follows that
either A(x, α) is unsatisfiable or B(y, α) is unsatisfiable. A feasible interpolation argument shows that the
complexity of computing the associated interpolant function

IF (α) =

1 if A(x, α) is unsatisfiable

0 otherwise

is a lower bound on the complexity of refuting F — or, said contrapositively, a proof system P has feasible

interpolation if from a short P -refutation of F (x, y, z) we can extract an efficient algorithm computing IF
in some model of computation. Feasible interpolation was introduced at this level of generality in the classic
work of Krajı́ček [98] where it was shown, for example, that resolution has feasible interpolation by monotone

circuits — lower bounds on the monotone circuit complexity of IF can be used to show lower bounds on the
size of resolution refutations of F (provided that the split formula F , and therefore IF , is “monotone” in a
certain technical sense).

Instances of Krajı́ček’s general interpolation method have led to lower bounds for a number of proof
systems where previously no lower bounds were known. First, Razborov [130] proved lower bounds for
certain systems of Bounded Arithmetic from monotone circuit lower bounds. Following this, Bonet, Pitassi,
and Raz [30] gave superpolynomial lower bounds for “low-weight” Cutting Planes (CP∗) proofs as well
as for other proof systems such as CC-proofs where lines are computed by low-depth communication pro-
tocols [98]. In particular they proved that any size s and weight w Cutting Planes proof implies a size
poly(s logw) monotone circuit for separating the associated monotone interpolant, IF . Then, by construct-
ing a split formula whose interpolant corresponds to the clique function, they reduced lower bounds for CP∗

proofs and CC proofs to the celebrated monotone circuit lower bounds for the clique function [131].
In [127], Pudlák proved the first exponential lower bounds for Cutting Planes proofs with unbounded

weights. To do so, he first showed that small Cutting Planes refutations of monotone split formulas F (x, y, z)

imply small monotone real circuits computing the associated monotone interpolant IF ; thus, reducing lower
the problem of obtaining lower bounds for Cutting Planes proofs of monotone split formulas to the proving
lower bounds on monotone real circuits. Secondly, Pudlák strengthened Razborov’s clique lower bound to
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apply to the larger family of monotone real circuits. Lower bounds on monotone real circuits were also
proved independently by Cook and Haken for the broken mosquito screen formulas [83]. Altogether, these
imply exponential lower bounds on Cutting Planes proofs. Pudlák’s result was later improved to hold for
Cutting Planes proofs using split cuts by Dash [52], and then to the more general semantic Cutting Planes by
Filmus, Hrubeš, and Lauria [64].

Despite the success of feasible interpolation, it limits the lower bounds to split formulas; in particular,
at the time of this work, the only families of formulas that were known to be hard for (unrestricted) Cutting
Planes were the clique-coclique formulas [30, 127] and the broken mosquito screen formulas [46].

To prove Theorem 1.3.1 we generalize Pudlák’s feasible interpolation theorem for Cutting Planes so that it
can be applied to any unsatisfiable CNF formula F . That is, we show that if there is a polynomial-size Cutting
Planes refutation of any unsatisfiable CNF formula F then there is a polynomial-size monotone real circuit
for computing a corresponding monotone (partial) function, mCSP-SATF , which is a monotone encoding
of the CSP-SAT problem whose definition depends on F . In fact, we provide a more general connection
that holds not just for Cutting Planes, but for the stronger real communication proof system RCC1 (defined
in Subsection 3.4.1). The next theorem characterizes the size of RCC1 refutations for any formula F by the
size of monotone real circuits computing mCSP-SATF .

Theorem 1.3.2. Let F be any unsatisfiable CNF formula. There is an RCC1 refutation of F of size s if and

only if there is a monotone real circuit with poly(s) gates computing mCSP-SATF .

The proof of this theorem is inspired by the seminal Karchmer-Wigdreson connection between circuit

complex and communication complexity [95], and generalizes several earlier results [30, 98, 130]. In more
detail: Karchmer and Wigdreson proved that the depth of a boolean circuit computing a boolean function
f : {0, 1}n → {0, 1} is exactly the communication complexity of solving a certain relation — known as
the Karchmer-Wigderson game (see Section 3.2). Razborov generalized this result, proving a non-trivial
equivalence between the size of certain dag-like communication protocols and boolean circuit size [130].

Razborov’s work played a key role in inspiring Krajı́ček’s feasible interpolation result [98] discussed
above. Using Razborov’s equivalence, Krajı́ček generalized the result of Bonet, Pitassi, and Raz [30] to
obtain a general interpolation theorem, showing that circuit lower bounds for computing interpolant functions
imply lower bounds on the CC proof system mentioned above. In Section 3.4 we show that Krajı́ček’s result
can be generalized: the complexity of refuting any unsatisfiable CNF formula F in the CC proof system is
actually characterized by the circuit complexity of the mCSP-SATF function. This observation is already
strong enough to give lower bounds on CP∗ proofs.

Theorem 1.3.2 provides a similar characterization, but this time for RCC1 proofs and monotone real cir-
cuits. For this, Razborov’s equivalence between dag-like communication protocols and boolean circuits is
insufficient. We instead employ a recent (and beautiful) generalization of Razborov’s result due to Hrubeš
and Pudlák [87], which characterizes the size of monotone real circuits in terms of dag-like real communi-
cation protocols. Finally, to deduce Theorem 1.3.1 from Theorem 1.3.2, we need to prove lower bounds for
monotone real circuits computing the mCSP-SAT problem obtained from a random k-CNF instance. To do
so, we combine standard techniques for proving monotone circuit lower bounds (the symmetric method of
approximations [23,83,93]) with a non-trivial reduction from random k-CNF instances to certain “balanced”
random k-CNF instances. The theorem follows because RCC1 proofs generalize Cutting Planes proofs.

As stated above, Hrubeš Pudlák have independently proved Theorem 1.3.2 using nearly identical tech-
niques [86]. Given any unsatisfiable CNF formula F they show how to obtain a partial monotone boolean
function which they call an unsatisfiability certificate for F (defined in Subsection 3.3.1). Then, they show
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that the complexity of computing an unsatisfiability certificate by a monotone real circuit implies lower
bounds for Cutting Planes by directly reducing these certificates to the feasible interpolation lower bounds.
As boolean functions, the unsatisfiability certificates are exactly the same as our mCSP-SAT problem, which
we show in Subsection 3.3.1. Their lower bounds for random k-CNF formulas are also obtained by using the
symmetric method of approximations in a nearly identical proof to ours. Further, they used this technique
to prove lower bounds for other problems: a generalization of the Pigeonhole Principle called the Weak Bit

Pigeonhole Principle, and a function related to Feige’s hypothesis.
It is natural to wonder whether or not this new lower bound technique can be extended to obtain lower

bounds for k-CNF instances when k is bounded by a constant. By a careful balancing of parameters, our
technique can be used to obtain superpolynomial lower bounds when k ≥ log log n. However, when k =

Θ(1) the method of approximations fails to give super polynomial lower bounds on the mCSP-SAT problem.
Thus, it appears that we will not be able to push our lower bounds any further via this technique without
improving the underlying monotone circuit lower bound techniques.

The Random k-SAT Model. The unsatisfiability of F ∼ F(m,n, k) is controlled by the clause-density

∆k := m/n. For instance, it is easy to see that if ∆ > 2k ln 2 then F ∼ F(m,n, k) is unsatisfiable with
high probability. The satisfiability conjecture states that this control exhibits a threshold phenomena: for all
k there exists a fixed constant ck such that random k-CNF formulas with density ∆k > ck are almost surely
unsatisfiable, while those with density ∆k < ck are almost surely satisfiable. For k = 2, the conjecture was
known to be true since the early 1990s [39, 55, 74]. In a recent breakthrough, this was resolved for large
values of k by appealing to to arguments in statistical mechanics [59].

The density parameter also plays a crucial role in lower bounds for refuting F ∼ F(m,n, k) in proof
complexity. Our main theorem holds for ∆k = Θ(2(1+τ)k) for some constant τ ∈ (0, 1). Furthermore, the
interval for which our lower bounds hold seems to be relatively narrow (for instance, it seems impossible
to choose τ ≈ 0 or τ ' 1). In contrast, the classic work of Chvátal and Szemerédi [40] show that for any
fixed ∆k > 2k ln 2 there is a function f such that random k-CNF formulas with density ∆k require resolu-
tion refutations of size exp(f(∆k)n) with high probability. In their result, f decays doubly-exponentially as
∆k increases, which makes their lower bound trivial when m ≥ n log1/4 n. Later lower bounds by Beame
et al. [16] reduce the decay in f to polynomial in ∆k and, in particular, show that a random k-CNF for-
mula with at most n(k+2)/4 clauses requires exponential size resolution refutations. Beame et al. also gave
asymptotically matching tree-like resolution upper bounds of size exp(n/∆

1/(k−2)
k ). Similar dependencies

on density exist in lower bounds for random k-CNF formulas in other proof systems, such as the Polynomial
Calculus [21], k-DNF resolution [3], and Sum-of-Squares [137].

3.2 Monotone Circuits and Communication Proofs

If x, y ∈ Rn and for all i we have xi ≤ yi then we write x ≤ y. A function f : Rn → R is a monotone

if f(x) ≤ f(y) whenever x ≤ y. Note that if f is a monotone function and x is a yes instance and y is a
no instance, then there must exist i ∈ [n] such that xi > yi. This observation is formalized as the search
problem known as the monotone Karchmer-Wigderson Game.

Monotone Karchmer-Wigderson Game. The monotone Karchmer-Wigderson game associated with a mono-
tone function f : {0, 1}n → {0, 1}, is the search problem mKWf ⊆ f−1(0) × f−1(1) × [n] defined as
(x, y, i) ∈ mKWf if and only if xi > yi.
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A partial Boolean function is a Boolean function f defined on a subset of the domain {0, 1}n. We will
denote a partial Boolean function by f : {0, 1}n → {0, 1, ∗}, where f is undefined on the inputs in f−1(∗)
(i.e., we do not care what the values of f are on these inputs). A partial Boolean function f is monotone if it
can be extended to a total monotone Boolean function by specifying the values of f on f−1(∗). That is, there
exists a total monotone Boolean function g such that f(x) = g(x) for all x ∈ {0, 1}n \ f−1(∗).

Monotone Circuit. A monotone circuit is a fanin-2 Boolean circuit using only ∧ and ∨ gates. That is, it is a
directed acyclic graph (dag) with a single root node, one leaf for each of the inputs z1, . . . , zn, as well as the
constants 0 and 1. The root node of the dag is the output of the circuit, and a monotone circuit computes a
monotone Boolean function f if the output of the circuit on input z ∈ {0, 1}n matches the value f(z). If f is
partial, then we only require that the monotone circuit matches the value of f(z) on all z ∈ {0, 1}n \ f−1(∗).
The size of a monotone circuit is the number of gates in the circuit.

Motivated by proof complexity, Pudlák introduced monotone real circuits.

Monotone Real Circuit. A monotone real circuit is a generalization of a monotone circuit in which every
non-leaf node is labelled with a function φ : R×R→ R which is monotone non-decreasing in its arguments.

One of the main results of this chapter is an equivalence between these models of monotone circuits and
certain semantic proofs where the lines are computed by low-depth communication protocols. These were
introduced by Krajı́ček in the study of feasible interpolation [98], and are defined next.

Communication Proofs. Let F be an unsatisfiable CNF formula and let (X,Y ) be any partition of the
variables of F . A semantic refutation is a sequence of lines L1, . . . , Ls such that the fine line Ls is the 0

function, and each each line Li : {0, 1}n → {0, 1} is either a clause of F or is deduced by the following
semantic deduction rule:

• Semantic Deduction. From Li and Lj deduce Lk if Lk(x) = 1 for every x ∈ {0, 1}n for which both
Li(x) = 1 and Lj(x) = 1.

A CCd refutation of F with respect to the partition (X,Y ) is a semantic refutation L1, . . . , Ls such that each
Li can be computed by a d-round deterministic communication protocol with respect to the partition (X,Y ).
Similarly, an RCCd refutation with respect to (X,Y ) is a semantic refutation L1, . . . , Ls such that every line
Li can be computed by a d-round real communication protocol.

An example of a CC proof is given below in Example 3.4.3.
Any linear inequality ax + by ≥ d whose weight w := ‖a‖1 + ‖b‖1 can be computed by a O(logw)-

round deterministic protocol, and a single round real communication protocol. It follows that a Cutting Planes
refutation is also an RCC1 refutation.

Proposition 3.2.1. Let F be any unsatisfiable CNF formula and (X,Y ) be any partition of its variables. Any

CP refutation of F in which every inequality has at weight at most w is a CCO(logw)-refutation; in particular,

any CP∗ refutation is a CCnO(logn) refutation. Similarly, any CP refutation is an RCC1 refutation.

3.3 The Monotone CSP-SAT Function

In this section we introduce mCSP-SAT, which is a monotone variant of SAT that plays a central role in our
results. Given any unsatisfiable CNF formula F and partition (X,Y ) of F ’s variables we then show how to
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produce a corresponding collection of instances of mCSP-SAT. More precisely: for each assignment x ∈
{0, 1}|X| to the X variables we will obtain an accepting instance of mCSP-SAT, and for each assignment
y ∈ {0, 1}|Y | to the Y variables we will obtain a rejecting instance of mCSP-SAT. In the next section, we
will show that separating these mCSP-SAT instances by a monotone boolean circuit is equivalent to refuting
F in the CC proof system with respect to the partition (X,Y ) (and we show a similar result for real circuits
and RCC1 refutations). The mCSP-SAT problem has appeared in many different guises in different works
— the function essentially appears in the work of Raz and McKenzie [129] under a different name, and it has
re-appeared in recent work on lifting theorems in communication complexity [33, 79].

In order to define mCSP-SAT we first introduce a very general form of the boolean constraint satisfaction
problem.

Constraint Satisfaction Problem. A constraint satisfaction problem (CSP) H is defined as follows. Let
H = (L ∪R,E) be a bipartite graph and let n = |R|. The vertices in L represent the constraints of the CSP
H, and the vertices in R represent boolean valued variables. For each i ∈ L we let Vars(i) ⊆ R denote the
neighbourhood of i and we associate a boolean function TTi : {0, 1}|Vars(i)| → {0, 1} called the truth table

of i that encodes the set of satisfying assignments to the ith constraint. The CSP H accepts an assignment
α ∈ {0, 1}|R| if TTi(α�Vars(i)) = 1 for all i, and it is satisfiable if it accepts some assignment.

To define a monotone variant of the CSP problem, we will use the fact that adding additional constraints to
a CSP can only make it less satisfiable. The mCSP-SAT problem is defined by simply fixing the underlying
constraint graph H and letting the input string specify each of the truth tables TTi.

Monotone CSP-SAT. Let H = (L ∪ R,E) be a bipartite graph and let N :=
∑
i∈L 2|Vars(i)|. The boolean

function mCSP-SATH : {0, 1}N → {0, 1} is defined as follows. An input z ∈ {0, 1}N encodes a CSP
Hz by specifying for each vertex i ∈ L its truth table TTi : {0, 1}|Vars(i)| → {0, 1}. For any z ∈ {0, 1}N ,
mCSP-SATH(z) = 1 if and only if the CSPHz encoded by z is satisfiable.

Observe that this is a monotone Boolean function since for any z, z′ ∈ {0, 1}N with z ≤ z′ (that is,
zi ≤ z′i for every i ∈ [N ]), any satisfying assignment for the CSP Hz is also a satisfying assignment for the
CSPHz′ . This is because z and z′ both encode sets of truth tables, and so flipping any bit from 0 to 1 simply
makes one of the constraints easier to satisfy. That is, we can always extend a partial mCSP-SATH instance
to a total monotone Boolean function.

Let F = C1 ∧ . . . ∧ Cm be an unsatisfiable k-CNF and let (X,Y ) be any partition of the variables of
F into two sets. Let H = H(F,X) denote the constraint graph of F restricted to the X variables. That is,
H has a left-vertex for each constraint of F and a right vertex for each x ∈ X , and there is an edge (Ci, x)

if x appears (either positively or negatively) in Ci (see Example 3.3.1). Consider mCSP-SATH , which is a
boolean function on N boolean variables. Define sets of accepting and rejecting instances of mCSP-SATH

from F as follows.

Accepting Instances A. For any x ∈ {0, 1}|X| define A(x) ∈ {0, 1}N as follows. For each i ∈ [m] and
each α ∈ {0, 1}Vars(i) set TTi(α) = 1 iff x�Vars(i) = α.

Rejecting InstancesR. For any y ∈ {0, 1}|Y | define R(y) as follows. For each i ∈ [m] and each
α ∈ {0, 1}|Vars(i)| set TTi(α) = 1 iff Ci(α, y) = 1.

Note that if a clause Ci does not depend on any variable in X then we have a single variable TTi, and
A(x) sets TTi = 1 and R(y) sets TTi = 1 iff Ci(y) = 1. We will write mCSP-SATF to mean the



CHAPTER 3. RANDOM CNF FORMULAS ARE HARD FOR CUTTING PLANES 25

partial monotone boolean function corresponding to the above set of accepting and rejecting instances for the
constraint graph H = H(F,X).

Observe that accepting and rejecting inputs to mCSP-SATH have the following structure. The CSP
HA(x) corresponding to A(x) has each truth table TTi set to 0 everywhere except for exactly one 1 (except
when Ci does not depend on X) corresponding to x, and it follows that HA(x) has x as its unique satisfying
assignment. In particular,HA(x) is satisfiable and so it is an accepting instance of mCSP-SAT. On the other
hand, the CSP HR(y) corresponding to R(y) is exactly F (x, y) (note the y variables are fixed); since F is
an unsatisfiable CNF formula it follows that HR(y) is also unsatisfiable and so it is a rejecting instance of
mCSP-SAT. We give a detailed example next.

Example 3.3.1. Consider the unsatisfiable CNF formula

F := (x1 ∨ x2 ∨ y1) ∧ (¬x1) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ ¬y1)

with the obvious partition into x– and y–variables. The underlying constraint graph of mCSP-SATF is
depicted below — note that we only keep the x variables from the underlying CNF formula.

x1 ∨ x2

¬x1

x1 ∨ ¬x2

x2

x1

x2

Consider the truth assignment x = (1, 1) and y = (1). The accepting input A(x) corresponding to x has
TTi(α) = 1 iff α = (1, 1); that is each constraint of TTi is x1 ∧ x2. Note that this is satisfiable by the truth
assignment (1, 1). The rejecting input input R(y) is obtained by substituting y = 1 into each constraint of
F and writing down the resulting truth table. That is, R(y) is given by the following truth tables TT1 = 1,
TT2 = ¬x1, TT3 = x1 ∨ ¬x2, and TT4 = x2; observe that these constraints are unsatisfiable.

3.3.1 The Relationship of Monotone CSPs to Unsatisfiability Certificates

Concurrently and independently to our work, Hrubeš and Pudlák [86] proved that Cutting Planes proofs could
be reduced to monotone real circuits computing an associated function which they call an unsatisfiability

certificate. In this section we explore how mCSP-SAT relates to unsatisfiability certificates. The content
of this section will not be needed for the rest of this chapter and therefore, to maintain momentum, we
recommend skipping this section on a first reading.

Unsatisfiability Certificate. Let F := C1 ∧ . . . ∧ Cm be an unsatisfiable CNF formula and (X,Y ) be a
partition of its variables. The unsatisfiability certificate certF : {0, 1}m → {0, 1} is defined as follows:

certF (z) :=


1 if the CNF formula {CXi : zi = 0} is satisfiable

0 if the CNF formula {CYi : zi = 1} is satisfiable

∗ otherwise,

where CXi is the clause defined by removing all of the Y -variables from Ci, and similarly for CYi .
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Although certF is cosmetically dissimilar to mCSP-SAT, the latter can actually be viewed as an exten-
sion of the former. Formally, we say that a (partial) function g : {0, 1, ∗}m → {0, 1} is embedded in a
function f : {0, 1}N → {0, 1} if there is a projection π : Vars(f) → Vars(g) (i.e., a π−1 is a mapping of
the variables of g to variables of f ) such that for every z ∈ {0, 1}n \ g−1(∗) there is z∗ ∈ {0, 1}N such that
π(z∗) = z and g(z) = f(z∗). Thus, we can think of certF as being embedded within mCSP-SAT.

Claim 3.3.2. For any unsatisfiable CNF formula F and partition (X,Y ) of the variables, certF is embedded
in mCSP-SATF .

Proof. Let F be an unsatisfiable CNF formula and (X,Y ) be any partition of its variables. First, define a
projection π : Vars(mCSP-SATF )→ Vars(certF ) which maps the variable TTi(α), for which CXi (α) = 0,
of mCSP-SATF to the variable zi of certF .

Let z ∈ {0, 1}m \ cert−1
F (∗) and define z∗ as follows: for each i ∈ [m], if zi = 1 then z∗ sets TTi(α) to

1 for all α ∈ {0, 1}|Vars(i)| (i.e., the truth table of the ith constraint is identically 1). Otherwise, if zi = 0 then
z∗ encodes the truth table of the clause CXi on the TTi variables. That is, z∗ sets TTi(α) to 1 if CXi (α) = 1,
and to 0 otherwise. Observe that π(z∗) = z.

We claim that for every z ∈ {0, 1}m\cert−1
F (∗), certF (z) = mCSP-SATF (z∗). Suppose that certF (z) =

1, then {CXi : zi = 0} is satisfiable by some assignment γ ∈ {0, 1}n. We claim that γ is also a satisfying
assignment for the CSP encoded by z∗. Indeed, every constraint of the CSP with index i for which zi = 0

is satisfied by exactly the same assignments as CXi , and the constraints with indices i for which zi = 1 are
identically 1. Therefore, mCSP-SATF (z∗) = 1. Otherwise, if certF (z) = 0 then {CYi : zi = 1} is satis-
fiable. Because F is unsatisfiable, this means that {CXi : zi = 0} must be unsatisfiable. It follows that the
CSP encoded by z∗ is unsatisfiable and mCSP-SATF (z∗) = 0.

To prove the lower bound on random CNF formulas, Hrubeš and Pudlák use the following sets of accept-
ing and rejecting instances of certF :

• For every x ∈ {0, 1}|X| define an accepting instance U(x) ∈ {0, 1}m by Ui(x) = 1 iff CXi (x) = 0.

• For every y ∈ {0, 1}|Y | define a rejecting instance V(y) ∈ {0, 1}m by Vi(y) = 0 iff CYi (y) = 0.

These can be seen as monotone projections of our accepting and rejecting instances. Indeed, for i ∈ [m],
let α ∈ {0, 1}|Vars(i)| be the unique falsifying assignment to CXi . Then, for any (x, y) ∈ {0, 1}|X|×{0, 1}|Y |

it holds that A(x)TTi(α) = U(x)i and R(y)TTi(α) = V(y)i. Thus, the accepting and rejecting instances
of Hrubeš and Pudlák can be obtained by projecting ours onto variables TTi(α). Similarly, our accepting
instances A(x) can be obtained from theirs by setting TTi(α) to be U(x)i and TTi(β) = 0 for β 6= α. Our
rejecting instances can be obtained similarly, where instead we set TTi(β) = 1 for β 6= α.

3.4 Equating Monotone Circuits and Communication Proofs

In this section we prove the equivalence between CCd-proofs and monotone circuits, as well as RCC1-proofs
and monotone real circuits.

Because every Cutting Planes line can be computed by a single-round real communication protocol
(Proposition 3.2.1), the equivalence between RCC1 proofs and monotone circuits implies that for any family
of formulas F and for any partition of the underlying variables into (X,Y ), a Cutting Planes refutation of
F can be converted into a similar size monotone real circuit for separating the accepting and rejecting in-
stances A({0, 1}|X|),R({0, 1}|Y |) of mCSP-SATF . Similarly, because linear inequalities with coefficients
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which are polynomially bounded in magnitude can be computed by O(log n)-bit deterministic communica-
tion protocols (Proposition 3.2.1), the equivalence between CCd proofs and monotone circuits implies that
any Cutting Planes proof of F in which the coefficients are bounded in magnitude by O(log n) can be con-
verted into into a similar sized monotone circuit separatingA({0, 1}|X|) andR({0, 1}|Y |) of mCSP-SATF .
Thus, lower bounds on the size of monotone real circuits and monotone circuits give lower bounds on the
size of Cutting Planes proofs and bounded-coefficient Cutting Planes respectively.

3.4.1 Monotone Circuits and CC Proofs

Our argument relating CCd and monotone circuits is a direct generalization of the main theorem of Bonet,
Pitassi, and Raz [30], which establishes the equivalence for the special case of the clique-coclique formulas.
A similar argument of this type also appears in the work of Razborov [130]; Razborov’s work was recently
simplified by Sokolov [143].

Theorem 3.4.1. Let F be an unsatisfiable CNF formula on n variables and let (X,Y ) be any partition of the

variables. For any positive integer d, there exists a CCd-refutation of F with respect to the partition (X,Y )

of size s, then there is a monotone circuit separating the accepting and rejecting inputs A({0, 1}|X|) and

R({0, 1}|Y |) of size O(23ds).

The proof of this theorem can be seen as compresses two proofs into one: the first is a reduction from
CCd proofs to CC1 proofs which incurs a 23d blowup in size, and the second is a conversion of CC1 proofs
into monotone circuits.

First, we give a sketch of the argument. From a CCd-proof we will construct a monotone circuit induc-
tively starting with the clauses of F and progressing to the final line. Roughly, for each line L in the proof
we will construct a circuit CL satisfying the following property: if L is falsified by an assignment (x, y) then
CL “separates” A(x) and R(y), meaning that CL(A(x)) = 1 and CL(R(y)) = 0. To construct CL we will
use the soundness of the proof. If L was derived from L′ and L′′ then, by induction, we will have constructed
circuits CL′ and CL′′ . By soundness, every assignment (x, y) that falsifies L will falsify at least one of L′ and
L′′, and so at least one of the corresponding circuits CL′ and CL′′ will separate A(x) and R(y). Using this,
we will construct CL from the circuits CL′ and CL′′ . Once we arrive at the final line of the proof, because
every truth assignment falsifies 0 ≥ 1, the corresponding circuit will separate A andR.

More concretely, because each line in the CCd-proof can be computed by a small communication protocol,
this induces a partition of the communication matrix of L into at most 2d monochromatic rectangles. Instead
of constructing only a single circuit for each line L, we will actually construct one for every 0-monochromatic
rectangle R of L (those containing inputs that falsify L), which will separate A(x) and R(y) for every
(x, y) ∈ R.

Proof. Let F = C1 ∧ . . .∧Cm be an unsatisfiable CNF formula over variables (X,Y ). Fix a CCd refutation
of F with s lines, where each line is either a clause of F , or follows semantically from two earlier lines.
For every line L in the proof, because it can be computed by a d-round communication protocol, there are
at most 2d possible histories h, each with an associated monochromatic rectangle RL(h). Recall that each
monochromatic rectangle is a subset of assignments that have the same evaluation under L. We call a history
h good for L if RL(h) is 0-monochromatic. That is, a good history is one for which every assignment in the
associated monochromatic rectangle falsifies L.
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We build the circuit for mCSP-SATF separating A and R by induction on the lines in the proof. For
each line L we construct a collection of circuits {CLh } for every good history h for L, such that the following
hold:

(i) For a good history h for L, the circuit CLh correctly “separates” x and y for each (x, y) ∈ RL(h),
meaning that CLh outputs 1 on A(x) and 0 onR(y).

(ii) If L is the tth line in the proof, then this collection of circuits for L (which may share internal gates)
uses at most 23dt gates altogether.

Since every assignment falsifies the final line of the proof 0 ≥ 1, the associated monotone circuit will separate
A fromR.

If L is a leaf of the proof then L is a clause Ci of F . The communication protocol for L is the following
two bit protocol: Alice and Bob each send a 0 iff their respective inputs do not satisfy Ci. Thus, there is
only a single good history h = (0, 0) for L. Because Ci is a clause, there is exactly one pair of assignments
α ∈ {0, 1}Vars(i)�X and β ∈ {0, 1}Vars(i)�Y to the variables of Ci such that Ci(α, β) = 0. Define the circuit
CLh corresponding to line L = Ci and good history h = 00 to be the variable TTi(α).

Suppose that L is derived from L1 and L2 and h is a good history for L. We will construct the circuit CLh
using the circuits CL1

h′ , CL2

h′′ that we have constructed by induction, along with at most 23d additional gates.
Let (x, y) be any assignment such that the protocol for L follows the history h. By the soundness of the
proof, every assignment falsifying L also falsifies L1 or L2. That is, the 0-monochromatic rectangles of L
are contained within the union of the 0-monochromatic rectangles of L1 and L2. It follows that (x, y) must
lie within a 0-monochromatic rectangle of L1 or L2, and we can use the d-round communication protocols
for L1 and L2 to find this rectangle. We will then convert this protocol into a circuit which decides which of
the circuits CL1

h′ , CL2

h′′ will separate the pair of inputs A(x) andR(y).
Construct a stacked protocol tree, corresponding to first running the communication protocol for L1 and

then running the communication protocol for L2. This will give us a height 2d binary tree, T , where the
top part is the communication protocol tree for L1, with protocol trees for L2 attached to each of the leaves
(Figure 3.1). Consider a path labelled h1h2 in T , where h1 is the history from running L1 and h2 is the
history from running L2. Since RL(h) is 0-monochromatic (with respect to the communication matrix for
L), by soundness, for every (x′, y′) ∈ RL(h) either L1(x′, y′) = 0 or L2(x′, y′) = 0. Because RL1(h1) and
RL2(h2) are monochromatic rectangles, it follows that either

(i) the rectangleRL1(h1)∩RL(h) is non-empty and 0-monochromatic (with respect to the communication
matrix of L1), or

(ii) the rectangle RL2
(h2) ∩RL(h) is non-empty and 0-monochromatic (with respect to the communica-

tion matrix of L2).

(iii) RL1
(h1) ∩RL(h) = ∅ and RL2

(h2) ∩RL(h) = ∅.

In the first case, we will label this leaf with CL1

h1
and otherwise we will label this leaf with CL2

h2
. The nodes

of type (iii) do not contribute to separating A from R and so we should remove them. We will do so by
repeating the following process: choose the maximal sub-tree whose leaves are all of type (iii) and remove it
from T .

Next, we convert this stacked protocol tree into a circuit. Label each internal node v of the stacked tree
with a gate: if Alice speaks at v, then we label it with a ∨ gate, and otherwise if Bob speaks we label v with a
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h2

h1

protocol for L1

protocols for L2

{CL1

h1
, CL2

h2
}

Figure 3.1: Stacked protocol tree T for L.

∧ gate. finally, we make all fanin-1 nodes that result from removing nodes (iii) into fanin-2 nodes by wiring
them to a constant: if this node is labelled with a ∨ then create an additional incoming edge from the constant
0 and if it is labelled with a ∧, create an additional incoming edge from the constant 1. Example 3.4.3 at the
end of this subsection gives an example of this construction for a simple CC proof.

The monotone circuit for the history h that results from this process has 22d additional gates. There are
at most 2d histories for L and therefore, the circuits constructed for L have size at most 23d plus the size of
the circuits for L1 and L2, which by induction is at most 23d(t − 1) if L is the tth line in the proof. The
correctness of this construction follows from the next claim.

Claim. The monotone circuit resulting from the above construction satisfies: for every line L in the proof,
and each good history h for L, the circuit CLh will be correct for all (x, y) ∈ RL(h). That is, CLh (A(x)) >

CLh (R(y)) for every (x, y) ∈ RL(h).

Proof of Claim. If L is a leaf of the proof then L is a clause Ci of F . As mentioned above, the communication
protocol for Ci has exactly one 0-monochromatic rectangle, which is associated with the good history h =

(0, 0). If (x, y) ∈ RL(h) then Ci(x, y) = 0 by definition. Let α = x � Vars(Ci). In our construction the
circuit corresponding to CLh is labelled by the variable TTi(α), and it is easy to check thatA(x) sets TTi(α)

to true, andR(y) sets TTi(α) to false.
If L is not a leaf, then to prove the claim we will prove the following stronger statement by induction:

for every line L derived from previous lines L1 and L2, and for each node v in the stacked protocol tree for
L, corresponding to some (sub)history h′ = h1h2, the subcircuit CLh′ associated with v separates A(x) and
R(y) for all (x, y) ∈ RL(h) ∩ RL1(h1) ∩ RL2(h2). To see that this stronger claim implies our main claim,
observe that once we reach h′ = ∅, CLh′ will be correct on (x, y) ∈ RL(h) ∩ RL1(h1) ∩ RL2(h2) = RL(h).
This follows because if Alice and Bob haven’t communicated (i.e., hi = ∅) then their current rectangle is the
entire communication matrix (i.e., RLi(hi) = {0, 1}|X| × {0, 1}|Y |).

For the base case, suppose that v is a leaf of the stacked protocol tree for L with history h′ = h1h2. Then,
either case (i), case (ii), or case (iii) above holds. In case (i) we labelled v by CL1

h1
. Because RL1(h1)∩RL(h)

is a 0-monochromatic rectangle and RL1(h1) is a monochromatic rectangle, it follows that RL1(h1) must be
0-monochromatic. By induction CL1

h1
is defined and separates A(x) and R(y) for all (x, y) ∈ RL1(h1), and

so it separates A(x) and R(y) for all (x, y) ∈ RL(h) ∩ RL1(h1) ∩ RL2(h2). A similar argument holds in
case (ii). For case (iii), RL1(h1) ∩RL(h) = ∅ and RL2(h2) ∩RL(h) = ∅ and so this case holds vacuously.

For the inductive step, let v be a non-leaf node in the protocol tree with history h′. Assume that Alice
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owns v, and so v is labelled with an ∨ gate. The rectangleRL(h)∩RL1(h1)∩RL2(h2) = A×B is partitioned
into A0 ×B and A1 ×B, where

• A = A0 ∪A1,

• A0 ×B is the rectangle with history h′0,

• A1 ×B is the rectangle with history h′1.

Fix any (x, y) ∈ RL(h) ∩ RL1
(h1) ∩ RL2

(h2). Since by induction CLh′0 separates A(x) and R(y) for
all (x, y) ∈ A0 × B and CLh′1 separates A(x) and R(y) for all (x, y) ∈ A1 × B, then it follows that
CLh′ = CLh′0 ∨ CLh′1 separates A(x) andR(y) for all (x, y) ∈ A×B. To see this, observe that if x ∈ A0, then
CLh′0(A(x)) = 1 and therefore

CLh′(A(x)) = CLh′0(A(x)) ∨ CLh′1(A(x)) = 1.

The same applies when x ∈ A1, as then CLh′1(A(x)) = 1. If y ∈ B then both CLh′0(R(y)) = CLh′1(R(y)) = 0

and therefore
CLh′(R(y)) = CLh′0(R(y)) ∨ CLh′1(R(y)) = 0.

A similar argument holds in the case that v is an internal node of the protocol tree that is owned by Bob (and
is therefore labelled with a ∧ gate).

Next, we establish the converse direction. Although this reduction from monotone circuits to CC2 proofs
is not necessary in order to establish our Cutting Planes lower bound, we believe the equivalence between
monotone circuits and CCO(logn)-proofs to be of independent interest.

Theorem 3.4.2. If there is a monotone circuit of size s separating the accepting and rejecting inputs mCSP-SATF ,

then there is a CC2-refutation of F of size s with respect to the same variable partition.

Proof. The topology of the proof will be in one-to-one correspondence with the directed acyclic graph of
the monotone circuit. Relabel each input variable TTi(α) of the circuit with the corresponding clause Ci,
and note that Ci is falsified by exactly those (x, y) for which the TTi(α) entry of A(x) is 1 and R(y) is
0. Relabel each internal gate v with the function corresponding to the following 2-bit protocol. On input x,
Alice privately runs the circuit on inputA(x) and sends the valueAv computed by the circuit at gate v to Bob.
Analogously, Bob simulates the circuit privately on inputR(y) and sends the value Bv computed at gate v to
Alice. They output 0 if and only if Av = 1 and Bv = 0. Since the root gate of the circuit is identically 1 on
A(x) and 0 on R(y) for all x and y, the referee always outputs 0 at the last line of the refutation. It remains
to verify that the refutation is sound. Let v be a node in the proof with children u1 and u2. If v is a ∨ gate,
then Av = Au1 ∨ Au2 and Bv = Bu1 ∨ Bu2 . If the line at v is falsified on (x, y) then Av = 1 and Bv = 0.
Because v is a ∨ gate, it follows that either Au1 = 1 or Au2 = 1 and Bu1 = Bu2 = 0. Thus, the line at u1 or
the line at u2 is falsified by (x, y). An analogous argument shows that the proof is sound when v is a ∨ gate.

Example 3.4.3. As a simple example, we show how to convert a CC2 proof of the CNF formula F = (x ∨
y)∧ (¬x)∧ (¬y) into a monotone circuit separating the setsA andR of mCSP-SATF . The CC2 proof of F
that we will translate is the sequence of lines (x∨y), (¬x), (¬y), (−x−y ≥ 0), (0 ≥ 1). This is shown next,
along with the communication matrices of each of the lines in the proof. The 0-monochromatic rectangles
(good histories) are labelled in red.
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0 ≥ 1

−x− y ≥ 0

¬x¬yx ∨ y

L5

L4

Observe that each of the lines in the proof has only a single 0-monochromatic rectangle (marked in red)
and therefore only a single good history, except for the line −x − y ≥ 0 which has two good histories, h1

and h2.
Next, we give stacked protocol trees for each of the good histories of each of the lines, after removing all

subtrees whose leaves are all nodes of type (iii).

A

B

1

AA

10
B

0

A A

0 1

B B B B B B B

0 0 1 0 1 0 1

A

B

1
A

B B

0 1

0 110101010100

10110

Tree for 0 ≥ 1

Tree for h1 Tree for h2

TT3(1)TT2TT1(0)

TT1(0) CL4
h2

CL4
h1

CL4
h2

TT3(1) TT2 TT3(1)

The line L4 := −x− y ≥ 0 has two good histories, and thus two stacked protocol trees, while the remaining
lines have only a single good history. The colored areas behind each of the protocols match in color to the
lines in the proof for which they are protocols for.

The monotone circuit that results from this transformation, along with the accepting inputsA and rejecting
inputsR, is given next.
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3.4.2 Monotone Real Circuits and RCC Proofs

We now give a formal statement of Theorem 3.4.4.

Theorem 3.4.4. Let F be an unsatisfiable CNF formula and let (X,Y ) be any partition of the variables.

There exists an RCC1 refutation of F with respect to the partition (X,Y ) if and only if there exists a monotone

real circuit separating A({0, 1}|X| fromR({0, 1}|Y |) of the same size.

We will split this theorem into two lemmas. Lemma 3.4.6 is the difficult direction, translating RCC1

refutations of F into monotone real circuits for mCSP-SAT. Lemma 3.4.7 shows a converse, and is a simple
direct argument analogous to Theorem 3.4.2. As mentioned in Section 3.2, Lemma 3.4.6 follows from the
proof of the following result of Hrubeš and Pudlák [86] relating real monotone circuits and certain “dag-like”
real communication protocols (also known as triangle dags [72]).

Theorem 3.4.5 (Theorem 5 in [87]). Let f be a monotone Boolean function. Given a dag-like real protocol

P solving the monotone Karchmer-Wigderson game for f , there is a monotone real circuit of the same size

computing f .

The formal definition of dag-like real protocols will not be necessary for our technical results, and so we
refer the interested reader to [143] for their definition. Our Lemma 3.4.6 states that from an RCC1 refutation
of an unsatisfiable formula F , we can construct a similarly-sized monotone real circuit for the function
mCSP-SATF .

Lemma 3.4.6. Let F be an unsatisfiable CNF formula and let (X,Y ) be any partition of the variables. If

there is a RCC1 refutation of F with respect to the partition (X,Y ) of size s, then there is a real monotone

circuit separating the accepting and rejecting inputs A({0, 1}|X|) andR({0, 1}|Y |) of mCSP-SATF with s

gates.

We will give a direct proof of Lemma 3.4.6 which is modelled on the proof of Theorem 3.4.5, but first let
us sketch how Lemma 3.4.6 can be obtained using Theorem 3.4.5 as a black box. Let F be an unsatisfiable
formula on n variables, let (X,Y ) be any partition of these variables, and suppose that F has an RCC1

refutation. The search problem associated with F and variable partition (X,Y ) is the following two-party
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communication problem: Alice receives an assignment to the variables in X , Bob receives an assignment
to the variables in Y , and they want to find and output the index of a clause of F that is falsified by their
joint assignment. From an RCC1 refutation of F , one can extract a dag-like real protocol for solving this
search problem; the proof follows standard ideas in the literature transforming communication lower bounds
into proof length lower bounds. By combining the reductions appearing in [79, 129], the search problem
associated with F is equivalent to the monotone Karchmer-Wigderson game associated with mCSP-SATF .
Thus, by the above theorem, mCSP-SATF also has a monotone real circuit of the same size as the refutation.

To prove the other direction of Theorem 3.4.4 (Lemma 3.4.7), we need to translate monotone real circuits
computing mCSP-SATF into RCC1 refutations for F . This follows by viewing the monotone real circuit as
a dag-like real protocol for solving the monotone KW game associated with mCSP-SATF , along with the
equivalence between such protocols and dag-like real protocols solving the search problem associated with
F ; the latter is exactly an RCC1 refutation of F .

We will now give self-contained proofs of Lemmas 3.4.6 and 3.4.7. The proofs are an adaptation of the
argument in [87] to our setting, bypassing the intermediate communication protocols associated with F .

Proof of Lemma 3.4.6. Fix an RCC1 refutation of F with respect to a partition (X,Y ) of the variables.
For every node v of the underlying directed acyclic graph of the refutation, associate two functions Av :

{0, 1}|X| → R and Bv : {0, 1}|Y | → R that Alice and Bob use to communicate with the referee at this node.
Assume without loss of generality that Bv(y) ≥ 0 for all y, and also that the referee returns 1 if and only if
Av(x) > Bv(y).

Next, we convert the given proof into a real circuit separating A({0, 1}|X| and R({0, 1}|Y |) as follows.
The topology of the circuit will be in one-to-one correspondence with the topology of the dag, and we will
label the nodes v of the dag by functions fv as follows. If v is a leaf of the refutation, corresponding to a
clause Ci, let αi be the assignment to the X-variables that does not satisfy the X-part of Ci. We may assume
that

Av(x) = A(x)TTi(αi) and Bv(y) = R(y)TTi(αi). (3.1)

That is, Alice and Bob both send their TTi(αi)-th bit of their inputs. Therefore, we label this leaf of the
circuit with the input variable fv(z) := TTi(αi)(z).

For each internal node v with children u1 and u2 we associate v with the function fv defined recursively
as follows:

fv(z) := max
x∈{0,1}|X|

{Av(x)|fu1(z) ≥ Au1(x) ∧ fu2(z) ≥ Au2(x)}.

We define fv(z) to be 0 if the set on the right-hand side is empty. We claim that these functions can be
computed by monotone real gates and for every x ∈ {0, 1}|X| and y ∈ {0, 1}|Y | we have

fv(A(x)) ≥ Av(x) and fv(R(y)) ≤ Bv(y). (3.2)

First, let’s see how (3.2) implies that the constructed circuit separates A({0, 1}|X|) from R({0, 1}|Y |). Let
r be the root node of the dag. Since we began with a valid RCC1 refutation of F , for every x ∈ {0, 1}|X|

and y ∈ {0, 1}|Y | we have that Ar(x) > Br(y). Therefore, fr(A(x)) > fr(R(y)) for all x and y. Finally,
modifying fr by composing it with an appropriately chosen threshold function gives us the separating circuit.
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To see that fv can be computed by a monotone real gate with inputs fu1 and fu2 , we show that fv is
monotone. To see this, observe that the value of fv is determined by the values of fu1 and fu2 , and increasing
the values of either fu1 or fu2 increases the feasible region of xs over which the maximum is taken in the
definition of fv .

It remains to show that fv(z) satisfies (3.2) for all nodes v in the dag. The base case is given by (3.1). Let
v be an internal node and suppose that (3.2) holds for its children u1 and u2. In particular, for an arbitrary
x ∈ {0, 1}|X| we have fu1(A(x)) ≥ Au1(x) and fu2(A(x)) ≥ Au2(x). Thus, the region over which
the maximum is taken in the definition of fv(A(x)) is taken is nonempty and contains x. It follows that
fv(A(x)) ≥ Av(x). Next, consider an arbitrary y ∈ {0, 1}|Y | and assume for contradiction that fv(R(y)) >

Bv(y). Since. Bv(y) ≥ 0, it follows that fv(R(y)) = Av(x) for some x ∈ {0, 1}|X|. Thus Av(x) > Bv(y),
and by soundness of the refutation it follows that either Au1(x) > Bu1(y) or Au2(x) > Bu2(y). Assume
without loss of generality that the first holds. Then, by the definition of fv(R(y)) we have that fu1(R(y)) ≥
Au1(x) > Bu1(y), which contradicts the inductive assumption.

The above lemma proves the first part of Theorem 3.4.4. The next lemma proves the second part of the
theorem.

Lemma 3.4.7. Let F be an unsatisfiable CNF formula and let (X,Y ) be an partition of the variables. A

monotone real circuit separating the inputsA({0, 1}|X|) andR({0, 1}|Y |) of mCSP-SATF implies a RCC1

refutation of F of the same size.

Proof. The topology of the RCC1 refutation that we construct will be in one-to-one correspondence with the
monotone real circuit. Relabel each input variable TTi(α) of the circuit with the corresponding clause Ci.
Relabel each internal gate v in the circuit by the function corresponding to the following RCC1 protocol. On
input x, Alice privately runs the circuit on A(x) and sends the value Av computed by the circuit at gate v to
the referee. On input y, Bob acts analogously — he simulates the circuit privately on input R(y) and sends
the value Bv computed by the circuit at gate v to the referee. The referee outputs 0 if and only if Av > Bv .
Since the root gate of the circuit is identically 1 on A(x) and 0 on R(y), the referee always outputs 0 at
the last line in the refutation. Thus, the only thing left to verify is that the refutation is sound. Let u1 and
u2 be the children. Then, Av = f(Au1

, Au2
) and Bv = f(Bu1

, Bu2
) for some monotone function f . By

monotonicity, it follows that if Av > Bv then either Au1
> Bu1

or Au2
> Bu2

.

3.5 Lower Bounds for Random CNFs

In this section we prove Theorem 1.3.1. In particular, we prove lower bounds for RCC1 refutations (and
therefore Cutting Planes refutations) of uniformly random k-CNF formulas with sufficient clause density.

To prove Theorem 1.3.1 we will combine Theorem 1.3.2 with a lower bound on the monotone real circuit
complexity of mCSP-SATF for a random CNF formula F . To prove this lower bound, we will use the well-
known method of symmetric approximations [23,83]. The following formalization of the method is exposited
in [93]. First, we introduce some notation: If A ⊆ {0, 1}N , then for r ∈ [N ] and b ∈ {0, 1} define the filter
(depicted in Figure 3.2)

#b(r,A) := max
I⊆[N ]:|I|=r

|{a ∈ A|∀i ∈ I, ai = b}|.
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Figure 3.2: The action of #1(r,A) on the unit cube. The red area represents the (monotone) set A, and the
blue line represents the hamming weight r slice. The intersection of the green and red areas gives the value
of |{a ∈ A|∀i ∈ I, ai = 1}|

Method of Symmetric Approximations (Theorem 19.9 in [93]). Let f : {0, 1}N → {0, 1} be a monotone

Boolean function and let 1 ≤ r, s ≤ N . Let A ⊆ f−1(1) and R ⊆ f−1(0). Then every monotone real circuit

that outputs 1 on all inputs in A and 0 on all inputs in R has size at least

min

{
|A| − (2s)#1(1, A)

(2s)r+1#1(r,A)
,

|R|
(2r)s+1#0(s,R)

}
.

The proof of Theorem 1.3.1 is delayed until Subsection 3.5.2; to get a feeling for the argument, we first
prove an easier lower bound for the simpler distribution of balanced random CNF formulas.

3.5.1 Balanced Random CNFs

Definition 3.5.1. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two disjoint sets of variables. Let
F(m,n, k)⊗2 denote the following distribution over 2k-CNF formulas: first, sample F 1 = C1

1 ∧ . . . ∧
C1
m from F(m,n, k) on the X variables, and F 2 = C2

1 ∧ . . . ∧ C2
m from F(m,n, k) on the Y variables

independently. Then output
F = (C1

1 ∨ C2
1 ) ∧ . . . ∧ (C1

m ∨ C2
m).

This distribution shares the property with F(m,n, k) that dense enough formulas are unsatisfiable with
high probability.

Lemma 3.5.2. Let c > 2/ log e and let n be any positive integer. If k ∈ [n] and m ≥ cn22k then F ∼
F(m,n, k)⊗2 is unsatisfiable with high probability.

Proof. For a uniformly random assignment (x, y) to the variables of F , the probability that the ith clause is
satisfied by the joint assignment is 1 − 1/22k. Thus, the probability that all clauses are satisfied by the joint
assignment is (1 − 1/22k)m ≤ 2−m/2

2k

, since the clauses are sampled independently. By the union bound,
the probability that some joint assignment satisfies the formula is at most 22ne−m/2

2k

= 22n−(log e)m/22k ≤
22n−(log e)cn ≤ 2−Ω(n).

The main theorem of this section is that F ∼ F(m,n, k)⊗2 requires large RCC1-proofs.

Theorem 3.5.3. Let k = 4 log n and m = cn22k where c > 2/ log e is some constant. Let (X,Y ) be the

variable partition associated with F ∼ F(m,n, k)⊗2. Then, for F ∼ F(m,n, k)⊗2, any monotone real

circuit separating A({0, 1}|X|) andR({0, 1}|Y |) has at least 2Ω̃(n) gates with high probability.
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As an immediate consequence of Theorem 3.5.3 and Theorem 1.3.2 we obtain a lower bound for Cutting
Planes.

Corollary 3.5.4. Let n be a sufficiently large positive integer, and let k = 4 log n and m = cn9, where

c > 2/ log e is some constant. With high probability, every RCC1-refutation (and therefore, CP refutation) of

F ∼ F(m,n, k)⊗2 requires at least 2Ω̃(n) lines.

The proof of Theorem 3.5.3 comes down to the fact that random k-CNF formulas are expanders. The
next lemma records the expansion properties that we require; the proof is adapted from the monograph of
Vadhan [145]. For a subset S ⊆ F of clauses of a CNF formula F let Vars(S) denote the subset of variables
that appear in the clauses S.

Lemma 3.5.5. Let n be any sufficiently large positive integer. Let k,m be positive integers and F ∼
F(m,n, k). Suppose that for some 0 < δ < 1 we have

logm ≤ δ
(
k

2

)
log

(
k

2

)
,

then every set S ⊆ F of size s ≤ n/ek2 satisfies |Vars(S)| ≥ ks/2 with probability at least 1−2−(1−δ)(ks/2) log(k/2).

Proof. Fix any set S ⊆ F of size s. For each clause C ∈ S sample the variables in C one at a time
without replacement, and let v1, v2, . . . , vks denote the concatenation of the sequences of sampled variables
for all C ∈ S. Say that a variable vi is a repeat if it has already occurred among v1, . . . , vi−1. In order for
| var(S)| < ks/2 the concatenated sequence must have at least ks/2 repeats. The probability that variable vi
is a repeat is at most (i− 1)/n ≤ ks/n, and this implies that

Pr[|Vars(S)| < ks/2] ≤
(
ks

ks/2

)(
ks

n

)ks/2
≤
(

2eks

ks

)ks/2(
ks

n

)ks/2
≤
(

2

k

)ks/2
using standard bounds on binomial coefficients and the fact that s ≤ n/ek2. Thus

Pr[∃S : |S| = s, |Vars(S)| < ks/2] ≤ ms

(
2

k

)ks/2
,

and by assumption logm ≤ δ(k/2) log(k/2), completing the proof of the lemma.

Having established the expansion properties that we will need, we are ready to prove Theorem 3.5.3.

Proof of Theorem 3.5.3. We will apply the Method of Symmetric Approximations to A := A({0, 1}|X|) and
R := R({0, 1}|Y |) (see Section 3.3) with r = s = n/ek2 for k = 4 log n and m = cn22k. Recall that
A and R are functions mapping inputs to 1-inputs and 0-inputs of mCSP-SATF respectively. To finish the
argument, we need to compute |A|,#1(1, A),#1(r,A), |R|,#0(s,R).

First, bound the size ofA andR. By definition ofA(x), we set TTi(α) = 1 if and only if x�Vars(i) = α;
thus, A(x) = A(x′) for some x 6= x′ only if there exists a variable in X that does not appear in any clause.
However, it is easy to see that with high probability every variable in X participates in some clause, and thus
A is one-to-one with high probability. Therefore, |A| = 2n with high probability.

Recall each 0-inputR(y) of mCSP-SATF is obtained by applying an assignment y to the Y -variables of
F and the writing out the truth tables of all of the clauses. The truth tables of the clauses that were satisfied
by the Y -assignment are identically 1, and the truth tables of the clauses that were not satisfied by y contain
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exactly one 0-entry, because each clause has a unique falsifying assignment. We call the set of clauses that
were not satisfied by y the profile of y. The next lemma implies that the profiles of all Y -assignments are
distinct with high probability.

Lemma 3.5.6. Let n,m, k be positive integers. Sample F ∼ F(m,n, k), and let S ⊆ {0, 1}n be a collection

of assignments. Let M be the following |S| × m matrix, with rows labelled by assignments α ∈ S and

columns labelled by clauses of F . Namely, for any pair (α, i) set

M [α, i] =

1 if the ith clause is not satisfied by α,

0 otherwise.

If log |S| < km/8n2k then the rows of M are distinct with probability at least 1− 2km/n2k .

Proof. We will think of M as being generated column by column with each column sampled independently.
Fix a pair of assignments α and α̂ such that α 6= α̂. Let S be the set of indices on which the two assignments
differ, i.e., S = {i : αi 6= α̂i}, and set s = |S|. Letting Ci denote the ith clause, we have

Pr[Ci not satisfied by α̂, satisfied by α ] =
1

2k

(
1−

(
n−s
k

)(
n
k

) )

as α̂ must satisfy Ci and α must differ from α̂ on one of the indices in S. Continuing the calculation,

1

2k

(
1−

(
n−s
k

)(
n
k

) ) ≥ 1

2k

(
n
k

)
−
(
n−1
k

)(
n
k

) =
1

2k

(
n−1
k−1

)(
n
k

) .

Thus the probability that rows α and α̂ agree on column i is at most 1 − k/(2kn). Since the columns are
sampled independently, the probability that α and α̂ agree on all columns is at most(

1− k

n2k

)m
≤ e−km/(n2k) ≤ 2−5km/4n2k ,

since log e > 5/4. By a union bound over ordered pairs of assignments in S, the probability that there exists
a pair of rows that agree on all columns is at most

|S|22−5km/4n2k ≤ 22 log |S|−5km/4n2k ≤ 2−km/n2k .

In our current setting we have S = {0, 1}n and km/n2k ≥ n log n. Thus, applying the previous lemma
yields that all rows ofM are distinct with high probability. Since each profile is distinct with high probability,
this implies thatR is one-to-one with high probability, and therefore |R| = 2n. It remains to bound the terms
#1(1, A),#1(r,A), and #0(s,R).

Bounding #1(1, A). Fixing a single bit of the inputs in A to 1 is the same as selecting a vertex C in the
bipartite constraint graph of F and an assignment α to the variables of C, and then setting TTi(α) = 1. By
the definition of A, for any input x ∈ {0, 1}n, fixing this bit to 1 determines exactly k out of n variables of
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x. Thus, the number of x ∈ {0, 1}n that are consistent with this partial assignment is 2n−k, and since A is
one-to-one, we have #1(1, A) = 2n−k.

Bounding #1(r,A). This is similar to the previous bound, except that now we fix r bits of the truth table to
1. By the definition of A, these bits must be chosen from r distinct truth tables in order to be consistent with
any x ∈ {0, 1}n. With respect to the underlying CNF formula F , this corresponds to fixing an assignment to
the set of variables appearing in an arbitrary set S of r clauses in F . By Lemma 3.5.6, with high probability
we have |Vars(S)| ≥ rk/2. Thus fixing these r bits corresponds to setting at least rk/2 of the input variables
participating in the constraints with determined truth tables. The number of x-inputs that are consistent with
these indices fixed indices is therefore ≤ 2n−rk/2, and so #1(r,A) ≤ 2n−rk/2.

Bounding #0(s,R). This case is symmetric to #1(r, U). The result is that #0(s,R) ≤ 2n−2k/2.

Finally, observe that (2s)#1(1, A) = (2s)2n/n4 ≤ 2n−1. Putting this altogether, we can conclude that
any monotone real circuit computing mCSP-SATF must have size at least

2n−1

(2s)s+12n−sk/2
= 2sk/2−(s+1) log(2s)−1 ≥ 2s(k/2−2 log s) ≥ 2Ω̃(n),

where the final inequality follows because s = n/ek2 and k/4 ≥ log n.

3.5.2 Random CNFs

We show how to modify the argument from the previous section to apply to the usual distribution of random
CNF formulas F(m,n, k), proving Theorem 1.3.1. Using the probabilistic method we find a partition of
the variables of a random formula F ∼ F(m,n, k) such that many of the clauses of F are balanced with
respect to the partition. Ideally, every clause would be balanced, however this requirement turns out to be
too strong — instead, we show that we can balance many of the clauses, and there exists a large collection
of assignments that satisfies all of the imbalanced clauses. First, we introduce our notion of an “imbalanced”
clause.

Definition 3.5.7. Fix ε > 0. Given a partition of n variables into X-variables and Y -variables, a k-clause
is said to be X-heavy (resp., Y -heavy) if it contains more than (1− ε)k X-variables (resp., Y -variables). A
k-clause is called balanced if it is neither X-heavy nor Y -heavy.

Next, we define a good partition of the variables of a random CNF formula F ∼ F(m,n, k). As discussed
earlier, the notion of a good partition is supposed to help the rest of the proof in this section mimic the proof
for balanced CNF formulas from the previous section. In particular, we will condition on a good partition
and argue (in Lemma 3.5.9) using the Lovász Local Lemma that there exists a large collection of assignments
satisfying all imbalanced clauses. Restricting attention to only these assignments will allow the proof to
proceed as in the previous section. However, now we have a delicate balance of parameters. In particular,
there is tension between Lemma 3.5.14 which requires m to be large, and the Lovász Local Lemma which
requires m to be small. This is further complicated because we would like that all but a constant fraction
of the assignments satisfy all imbalanced clauses (Lemma 3.5.9). Because of this we will need to set our
parameters with precision.

In the following, let H(ε) := −ε log ε− (1− ε) log(1− ε) denote the binary entropy function.
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Definition 3.5.8. Let ε = 1/50 and let n be a sufficiently large positive integer. Let k = 240 log n, τ = 1/16

and m = n2(1+τ)k (= n256). For a CNF formula F , a partition (X,Y ) of the variables is good for F if the
following hold:

(i) The number of variables in X is n/2± o(n).

(ii) The number of X- and Y -heavy clauses are each upper bounded by (3/2)n2(τ+H(ε))k.

(iii) The functions A andR are both one-to-one on all assignments in {0, 1}|X| and {0, 1}|Y | respectively.

(iv) EachX-variable (Y -variable) occurs in at most 9k2(τ+H(ε))k X-heavy (Y -heavy) clauses respectively.

The next lemma says that a good partition exists with high probability. As the proof is nontrivial, we
defer it to the end of this section.

Good Partition Lemma. Let ε, n, k, andm be as above. Sample F ∼ F(m,n, k) and partition the variables

of F into two sets (X,Y ) by including each variable in X with probability 1/2, and in Y otherwise. Then,

with probability 1− o(1), (X,Y ) is a good partition.

Conditioning on a good partition (X,Y ), it remain remains to show that there exists a large collection of
assignments that satisfy all heavy clauses. The main tool in this proof is the Lovász Local Lemma.

Lovász Local Lemma (Theorem 5.1.1 in [6]). Let E = {E1, . . . , En} be a finite set of events. For E ∈ E
let Γ(E) denote the set of events Ei on which E depends. If there is q ∈ [0, 1) such that for all E ∈ E we

have Pr[E] ≤ q(1− q)|Γ(E)|, then the probability that none of the events Ei occur is at least (1− q)n.

The following lemma shows that for any partition (X,Y ) satisfying the conditions of the Good Partition
Lemma, there is a large collection of assignments satisfying all heavy clauses.

Lemma 3.5.9. Let F ∼ F(m,n, k) and let (X,Y ) be a good partition for F . There exists a set ∆X of

2|X|/e3 assignments to the X-variables that satisfy all X-heavy clauses, and a set ∆Y of 2|Y |/e3 assign-

ments to the Y -variables that satisfy all Y -heavy clauses.

Proof. Consider a uniformly random assignment to the X-variables. Let Ei be the event that the ith X-
heavy clause is not satisfied by the random assignment, and observe that Pr[Ei] ≤ 2−(1−ε)k since the clause
is X-heavy. We aim to apply the Lovász Local Lemma to the events Ei.

We will continue to use the notation introduced in the definition of Good Partition Lemma, namely,
ε = 1/50 and τ = 1/16. As well, le mU = n2(τ+H(ε)k. By property (ii) of the Good Partition Lemma, the
number of events Ei is at most (3/2)mU . By property (iv), for any event Ei, the number of events that share
any X-variable with Ei is |Γ(Ei)| ≤ (9kmU/n)k.

Setting q = 2−δk for δ = 1/15 +H(ε), for each Ei we have

q(1− q)|Γ(Ei)| ≥ q exp(−2q|Γ(Ei)|) = q exp(−2 · 2−δk(9k2/n)n2(τ+H(ε))k)

= q exp(−(18k2)2−k/240) ≥ q/e ≥ 2−(1−ε)k,

where we have used the fact that e−2x ≤ 1−x for x ∈ [0, 1/2] and that−(18k2)2−k/240 ≥ −polylog(n)/n ≥
−1 for sufficiently large n.

We have set q such that only a constant fraction of assignments will not satisfy all X-heavy clauses. To
see this, observe that for our settings of τ , δ, and k,

qmU = 2−δkn2(τ+H(ε))k = n2−(δ−(H(ε)+τ))k = n2−(1/15−1/16)240 logn = 1.
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Applying the Lovász Local Lemma we conclude that the probability that an assignment satisfies all X-heavy
clauses is at least

(1− q)3mU/2 ≥ e−3qmU = e−3.

Thus, the number of assignments to the X-variables satisfying all X-heavy clauses is at least 2|X|/e3, and
an identical calculation applied to the Y -variables by symmetry.

With this lemma in place, we can proceed more or less as in the previous section. We perform the whole
argument with respect to A = A(∆X) and R = R(∆Y ), with ∆X and ∆Y chosen as in the previous lemma.
This allows us to restrict our attention only to the balanced clauses, and the calculations from the previous
section works mutatis mutandis since many clauses are balanced.

Theorem 3.5.10. There is a constant c > 0 such that the following holds. Let n ≥ c be any positive integer

and sample F ∼ F(m,n, k) for m = n2(1+1/16)k and k = 240 log n. With high probability there exists a

partition (X,Y ) of the variables of F such that any monotone real circuit computing mCSP-SATF requires

at least 2Ω̃(n) gates.

Proof. By the Good Partition Lemma we can find a good partition of the variables (X,Y ), and let ∆X ,∆Y

denote the set of assignments to the X- and Y -variables, respectively, given by Lemma 3.5.9. Let z be an
input to mCSP-SATF , and let z′ be z restricted to truth tables corresponding to balanced clauses of F with
respect to the partition (X,Y ); it follows from the Good Partition Lemma that with high probability there are
at least m − 3m2−k/2 ≥ m/2 balanced clauses from n sufficiently large. Let A = {z′|z ∈ A(∆X)} and
R = {z′|z ∈ R(∆Y )}. Let F ′ ⊆ F be the formula containing only balanced clauses of F , then we can think
of z′ as an input to mCSP-SATF ′ .

Our aim will be to apply the Method of Symmetric Approximations to A and R, similar to what we did in
the previous section. However, in order to do this we will have to show that the existence of a small monotone
real circuit separating A(X) and R(Y ) implies the existence of a small monotone real circuit that separates
the truncated assignments A and R. The strategy of the proof is as follows: given a monotone real circuit C
separatingA(X) andR(Y ) (and thereforeA(∆X) andR(∆Y )), we will apply a restriction ρ to C that fixes
all of the input gates corresponding to the X- and Y -heavy clauses in such a way that the resulting circuit Cρ
separates A and R. Because F ′ is balanced, we can then perform the same argument for Cρ with respect to
A(∆X) andR(∆Y ) as we did for balanced random CNFs in the previous section. A lower bound on the size
of Cρ then implies a lower bound on the size of the unrestricted circuit C.

We define the restriction ρ setting inputs (i.e. truth table entries) corresponding to unbalanced clauses as
follows:

• Truth table entries corresponding to an X-heavy clause are all set to 1 except for the entry correspond-
ing to the assignment that does not satisfy the clause.

• Truth table entries corresponding to a Y -heavy clause are all set to 1.

As we will see in the next claim, this restriction acts monotonically on the inputs in ∆X and anti-monotonically
on those in ∆Y .

Claim 3.5.11. The circuit Cρ obtained by applying the restriction ρ to C separates A and R.

Proof of Claim. Let x ∈ ∆X , and let z = A(x), then there is a corresponding z′ ∈ A. Let z′ ◦ ρ be the
extension of z′ by ρ to an input of mCSP-SATF . Thus, Cρ evaluated on z′ is the same as the original circuit
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C evaluated on z′ ◦ ρ. We claim that z′ ◦ ρ ≥ z, i.e., z′ ◦ ρ is z with some entries set to 1. To see this,
observe that the truth table corresponding to every balanced clause is given the same assignment by z and
z′ ◦ ρ. Clearly, for any Y -heavy clause Ci, the assignment given to TTi by z ◦ ρ is at least the assignment
given by z. Now, let Ci be an X-heavy clause, and recall that z is defined by setting TTi(α) = 1 if and only
if x �Vars(i) = α. Let α′ be the unique assignment to Vars(i) (the variables of Ci) that does not satisfy Ci.
Because every assignment in ∆X satisfies every X-heavy clause, it cannot be that x �Vars(i) = α′, and so
TTi(α

′) = 0 in both z and z′ ◦ ρ. Therefore, z′ ◦ ρ ≥ z. The original circuit C output 1 on z and therefore,
by monotonicity, it also outputs 1 on z′ ◦ ρ. It follows that Cρ outputs 1 on z′.

Next, let y ∈ ∆Y , let z = R(y), let z′ ∈ R be the input corresponding to z, and consider z′ ◦ ρ. We
will argue that z′ ◦ ρ ≤ z, i.e., z′ ◦ ρ is z with some entries set to 0. Both z and z′ ◦ ρ assign the same
values to balanced clauses. Because every assignment in ∆Y satisfies every Y -heavy clause, the truth tables
corresponding to the Y -heavy clauses are identically 1 in both z and z′ ◦ ρ by the definition of R. The
truth tables corresponding to the X-heavy clauses Ci are either the same in z as in z′ ◦ ρ (if there exists
α ∈ {0, 1}|X| such that Ci(x, y) = 0) or are identically 1 in z and contain a single 0-entry in ρ (if there is
no such α). The original circuit C outputs 0 on z and therefore, by monotonicity, it also outputs 0 on z′ ◦ ρ.
This completes the proof of the claim.

The rest of the proof mirrors the proof of Theorem 3.5.3 with only minor changes. We will apply the
Method of Symmetric Approximations to A and R, and count with respect to the balanced clauses. Because
(X,Y ) is a good partition, A andR are one-to-one on {0, 1}|X| and {0, 1}|Y | respectively, and are therefore
one-to-one on ∆X and ∆Y . This implies that |A| = |∆X | = 2|X|−3 log(e) and |R| = |∆Y | = 2|Y |−3 log(e).
It remains to bound #1(1, A), #1(r,A), and #0(s,R). For this we will use the following immediately
corollary of Lemma 3.5.5.

Lemma 3.5.12. Let n be any sufficiently large integer, and k0, m be positive integers. Let F be a CNF

formula on m clauses, where each clause is sampled from F(1, n, k′) for k′ ≥ k0. Let s ≤ n/ek2
0 be a

positive integer. If

logm ≤ δ
(
k0

2

)
log

(
k0

2

)
for some 0 < δ < 1, then for every S ⊆ F of size s satisfies |Vars(S)| ≥ k0s/2 with probability at least

1− 2−(1−δ)(k0s/2) log(k0s/2).

This lemma follows immediately from the proof of Lemma 3.5.5 with k0 = k by noting that if each
clause contains greater than k variables, then this can only increase the size of Vars(S).

Bounding #1(r,A) and #1(1, A). Fixing a single bit of an input in A to 1 is the same as selecting a
balanced clause Ci in the constraint graph of F and an assignment α to the variables and setting TTi(α) = 1.
Fixing this bit to 1 determines all variables in X that participate in this clause. By definition, each balanced
clause contains at least k0 = k/50 variables from X . Now, if we are to fix r truth table bits to 1, by the
definition of A, these bits must be chosen from r distinct truth tables in order to be consistent with any
x ∈ {0, 1}n. We aim to apply Lemma 3.5.12 to show that every set of at most r clauses of F contain many
variables. There are at least m/2 balanced clauses, and therefore

log(m/2) = log
(
n2(1+1/16)k−1

)
= 256 log(n)− 1 ≤ γ

(
k0

2

)
log

(
k0

2

)
,
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for sufficiently large n and some constant γ > 0. Setting r = s = n/(2ek2
0), Lemma 3.5.12 implies that

each collection S of r balanced clauses satisfies |VarsX(S)| ≥ k0r/2 with high probability, where VarsX(S)

is the set of X variables that occur in clauses in S. Note that we can apply the argument from Lemma 3.5.12
because conditioned on containing some fixed number k′ ≥ k/20 = k0 of X-variables, the X-part of a
clause is distributed exactly according to F(1, |X|, k′). Thus, fixing these r bits in the definition of #1(r,A)

corresponds to setting at least k0r/2 of the input variables that participate in the constraints with determined
truth tables. The number of X-inputs that are consistent with these indices fixed is at most 2|X|−rk0/2, and
so #1(r,A) ≤ 2|X|−rk0/2. By a similar argument, we have #1(1, A) ≤ 2|X|−k0 .

Bounding #0(s,R). This case is similar to #1(r, U) and we get #0(s,R) ≤ 2|Y | − 2k0/2.

To conclude the theorem, we follow the calculation at the end of the proof of Theorem 3.5.3 using our
new estimates. Note that our choice of r = s = n/(2ek2

0) implies that 2 log(2r) ≤ 2 log n ≤ k0/2 since
k0 = k/15 > 4 log n. Applying this, we have

(2s)#1(1, A) ≤ 2log(2r)+|X|−k0 ≤ 2|X|−(3/4)k0 .

Altogether, this yields the following lower bound on the monotone real circuit size of mCSP-SATF :

|A| − (2s)#1(1, A)

(2s)r+1#1(r, U)
≥ 2|X|−3 log(e)−1

(2r)r+12|X|−rk0/2

≥ 2r(k0/2−log(2r))−log(2r)−3 log(e)−1

≥ 2rk0/4−log(2r)−3 log(e)−1

≥ 2rk0/4−log(n)−3 log(e)−1

≥ 2Ω̃(n).

As an immediate corollary of Theorem 3.5.10 together with Theorem 1.3.2, we can conclude the main
theorem.

Corollary 3.5.13 (Theorem 1.3.1 ). There exists constants c, d such that the following holds. Let m be a

sufficiently large positive integer, k = c log n and m = n2dk. Then with high probability, any RCC1 (and

therefore CP) refutation of F ∼ F(m,n, k) requires 2Ω̃(n) lines.

3.5.3 Proof of the Good Partition Lemma

In this section we prove the Good Partition Lemma. To do so, we will make use of the following multiplicative
Chernoff bound.

Multiplicative Chernoff Bound (Theorems 4.4 and 4.5 in [114]). Suppose E1, . . . , En are independent

random variables taking values in {0, 1}. Let E denote their sum, and let µ = E[E]. Then

• For any δ ≥ 0,

Pr[E ≥ (1 + δ)µ] ≤ e−δµ/3.
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• For any 0 ≤ δ ≤ 1

Pr[E ≤ (1− δ)µ] ≤ e−δ
2µ/3.

Before tackling the proof of the Good Partition Lemma, will first prove the following auxiliary lemma.
In the case of balanced random CNF formulas, Lemma 3.5.6 allowed us to show that the function A is one-
to-one. In order to handle random CNF formulas from the usual distribution, we must modify this lemma to
take into account the fact that each clause may no longer contain an equal number of X and Y variables.

Lemma 3.5.14. Let n,m, k be positive integers, and fix a set of variables Z = {z1, . . . , zn}. Choose a

partition Z = (X,Y ) by including each variable in X with probability 1/2, and in Y otherwise. Sample m

clauses independently as follows. Pick a uniformly random k-clause C over the Z-variables, then discard all

X-literals from C; if all literals in C are discarded, then discard the entire clause. Let F ′ be the resulting

formula, and let m′ be the number of clauses in F ′. Let S be a collection of assignments to the Y -variables,

and let M be the |S| ×m′ matrix defined as follows: for any pair (α, i) with α ∈ S and iin[m′], let

M [α, i] =

1 if the ith clause is not satisfied by α,

0 otherwise.

If log |S| < m/8n2k+3 then the rows of M are distinct with probability at least 1− 21−m/(n2k+3).

To prove Lemma 3.5.14 we will use the following auxiliary lemma.

Lemma 3.5.15. Let C be a k-clause over the Y -variables, sampled as in the statement of Lemma 3.5.14.

Then,

Pr[C is empty] = 1/2k.

Proof Sketch. Since the variables of C do repeat, the following distributions on C are identical:

(i) Sample a random partition Z = (X,Y ) and then choose a uniformly random k-clause over (X,Y ).
Discard the X-variables.

(ii) Sample a uniformly random k-clause on the variables Z. Choose a partition Z = (X,Y ) by first
partitioning the variables occurring in C by including each one in X with probability 1/2 and in Y
otherwise. Partition the remaining variables not occurring in C uniformly at random, and discard the
X-variables from C.

In the latter interpretation it is easy to see that |C| follows a binomial distribution with k trials and
probability 1/2 of success. In Subsection 3.5.4 we include a formal proof of this lemma that confirms that
these distributions are identical.

Proof of Lemma 3.5.14. We think of M as being generated column-by-column, with each column sampled
independently as described in the statement of the lemma. Fix two assignments α, α̂ such that α 6= α̂. Let S
be the set of indices on which they differ, i.e., S := {i : αi 6= α̂i}, and let s = |S|. Let Ci be the ith clause
in F ′ and wi be its width; note that wi is a random variable. Fix integers t ≤ k and n′ ≤ n. First, observe
that conditioned on wi = t and |Y | = n′, the clause Ci is a uniformly random clause over the Y -variables of
width t. Thus, if t ≥ 1, we have

Pr[Ci not sat by α, sat by α̂|wi = t, |Y | = n′] =
1

2t

(
1−

(
n′−s
t

)(
n′

t

) ) .
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This follows because α̂ falsifies Ci and α must differ from Ci on one of the indices in S. Continuing the
calculation,

1

2t

(
1−

(
n′−s
t

)(
n′

t

) ) ≥ 1

2t

((
n′

t

)
−
(
n′−1
t

)(
n′

t

) )
=

1

2t

(
n′−1
t−1

)(
n′

t

) =
t

2tn′
≥ 1

2kn
,

where the final step holds because t ≤ k, n′ ≤ n, and t ≥ 1 since Ci is non-empty. Now, let Et denote the
event that Ci has width t for 0 ≤ t ≤ k. Then

Pr[Ci not sat by α, sat by α̂] =

k∑
t=0

Pr[Ci not sat by α, satisfied by α̂ ∧ Et]

=

k∑
t=0

Pr[Et] Pr[Ci not sat by α, sat by α̂|Et]

=

k∑
t=1

Pr[Et] Pr[Ci not sat by α, sat by α̂|Et]

≥ 1− Pr[E0]

2kn
=

1− 1/2k

2kn
≥ 1

2k+1n
, (3.3)

where we have used the fact that the events {Et} partition the probability space, and the final equality follows
from Lemma 3.5.15.

Next, we turn to bounding the probability thatα and α̂ agree on all columns ofM . Applying Lemma 3.5.15,
E[m′] = (1− 2−k)m, where m′ is the number of clauses in F ′. Let E be the event that m′ ≤ (1− δ)E[m′],
where δ is a parameter to be chosen later. By a Chernoff bound, Pr[E] ≤ exp(−δ2E[m′]/3). Thus,

Pr[α, α̂ agree on all columns] ≤ Pr[E] + Pr[α, α̂ agree on all columns|¬E]

≤ exp(−δ2E[m′]/3] +

(
1− 1

2k+1n

)(1−δ)E[m′]

(By (3.3))

≤ exp(−δ2E[m′]/3) + exp

(
− (1− δ)E[m′]

2k+1n

)
≤ exp

(
−δ

2(1− 2−k)m

3

)
+ exp

(
− (1− δ)(1− 2−k)m

2k+1n

)
.

Setting δ = 1/(2k − 1)1/2, we get

exp

(
−δ

2(1− 2−k)m

3

)
+ exp

(
− (1− δ)(1− 2−k)m

2k+1n

)
≤ exp

(
− m

3 · 2k
)

+ exp

(
− (1− δ)(1− 2−k)m

2k+1n

)
≤2 exp

(
− (1− δ)(1− 2−k)m

2k+1n

)
≤ exp

(
− m

2k+3n

)
,

where the second line uses the fact that a sum is at most twice the maximum, and the last line follows since
(1− δ)(1− 2−k) ≥ 1/4 holds for sufficiently large n, by the definition of δ and that k = 240 log n.



CHAPTER 3. RANDOM CNF FORMULAS ARE HARD FOR CUTTING PLANES 45

Thus, we can conclude that

Pr[α and α̂ agree on all columns] ≤ 2 exp
(
− m

n2k+3

)
≤ 2 · 2−5m/(4n2k+3),

where the last inequality holds since log e > 5/4. By a union bound over all pairs of assignments in S, the
probability that there exists a pair of rows that agree on all columns is at most

2|S|2 · 2−5m/(4n2k+3) ≤ 22 log |S|+1−5m/(4n2k+3) ≤ 21−m/(n2k+3).

In what follows, we will use the following entropy bound on the binomial tail.

Entropy Bound on the Binomial Tail (Lemma 6.19 in [70]). For any 0 < ε < 1/2,

2H(ε)n√
8nε(1− ε)

≤
bεnc∑
j=0

(
n

j

)
≤ 2H(ε)n,

where H(ε) = −ε log ε− (1− ε) log(1− ε) is the binary entropy function.

We are now ready to prove the Good Partition Lemma, which we restate next for convenience.

Good Partition Lemma. Let ε = 1/50, and let n be a sufficiently large positive integer. Let k = 240 log n,

and let m = n2(1+1/16)k (= n256). Sample F ∼ F(m,n, k) and partition the variables of F into two sets

(X,Y ) by including each variable in X with probability 1/2, and in Y otherwise. Then, with probability

1− o(1) (X,Y ) is good partition. That is, the following holds:

(i) The number of variables in X is n/2± o(n).

(ii) The number of X-heavy clauses and Y -heavy clauses are each upper bounded by

(3/2)n2(1/16+H(ε))k.

(iii) The functions A andR are both one-to-one on all assignments in {0, 1}|X| and {0, 1}|Y | respectively.

(iv) Each X-variable (Y -variable) occurs in at most 9k2(1/16+H(ε))k X-heavy (Y -heavy) clauses respec-

tively.

Proof. We will bound the probability that each event occurs and then conclude that they hold simultaneously
with high probability by a union bound.

(i). First, note that E[|X|] = n/2. Since each variable is placed in X independently with probability 1/2,
we have

Pr[|X − n/2| > n2/3] ≤ 2 exp(−n1/3/6)

by applying the Chernoff Bound.

(ii). For convenience, let m = n2(1+τ)k where we set τ = 1/16. For each clause Ci let Ti be the random
variable indicating whether this clause is X-heavy. Using both inequalities from the Entropy Bound on the
Binomial Tail we have

Pr[Ti = 1] =

εk∑
j=0

2−k
(
k

j

)
≤ 2(H(ε)−1)k
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and

Pr[Ti = 1] =

εk∑
j=0

2−k
(
k

j

)
≥ 2−k

2H(ε)k√
8kε(1− ε)

>
2(H(ε)−1)k

√
k

,

since 8ε(1 − ε) < 1 by our choice of ε. Let T =
∑m
i=1 Ti. Then the previous two bounds and linearity of

expectation imply that
m2(H(ε)−1)k

√
k

≤ E[T ] ≤ m2(H(ε)−1)k.

Denoting the lower and upper bounds bymL := m2(H(ε)−1)k/
√
k andmU := m2(H(ε)−1)k = n2(τ+H(ε))k,

by the Chernoff Bound we have

Pr[T > 3mU/2] ≤ Pr[T > 3E[T ]/2] ≤ exp(−E[T ]/12) ≤ exp(−mL/12) (3.4)

Thus, we have that T < 3mU/2 with probability at least 1 − 2 exp(−mL/12). The same conclusion holds
for the Y -heavy clauses by symmetry. It follows by a union bound that the partition satisfies both of these
properties simultaneously with high probability.

(iii). Recall that A(x) sets TTi(α) = 1 if and only if x�Vars(i) = α. Thus A(x) = A(x̂) for some x 6= x̂

only if there exists an X-variable that doesn’t appear in any clause. The probability that any variable (in X
or Y ) does not occur in any clause is at most

n

((
n−1
k

)(
n
k

) )m = n

(
1− k

n

)m
≤ ne−km/n.

Thus, the probability that every variable in X appears in some clause is at least 1− ne−km/n.
Similarly, recall thatRmaps each assignment y ∈ {0, 1}|Y | to the vector obtained by writing out the truth

tables of each of the clauses of F under the assignment y to the Y -variables. The truth tables corresponding
to clauses that were satisfied by y are identically 1, while the truth tables of the clauses that were not satisfied
have exactly one 0-entry. Let S = {0, 1}|Y | and observe that

m/8n2k+3 = 2k/16/82 = n15/82 > n ≥ log |S|.

Therefore, Lemma 3.5.14 implies that the set of clauses not satisfied by each assignment in S are distinct,
and soR is one-to-one with probability at least 1− 21−m/n2k+3

= 1− 21−n15/8.
Altogether, by a union bound, the probability that A and R are one-to-one is at least 1 − 21−n15/8 −

ne−km/n = 1− o(1).

(iv). We will use the same notation as in part (ii). We will prove this statement for the X-variables, the Y -
variables will follow by symmetry. Furthermore, it is enough to prove this statement for the set of partitions
P := {(X,Y ) : ||X| − n/2| ≤ n2/3} because, by part (i), the probability of drawing (X,Y ) 6∈ P is
exponentially small.

Fix a partition (X,Y ) ∈ P . Let x ∈ X be a fixed variable and let Ti be the indicator random variable
(conditioned on this fixed partition) which is 1 if the variable in the ith X-heavy clause and 0 otherwise.
Denote by T :=

∑
i Ti the total number of X-heavy clauses in which x occurs. We give an upper bound

on T and then conclude the statement by a union bound over the variables in X . One would hope to apply
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the usual Chernoff and Union bound combination, however in this case Z is a sum of a random number of
random variables. Fortunately, we can sidestep this issue by conditioning on the number of X-heavy clauses,
denoted H .

First, we show that the Ti variables are independent once we have conditioned on H = h. Consider the
following method of sampling a random CNF formula subject to the partition (X,Y ).

1. Independently for each i ∈ [m], sample a number vi ∈ {0, 1, . . . , k} where vi = ` is chosen with
probability (|X|

`

)( |Y |
k−`
)(

n
k

) .

2. Independently for each i ∈ [m], sample a random clause by choosing a random set of vi X-literals and
a random set of (k − vi) Y -literals.

From the definition of the experiment it is clear that the variables Tj and Tj′ with j 6= j′ are independent,
and will remain independent even after conditioning on any subset of h clauses being heavy.

To complete the proof we will need to the following two claims. The first claim shows that the bound
on the number of X-heavy and Y -heavy clauses from part (ii) holds even when conditioning on a partition
(X,Y ). As the proof is similar to the argument from part (ii) we defer it to Subsection 3.5.4.

Claim 3.5.16. For any fixed (X,Y ) ∈ P , the number of X-heavy and Y -heavy clauses are each upper
bounded by 3mU/2 and lower bounded by mL/2, except with probability at most exp(−Ω(mL)).

The second claim shows that when mL/2 ≤ h ≤ 3mU/2, the probability of T being large is small.

Claim 3.5.17. For any h such that mL/2 ≤ h ≤ 3mU/2,

Pr[T > 9kmU/n|(X,Y ), H = h] ≤ exp(−kmU/n).

Proof. Let

µh := E[T |H = h, (X,Y )] and δh :=
9|X|mU

hn
− 1.

Observe that
(1− ε)k
|X|

≤ Pr[Ti = 1|(X,Y ), H = h] ≤ k

|X|

because the ith heavy clause is generated by picking at most k and at least (1 − ε)k variables from X . It
follows that h(1− ε)k/|X| ≤ µt ≤ hk/|X|. By the Chernoff Bound we have

Pr[T > 9kmU/n|(X,Y ), H = h] ≤ Pr[T > (1 + δh)µh|(X,Y ), H = h]

≤ exp(−δhµh/3)

≤ exp(−3(1− ε)kmU/n+ µh/3)

≤ exp(−3(1− ε)kmU/n+ hk/3|X|)

≤ exp(−3(1− ε)kmU/n+mUk/2|X|).

Note that |X| ≥ n/2− n2/3 ≥ n/3 for sufficiently large n. Continuing the calculation,

exp(−3(1− ε)kmU/n+mUk/2|X|) ≤ exp(−3(1− ε)kmU/n+ 3mUk/2n)

≤ exp(−kmU/n),
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where the last step follows since we have set ε = 1/50.

Now, using the previously mentioned fact that the Tj’s are independent conditioned on the value of H ,
together with Claim 3.5.17 and Claim 3.5.16, we can complete the proof. First, we bound the probability
that there are many X-heavy clauses for a fixed partition (X,Y ) ∈ P . Let H := {mL/2 + 1,mL/2 +

2, . . . , 3mU/2− 1}, then

Pr[T > 9kmU/n|(X,Y )] ≤ Pr[H 6∈ H|(X,Y )] + |H|max
h∈H

Pr[T > 9kmU/n|H = h, (X,Y )]

≤ exp(−Ω(mL)) +m · exp(−kmU/n) ≤ exp(−Ω(mL)),

where the last step holds for sufficiently large n since k = O(log n) andmL = mU/
√
k. Thus, we can take a

union bound over all x ∈ X and conclude that, for a fixed (X,Y ) ∈ P , the probability that there exists some
X-variable that occurs in more than 9kmU/n heavy clauses is at most n exp(−Ω(mL)).

We can now complete the proof of this part. Let B be the “bad” event that there is an X-variable that
occurs in more than 9kmU/n X-heavy clauses. Then,

Pr[B] ≤ Pr[(X,Y ) 6∈ P] + 2n max
(X,Y )∈P

[B|(X,Y )]

≤ 2 exp(−n1/3/6) + n · exp(n ln 2− Ω(mL)) = o(1),

where we have used the bound from part (i) and the fact that mL = poly(n). By symmetry, the same bound
holds for the Y -heavy clauses. Therefore, taking a union bound finishes the proof of this part.

Finally, taking a union bound over parts (i) – (iv) completes the proof of the Good Partition Lemma.

3.5.4 Proof of Lemma 3.5.15 and Claim 3.5.16

We end by proving the remaining statements. We begin with a formal proof of Lemma 3.5.15, which is
restated next for convenience.

Lemma 3.5.15. Let C be a k-clause over the Y -variables, sampled as in the statement of Lemma 3.5.14.

Then,

Pr[C is empty] = 1/2k.

Proof. Observe that |X| is a binomial random variable consisting of n trials with probability p = 1/2 of
success, and so Pr[|X| = t] =

(
n
t

)
2−n. Then

Pr[C is empty] =

n∑
t=0

Pr[|X| = t] Pr[C is empty||X| = t]

=

n∑
t=0

(
n
t

)
2n
·
(
t
k

)(
n
k

)
=

1

2n
(
n
k

) n∑
t=k

(
n

t

)(
t

k

)

where the change in indices follows since if t < k then C can never be contained in X . This sum counts the
number of ways to first choose a t-subset A of [n], and then choose a k-subset B of A. Equivalently, we can
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first choose the k-subset B of [n], and then generate A by extending B to a t-subset. Thus

1

2n
(
n
k

) n∑
t=k

(
n

t

)(
t

k

)
=

1

2n
(
n
k

) n∑
t=k

(
n

k

)(
n− k
t− k

)

=
1

2n

n∑
t=k

(
n− k
t− k

)
=

2n−k

2n
=

1

2k
.

Next, we prove Claim 3.5.16. We will use the same notation as in Good Partition Lemma; recall that ε =

1/50, k = 240 log n, and m = n2(1+1/16)k. As well, mL := m2(H(ε)−1)k/
√
k and mU := m2(H(ε)−1)k.

Claim 3.5.16. For any fixed (X,Y ) ∈ P , the number of X-heavy and Y -heavy clauses are each upper
bounded by 3mU/2 and lower bounded by mL/2, except with probability at most exp(−Ω(mL)).

Proof. For each clause Ci let Ti be the random variable indicating whether this clause is X-heavy. Clearly
the probability of a clause being X-heavy is maximized when |X| is as large as possible. Since we are
considering |X| ∈ [n/2 − n2/3, n/2 + n2/3], it suffices to bound the probability of a clause being X-heavy
for |X| = n/2 + n2/3. Let n′ = n2/3 for convenience. We can bound the probability of a clause being
X-heavy given (X,Y ) as follows:

Pr[Ti = 1|(X,Y )] =

εk∑
`=0

(|Y |
`

)( |X|
k−`
)(

n
k

)
≤

εk∑
`=0

(
n/2− n′

`

)(
n/2 + n′

k − `

)
1(
n
k

)
=

εk∑
`=0

(
k
`

)
2k
· (n/2− n′)!

(n/2− n′ − `)!
· (n/2 + n′)!

(n/2 + n′ − k + `)!
· 2k(n− k)!

n!
.

The expression
∑εk
`=0

(
k
`

)
/2k is what we had before in the analysis of part (2). Thus, if we can bound the

term (n/2−n′)!
(n/2−n′−`)! ·

(n/2+n′)!
(n/2+n′−k+`)! ·

2k(n−k)!
n! by a constant, we are done. This is maximized when ` = 0,

therefore it suffices to bound (n/2+n′)!
(n/2+n′−k)! ·

2k(n−k)!
n! . For that we use the fact that there exist constants c0 and

c1 such that2 c0nn+1/2e−n ≤ n! ≤ c1nn+1/2e−n. Let c = c21/c
2
0, then
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zU
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1 +
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)k
≤ c · exp(k + k/(2zU )) exp(−k + k2/n− k/(2n)) exp((2n′k)/n)

≤ c · exp(k/(2zU ) + k2/n+ (2n′k)/n) ≤ c · exp(3) = O(1),

2More specifically, one can take c0 =
√

2π and c1 = e.
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where we have defined zU := n/2 + n′ − k. Therefore, Pr[Ti = 1|(X,Y )] ≤ cU
∑εk
`=0

(
k
`

)
2−k for some

constant cU > 0.
Lower bounding the probability of a clause being X-heavy can be done analogously. The probability of

a clause being X-heavy is minimized when |X| is as small as possible. Therefore,

Pr[Ti = 1|(X,Y )] ≥
εk∑
`=0
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The term (n/2+n′)!
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n! is minimized whenever ` = 0, therefore it suffices to bound

(n/2−n′)!
(n/2−n′−k)! ·
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n! from below by a constant. Using the same bound on n! as above,
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where zL := n/2 − n′ − k. The third line follows from the fact that k/zL, k/n, and 2n′k/n are all less
than 1/2 for sufficiently large n, and therefore we can use the inequality (1 + x) >= ex/2 when |x| < 1/2.
Therefore, Pr[Ti = 1|(X,Y )] ≥

∑εk
`=0 cL

(
k
`

)
2−k for some constant 0 < cL < 1.

The remainder of the proof is similar to the proof of property (ii) in the Good Partition Lemma. Using
both of the inequalities in Entropy Bound on the Binomial Tail, we have

Pr[Ti = 1|(X,Y )] ≤ cU
εk∑
`=1

(
k

`

)
2−k ≤ cU · 2H(ε)k−k

Pr[Ti = 1|(X,Y )] ≥ cL
εk∑
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(
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`

)
2−k ≥ cL · 2−k

2H(ε)k√
8kε(1− ε)

≥ cL ·
2(H(ε)−1)k

√
k

,

since
√

8ε(1− ε) < 1 for our choice of ε. Let T :=
∑m
i=1 Ti. Then by linearity of expectation,

cL ·m2(H(ε)−1)k/
√
k ≤ E[T ] ≤ cU ·m2H(ε)k−k = cU · n2(τ+H(ε))k,

where τ = 1/16. Letting mL := m2(H(ε)−1)k/
√
k and mU := n2(τ+H(ε))k as before, and define δU :=
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3/2cU − 1. By the Chernoff bound, we have

Pr[T > 3mU/2|(X,Y )] ≤ Pr[T > 3E[T ]/(2cU )|(X,Y )]

= Pr[T > (1 + δU )E[T ]|(X,Y )]

≤ exp(−δ2
UE[T ]/3) ≤ exp(−δ2

UmL/3) = exp(−Ω(mL)),

where the final equality holds because δU is a constant. Similarly, for δL := 1− 2/cL,

Pr[T < mL/2|(X,Y )] ≤ Pr[T < (1− δL)E[T ]|(X,Y )]

≤ exp(−δ2
LE[T ]/3) ≤ exp(−δ2

LmL/3) = exp(−Ω(mL))

Thus we have that mL/2 < T < 3mU/2 with probability at least 1 − 2 exp(−Ω(mL)). Exactly the same
conclusion holds via the same calculations for the Y -variables as well.

3.6 Conclusion

We end by discussing some questions left open by this work.

Problem 3.1. Lower Bounds for O(1)-Random CNFs. The main remaining question is to obtain Cutting
Planes lower bounds on random k-CNF formulas when k = Θ(1). It seems likely that such lower bounds
should hold even for RCC1 proofs, however, as discussed in the introduction to this chapter it seems that
current methods for proving monotone circuit lower bounds are incapable of obtaining strong lower bounds
when k is constant.

Problem 3.2. More Robust Lower Bounds for Random CNFs. Our lower bound on random Θ(log n)-
CNF formulas holds for clause density ∆k = Θ(2(1+τ)k) for some τ ∈ (0, 1). As discussed in the introduc-
tion, this interval is relatively narrow compared to lower bounds on random k-CNF formulas for other proof
systems. Can we obtain a lower bounds on random O(log n)-CNF formulas which hold for a more robust
range of ∆k?



Chapter 4

Stabbing Planes

4.1 Introduction

An effective method for analyzing classes of algorithms is to formalize the techniques used by the algorithms
into a formal proof system, and then analyze the proof system instead. By doing this, we are able to hide
many of the practical details of implementing these algorithms, while preserving the class of methods that the
algorithms can feasibly employ. This allows us to factor understanding a given algorithm into two questions:

(i) How powerful is the proof system? For which inputs are there short proofs?

(ii) How close can actual implementations of the algorithm come to the ideal nondeterministic algorithm
modelled by the proof system?

As an illustrative example of this approach, recall the DPLL algorithm [53,54], which forms the basis of mod-
ern conflict-driven clause learning algorithms for solving SAT. For a CNF formula F , the DPLL algorithm
is the following recursive search for a satisfying assignment: choose a variable xi (non-deterministically,
or via some heuristic), and then recurse on the formulas F � (xi = 0) and F � (xi = 1). If at any point
a satisfying assignment is found, the algorithm halts and outputs the assignment. Otherwise, if the current
partial assignment falsifies some clause C of F , the recursive branch is terminated. If every recursive branch
terminated with a falsified clause, then F is unsatisfiable and we can take the recursive tree as a proof of this
fact; in fact, such a DPLL tree is equivalent to a treelike resolution refutation of F .

The approach of using proof complexity for algorithm analysis has been successfully employed to study
many different families of algorithms, including

• Conflict-driven clause-learning algorithms for SAT [92, 115, 142], which can be formalized using res-

olution proofs [54].

• Optimization algorithms using semidefinite programming [73, 122], which can often be formalized
using Sums-of-Squares proofs [12, 81].

• The cutting planes algorithms for integer programming [37, 76], which are formalized by Cutting

Planes proofs [37, 38, 45].

We continue the study of formal proof systems corresponding to modern integer programming algorithms.
Integer programming problems are an intrinsically natural formalization of NP-optimization problems, and

52
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algorithms for solving them have had a profound effect throughout computer science and beyond. A classic
approach for solving integer programming problems — pioneered by Gomory [76] — is to refine the polytope
P by introducing cutting planes. These algorithms are formalized by the Cutting Planes proof system [45],
and this connection has led to a number of lower bounds on the runtime of these algorithms [30,68,72,86,127],
as well as related measures such as the Chvátal rank [31, 36, 79].

While Cutting Planes has grown to be an influential proof system in propositional proof complexity,
the original cutting planes algorithms suffered from numerical instabilities, as well as difficulties in finding
good heuristics for the next cutting planes to add [76]. Instead, modern algorithms for integer programming
improve on the classical cutting planes method by combining it with a second technique, known as branch-

and-bound [10, 104], resulting in a family of optimization algorithms broadly referred to as branch-and-cut

algorithms [121]. These algorithms search for integer solutions in a polytope P by recursively repeating the
following two procedures: First, P is split into smaller polytopes P1, . . . , Pk such that P ∩ Zn ⊆

⋃
i∈[k] Pi

(i.e. branching). Next, cutting planes deductions are made in order to further refine the branched polytopes
(i.e. cutting). In practice, branching is usually performed by selecting a variable xi and branching on all
possible integer values of xi; that is, recursing on P ∩ {xi = t} for each feasible integer value t. More
complicated branching schemes is also considered, such as branching on the hamming weight of subsets of
variables [65], branching using basis-reduction techniques [1, 2, 82, 91, 102, 109], and more general linear
inequalities [94, 112, 120] which fall under the purview of branching on general disjunctions1. While these
branch-and-cut algorithms are much more efficient in practice than the classical cutting planes methods, they
are no longer naturally modelled by Cutting Planes proofs.

In this work, we introduce Stabbing Planes as a proof system which formalize branch-and-cut algorithms.
Intuitively, Stabbing Planes has the same branching structure as DPLL, but generalizes branching on single
variables to branching on linear inequalities. We will formalize Stabbing Planes in stages as a generalization
of DPLL. Recall that in the setting of integer programming we would like to prove the integer-infeasibility
of a system of integer linear inequalities Ax ≥ b over real-valued variables; for simplicity of exposition,
suppose that Ax ≥ b encodes a CNF formula F . We rephrase DPLL geometrically to the setting of integer
linear programming as follows. Consider some DPLL refutation of F . Each time the DPLL tree branches
on the {0, 1}-value of a variable xi, instead branch on whether xi ≤ 0 or xi ≥ 1; because the encoding
Ax ≥ b of F includes axioms xi ≥ 0 and xi ≤ 1 this is equivalent. After this replacement, each node
v in the DPLL tree is naturally associated with a polytope Pv of points satisfying Ax ≥ b and each of the
inequalities labelling the root-to-v path. Since we began with a DPLL refutation, it is clear that for any leaf
`, the polytope P` associated with the leaf is empty, as any Zn-valued point would have survived each of the
inequalities queried on some path in the tree and thus would exist in one of the polytopes at the leaves.

The Stabbing Planes system is then the natural generalization of the previous object: at each step in the
refutation an arbitrary integer linear form ax in the input variables is chosen and we recurse assuming that it
is at least some integer b or at most its integer negation b− 1. Observe that because a and b are integral, any
x∗ ∈ Zn will satisfy at least one of the inequalities (ax ≤ b− 1, ax ≥ b), and so if the polytope at each leaf
(again, obtained by intersecting the original system with the inequalities on the path to this leaf) is empty then
we have certified that the original system has no integral solutions (an example is given in Figure 4.1). One
of the major advantages of Stabbing Planes is its simplicity: refutations are decision trees that query integer
linear inequalities.

The queries in a Stabbing Planes proof correspond to what is known as branching general disjunctions

1For far more in-depth discussions on branch-and-bound and branch-and-cut we refer the reader to [146], [42], and [7]
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x+ y ≥ 2x+ y ≤ 1

x− y ≤ 0 x− y ≥ 1

x+ y ≥ 2

x+ y ≤ 1

x− y ≥ 1

x− y ≤ 0

Figure 4.1: A partial stabbing planes proof (left) and its result on the unit square (right). The yellow and red
areas are removed from the polytope (green), and we recurse on both sides.

or split disjunctions [44] in integer programming, and capture the majority of branching that is done in
practice [42]. However, recall that branch-and-cut algorithms combine Stabbing Planes-style branching with
additional cutting planes in order to refine the search space. Unlike Stabbing Planes proofs, Cutting Planes
deductions can be dag-like, repeatedly reusing previously derived inequalities. Therefore it is not immediately
clear that Stabbing Planes is able to fully formalize this part of branch-and-cut. Surprisingly, we show that
these additional cutting planes are superfluous from the perspective of proof complexity: Stabbing Planes can
efficiently simulate Cutting Planes deductions. Furthermore, this simulation was recently extended by [13]
to show that Stabbing Planes can simulate disjunctive cuts which capture the vast majority of cutting planes
used in practice, including lift and project cuts [11], split cuts [44], Gomory mixed integer cuts [75] and MIR

cuts.
Beyond providing a theoretical model for branch and cut algorithms, we believe that the simplicity of

Stabbing Planes proofs, as well as its closeness to DPLL, makes Stabbing Planes a better starting point for
the development of search algorithms which operate over the reals, such as pseudoboolean SAT solvers, than
established proof systems. Modern pseudoboolean solvers are built upon the Cutting Planes proof system,
which suffers a complex deductive ruleset in which new constraints must be deduced directly from old con-
straints; this is in contrast with query-based proof systems such as Stabbing Planes. From the perspective of
SAT solving, even though treeRes is equivalent to DPLL, it is the search point of view of DPLL that has led to
major advances in SAT algorithms. A natural hypothesis is that it is much easier to invent useful heuristics in
the language of query-based algorithms, as opposed to algorithms based on the deductive rules of resolution.
Stabbing Planes offers similar benefits with respect to reasoning about inequalities. Furthermore, Stabbing
Planes is a direct generalization of DPLL, and therefore we hope that the fine-tuned heuristics that have been
developed for modern DPLL-based solvers can be lifted to algorithms based on Stabbing Planes.

Stabbing Planes in Proof Complexity

Despite its simplicity, Stabbing Planes proofs are remarkably powerful. As a motivating example, we give
simple, short (quasipolynomial size) SP refutations of any unsatisfiable system of linear equations over a
prime finite field. Systems of linear equations over a prime finite field, such as the Tseitin formulas, form
one of the canonical families of hard examples for algebraic and semi-algebraic proof systems, including
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Nullstellensatz [80], Polynomial Calculus [32], and Sum-of-Squares [81, 137].
Even so, Stabbing Planes is not so powerful that establishing lower bounds appears to be entirely out of

reach. Letting SP∗ be the restriction of SP that only allows branching on inequalities with coefficients of
magnitude at most quasipolynomial in n, we prove the following lower bound.

Theorem 1.3.7. There exists a family of unsatisfiable CNF formulas {Fn} for which any SP∗ refutation of

F requires size 2n
ε

for constant ε > 0.

To prove this we establish a general relationship between SP∗ and CP. First, we characterize Cutting
Planes as a non-trivial subsystem of Stabbing planes that we call Facelike Stabbing Planes. Then, we show
that any SP∗ proof can be made facelike with only a quasipolynomial blowup in the size. This is summarized
by the next theorem.

Theorem 1.3.5. Let F be any unsatisfiable CNF formula on n variables and suppose that there is an SP∗

refutation of F in size s and maximum coefficient size c. Then there is a Cutting Planes refutation of F of size

s(cn)log s.

In fact, we establish a more general version of this theorem (Theorem 4.4.6) which allows us to quasipoly-
nomially translate any SP∗ refutation of a sufficiently bounded system of linear inequalities into CP. This
allows for the significant analysis done on the size of Cutting Planes proofs to be lifted directly to branch-
and-cut solvers.

As an application of the connection between SP∗ and CP, we show that CP can quasipolynomially refute
any unsatisfiable system of linear equations over a prime finite field.

Corollary 1.3.6. Let F be the CNF encoding of an unsatisfiable system of m linear equations over a prime

finite field. Then there is a Cutting Planes refutation of F of size |F |O(logm).

This generalizes the surprising result of Dadush and Tiwari [48] showing that CP has quasipolynomial
size refutations of the Tseitin Formulas which had long conjectured to be hard to refute in CP [45].

As a second application of Theorem 1.3.5 we can conclude that SP∗, and therefore branch-and-cut, proofs
cannot be found efficiently. Indeed, it follows almost immediately from the framework Göös et al. [78] that
SP∗ is not automatable unless P = NP.

We also explore the relationships between SP and other proof systems. This is summarized in Figure 4.2.
Most notably, we show that SP is polynomially-equivalent to treeR(CP), the tree-like variant of Krajı́ček’s
R(CP) proof system [99]. This system can be thought of as a mutual generalization of resolution and Cutting
Planes, in which the lines are disjunctions of integer linear inequalities, and we are allowed Cutting Planes
rules on the inequalities, as well as resolution-style cuts on the disjunctions. Even though SP is equivalent to
a system already in the literature, the new perspective provided by SP is enlightening. Indeed, none of the
results in this chapter were known for treeR(CP), including the simulation of CP.

The remainder of this chapter tackles the problem of proving lower bounds on SP proofs with unbounded
coefficients. Although we are unable to establish size lower bounds, we prove strong lower bounds on the
depth of SP refutations, as well as explain why several natural approaches for proving size bounds fail. The
depth of an SP proof — the longest root to leaf path in the proof — is a natural parameter that captures the
parallelizability of these proofs, and is closely related to rank measures of polytope which have been studied
extensively integer programming theory [36].

Theorem 1.3.8. There exists a family of unsatisfiable CNF formulas {Fn} for which any SP refutation

requires depth Ω(n/ log2 n)
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SP = treeR(CP) Semantic CP

CP = Facelike SPSP∗

CP∗

R(CP)

treeRes(k)

Sum of Squares

Nullstellensatz

AC0-Frege

Figure 4.2: Known relationships between relevant proof systems. A solid black (red) arrow from proof system
P1 to P2 indicates that P2 can polynomially (quasipolynomially) simulate P1. A black (red) dashed arrow
from P1 to P2 indicates that P2 cannot polynomially (quasipolynomially) simulate P1.

The proof of this theorem proceeds by showing that shallow SP proofs give rise to short randomized and
real communication protocols for the CNF search problem. One might hope that these depth bounds could
be leveraged to prove size lower bounds. However, we show that straightforward approaches for doing this
fail. First, we show that SP proofs cannot be balanced — SP proofs of size s do not imply the existence of
proofs of size poly(s) and depth polylog(s).

While SP proofs cannot be balanced, the real communication protocols that result from SP proofs pre-
serve the topology of the SP proof, and therefore size lower bounds on SP would follow by showing that real
communication protocols can be balanced. There is a precedent for this: both deterministic and randomized
communication protocols can be balanced, and lower bounds on treeCP proofs were obtained by exploiting
this fact [89]. However, we show that real communication protocols cannot be balanced. Enroute we establish
the first superlogarithmic lower bound on the real communication complexity of the set disjointness function,
a function which has been central to many of the lower bounds which exploit communication complexity.

4.1.1 Related and Subsequent Work

Lower Bounds on Variable Branching. Lower bounds for a number of branch-and-cut algorithms using
variable-branching — meaning that they branch on the integer value of single variables, rather than arbitrary
inequalities (i.e., DPLL which branches on xi ∈ Z) — have been established. The first example of this was the
lower bound of Jerslow [90] on the number of queries made by branch-and-bound algorithms with variable
branching. Cook and Hartman proved exponential lower bounds on the number of operations required to
solve certain travelling salesman instances by branch-and-cut algorithms which use variable branching and
Chvátal-Gomory cuts [46]. However, their lower bound is exponential only in the number of variables, and
not in the number of inequalities. The first truly exponential (in the encoding size of the instance) lower bound
for branch-and-cut algorithms which use variable branching was established by Dash [51] who extending the
lower bound of Pudlák [127] for Cutting Planes proofs.

Lower Bounds for treeR(CP). Lower bounds on certain restricted models of treeR(CP) were established
in earlier works. Krajı́ček [99] proved superpolynomial lower bounds on the size of R(CP) proofs when
both the width of the clauses, and the magnitude of the coefficients of every line are sufficiently bounded.
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Concretely, let w and c be upper bounds on the width and coefficient size respectively; the lower bound that
he obtained is 2n

Ω(1)

/cw log2 n. Building on this work, Kojevnikov [97] showed that the dependence on the
coefficient size for treeR(CP) proofs, obtaining a lower bound of exp(Ω(

√
n/w log n)). In Subsection 4.5.1

we prove a size-preserving simulation of SP by treeR(CP) which translates depth d SP proofs into width d
treeR(CP) proofs. Therefore, Kojevnikov’s result implies a superpolynomial lower bound on the size of SP

proofs of depth o(n/ log n). In Subsection 4.6.1 we exhibit a formula for which any SP refutation requires
depth Ω(n/ log2 n), nearly matching the result of Kojevnikov.

Intermediate and Subsequent Work. Following [15], in which we gave quasipolynomial size SP refuta-
tions of the Tseitin formulas [15], Dadush and Tiwari [48] showed that these proofs could be translated into
CP. This refuted a long-standing conjecture that CP requires exponential size refutations of these formu-
las [45]. In the same paper, they established a polynomial equivalence between the number of nodes and the
size of SP proofs (i.e., the number of bits needed to express the proof).

As well, they consider SP in the context of mixed integer programming (MIP), and prove exponential
lower bounds on SP in this setting. In this setting, you are given a polytope P = {(x, y) ∈ Rn1 × Rn2 :

Ax + By ≥ b}, and you are searching for an integer solution to the x-variables and a real solution to
the y-variables. That is, rather than proving that P ∩ Zn1+n2 = ∅, instead you would like to prove that
P ∩Zn1 ∩Rn2 = ∅. In this case, SP queries involving y-variables are disallowed, as this would not be sound.
As shown by Dadush and Tiwari, this restriction turns out to be enough to obtain quite simple proofs of
intractability. First, they prove that any SP refutation of a certain system of 2n many inequalities (encoding
the complete unsatisfiable formula) requires size 2n/n. Next, they show that this system of inequalities
admits a poly(n)-size MIP extended formulation. As SP cannot branch on the extension variables, refuting
this extended formulation is identical refuting the complete unsatisfiable formula in SP. Dey, Dubey, and
Molinaro [58] extended this technique to prove lower bounds for a number of MIP instances for packing, set
cover, the Travelling Salesman problem, and the cross polytope, even when Gaussian noise is added to the
coefficients. However, this technique crucially relies on the fact that for MIP problems, SP queries cannot
involve the real-variables, and therefore it does not appear to be possible to extend this technique to prove
lower bounds on pure integer programming problems (i.e. those with only integer-variables) such as standard
encodings of CNF formulas.

Basu et al. [13] showed that SP can simulate disjunctive cuts, a result which we cover in more detail in
Subsection 4.4.4. Furthermore, they give an integer programming instance that can be solved in size O(1)

in SP but requires poly(n) deductions using split cuts. As well, they explore the effect that sparsity —the
number of non-zero coordinates in each query — has on branch-and-cut. Sparse queries can be thought of as
an intermediate between full SP branching and variable branching. They provide an instance where the any
branch-and-bound tree must be of exponential size if the sparsity is o(n).

Recently, Dantchev et al. [49] introduced several novel techniques for proving lower bounds on SP proofs
by exploiting their geometric structure. In particular, they make use of the fact that for a polytope P , every
point x∗ ∈ P must be contained within some slab of the SP proof. This allowed them to establish linear
lower bounds on the size of SP proofs of the pigeonhole principle as well as the Tseitin formulas; because
SP proofs are binary trees, this leads to a depth Ω(log n) lower bound for both formulas.
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4.1.2 Organization

We begin by formally defining Stabbing Planes as a proof system in Section 4.2. The short Stabbing Planes
refutations of linear equations over any prime finite field are given in Section 4.3. Section 4.4 explores how
Stabbing Planes relates to Cutting Planes and is organized as follows: first, in Section 4.4 we characterize
Cutting Planes as a sub-system of Stabbing Planes. In Subsection 4.4.1 we show that SP∗ proofs can be
converted into CP. Next, we explore whether a simulation of Cutting Planes by Stabbing Planes can preserve
other parameters of the proof in Subsection 4.4.3. We end this section (in Subsection 4.4.4) we observe that
Stabbing Planes can simulate most other types of cutting planes which are used in integer programming.

In Section 4.5 we explore how Stabbing Planes compares to other popular proof systems in the literature.
In the final section (Section 4.6) we explore whether we can prove lower bounds on Stabbing Planes with
unbounded coefficients. We prove unrestricted depth lower bounds in Subsection 4.6.1 and rule out several
natural approaches that utilize communication complexity in Subsection 4.6.2.

4.2 The Stabbing Planes Proof System

We begin with a formal definition of the Stabbing Planes (SP) proof system, and then record some basic
properties.

Stabbing Planes. Let Ax ≥ b be a system of linear inequalities with no integer solutions. A Stabbing

Planes (SP) refutation of Ax ≥ b is a directed binary tree, T , where each edge is labelled with a linear
integral inequality satisfying the following consistency conditions:

• Internal Nodes. For any internal node u of T , if the right outgoing edge of u is labelled with cx ≥ d,
then the left outgoing edge is labelled with its integer negation cx ≤ d− 1.

• Leaves. Each leaf node v of T is labelled with a conic combination of inequalities in F with inequalities
along the path leading to v that yields 0 ≥ 1 (provided by Farkas’ Lemma).

For an internal node u of T , the pair of inequalities (cx ≤ d− 1, cx ≥ d) is called the query corresponding
to the node. Every node of T has a polytope P associated with it, where P is the polytope defined by the
intersection of the inequalities in F together with the inequalities labelling the path from the root to this
node. We will say that the polytope P corresponds to this node. That is, if P is the polytope corresponding
to a node v which queries (cx ≤ d − 1, cx ≥ d), then the polytopes of the children of v are given by
P ∩ {x ∈ Rn : cx ≤ d − 1} and P ∩ {x ∈ Rn : cx ≥ d}. For readability, we will use the abbreviation
P ∩ {cx ≥ d} for P ∩ {x ∈ Rn : cx ≥ d}.

The slab corresponding to a query (cx ≤ d − 1, cx ≥ d) is {x ∈ Rn | d − 1 < cx < d}, which is the
set of points ruled out by this query. The width of the slab is the minimum distance between cx ≤ d− 1 and
cx ≥ d, which is 1/‖c‖2. This gives an intuitive geometric interpretation of SP refutations: at each step we
remove a slab from the polytope and recurse on the resulting polytopes on both sides of the slab. The aim is
to recursively cover the polytope with slabs until every feasible point has been removed. An example of this
can be seen in Figure 4.1, where the yellow and red areas are the slabs of the two queries.

The size of an SP refutation is the bit-length needed to encode a description of the entire proof tree, which,
for CNF formulas as well as sufficiently bounded systems of inequalities, is polynomially equivalent to the
number of queries in the refutation. In particular, Dadush and Tiwari [48] prove the following.
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Proposition 4.2.1 (Corollary 1.2 in [48]). Let Ax ≥ b be any system of linear inequalities with no integer

solutions whose coefficients require ` bits to express, and let s be the number of nodes in an SP refutation of

Ax ≥ b. Then there exists an SP refutation of size s`n6.

As well, the depth (or rank) of the refutation is the depth of the binary tree. The depth of refuting an
unsatisfiable (over Zn) system of linear inequalities Ax ≥ b, denoted depthSP(Ax ≥ b), is the minimum
depth of any SP refutation of Ax ≥ b. Observe that any unsatisfiable system of inequalities Ax ≥ b whose
corresponding polytope is contained within the unit cube [0, 1]n (this includes the encodings of all CNF
formulas) has a trivial size 2n and depth n SP refutation by branching on (xi ≤ 0, xi ≥ 1) for every i ∈ [n].

Next, we show that SP is indeed a proof system, as defined by Cook and Reckhow [43].

Proposition 4.2.2. Stabbing Planes is sound, complete, and polynomially verifiable.

Proof. Completeness follows immediately from the fact that SP simulates DPLL, which is itself a complete
proof system. Soundness follows because each slab in an SP proof, corresponding to a query (cx ≤ d −
1, cx ≥ d), removes only non-integral points. Indeed, by the integrality of c and d, any x ∈ Zn satisfies
either cx ≤ d− 1 or cx ≥ d. Finally, to see that SP proofs are polynomially verifiable, observe that we only
need to verify that every query is of the form (cx ≤ d− 1, cx ≥ d) for integral c and d, and that each conic
combination labelling the leaves evaluates to 0 ≥ 1.

We will also be interested in the following natural restriction of Stabbing Planes.

Bounded-Weight Stabbing Planes. The bounded-weight Stabbing Planes proof system SP∗ is the subsys-
tem of Stabbing Planes obtained by requiring that all coefficients of the proofs to have magnitude at most
quasipolynomial (nlogO(1) n) in the number of input variables.

4.3 Refutations of Linear Equations over Prime Finite Fields

Systems of linear equations over finite fields, and especially the Tseitin formulas, form some of the most
prominent classes of hard formulas for many weak proof systems, including Resolution [144], Nullstellen-
satz [80], Polynomial Calculus [32], Sum-of-Squares [81, 137], and AC0-Frege [20, 71, 84, 124], and were
conjectured to be hard to prove in Cutting Planes [45]. As a motivating example, we exhibit simple, short
Stabbing Planes refutations of any unsatisfiable system of linear equations over a prime finite field.

If ax = b is a linear equation we say the width of the equation is the number of non-zero variables
occurring in it. Any width-d linear equation over a prime finite field of size p, denoted Fp, can be represented
by a CNF formula with pd−1 width-d clauses — one ruling out each falsifying assignment. For a width-d
system of m linear equations F over Fp, we will denote by |F | := mpd−1 the size of the CNF formula
encoding F .

Theorem 4.3.1. Let F = {f1 = b1, . . . , fm = bm} be a width-d, unsatisfiable set of linear equations over

Fp. There is an SP refutation of (the CNF encoding of) F in size (mpd)O(logm)pd = |F |O(logm) and depth

O(log2(mpd)).

First we sketch the idea for the Tseitin Formulas. Our SP proofs correspond to a branch decomposition
procedure which is commonly used to solve SAT (see e.g. [5, 50, 57, 106]). Consider a cut V = V1 ∪ V2 in
G and observe that if we know the parity of the edge variables crossing the cut ⊕uv∈V1×V2xuv then we know
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that at least one of V1 or V2 is unsatisfiable depending on the parity of the sum of the cut variables. We can
recurse on the unsatisfiable subset, decreasing the size of the instance by 1/2. To determine the parity of the
cut in SP, we simply branch on all possible values of the sum of the edges crossing the cut. Since there are n
boolean variables (corresponding to the edges), each cut has at most n+ 1 possibilities for the sum, and if we
maintain that the partition of the vertices defining the cut is balanced, then we will recurse at most O(log n)

times.
Next, we describe how handle an arbitrary system F of m F2-linear equations. View the system F as a

hypergraph over n vertices (corresponding to the variables) and with a d-edge for each equation. Partition
the set of hyperedges into two sets E = E1 ∪ E2 of roughly the same size, and consider the cut of vertices
that belong to both an edge in E1 and in E2. Using the SP rule we branch on all possible values of the sum
of the cut variables in order to isolate E1 and E2. Once we know this sum, we are guaranteed that either E1

is unsatisfiable or E2 is unsatisfiable. This allows us to recursively continue on the side of the cut (E1 or E2)
that is unsatisfiable.

Over a prime finite field of size p the proof will proceed in much the same way. Instead of a subgraph,
at each step we will maintain a subset of the equations I ⊆ [m] such that {fi = bi}i∈I must contain a
constraint that is violated by the SP queries made so far. We partition I into two sets I1 and I2 of roughly
equal size and query the values a and b of

∑
i∈I1 fi and

∑
i∈I2 fi. Because F is unsatisfiable, at least one of

a−
∑
i∈I1 bi 6≡ 0 or b−

∑
i∈I2 bi 6≡ 0, meaning that that it is unsatisfiable, and we recurse on it.

In the following, we will let z stand for a vector of Fp-valued variables zi. When we discuss any form
f := az where a ∈ Fmp and z is a vector of n variables zi, we will implicitly associate it with the linear form∑
i∈[n] ai(

∑
j∈[log p] xi,j) where xi,j are the log p many boolean variables encoding zi in the CNF encoding

of F .

Proof of Theorem 4.3.1. Let F = {f1 = b1, . . . , fm = bm} be a system of unsatisfiable linear equations
over Fp, where each fi = aiz for ai ∈ Fnp , and bi ∈ Fp. Because F is unsatisfiable, there exists a Fp linear
combination of the equations in F witnessing this; formally, there exists α ∈ Fnp such that

∑
i∈[m] αifi ≡ 0

mod p, but
∑
i∈[m] αibi 6≡ 0 mod p.

Stabbing Planes will implement the following binary search procedure for a violated equation; we de-
scribe the procedure first, and then describe how to implement it in Stabbing Planes. In each round we
maintain a subset I ⊆ [m] and an integer kI representing the value of

∑
i∈I αifi. Over the algorithm, we

maintain the invariant that kI −
∑
i∈I αibi 6≡ 0 mod p, which implies that there must be a contradiction to

F inside of the constraints {fi = bi}i∈I .
Initially, I = [m] and we obtain kI by querying the value of the sum

∑
i∈[m] αifi. If kI 6≡ 0 mod p then

this contradicts the fact that
∑
i∈I αifi ≡ 0 mod p; thus, the invariant holds. Next, perform the following

algorithm.

1. Choose a balanced partition I = I1 ∪ I2 (so that ||I1| − |I2|| ≤ 1).

2. Query the value of
∑
i∈I1 αifi and

∑
i∈I2 αifi; denote these values by a and b respectively.

3. If a −
∑
i∈I1 αibi 6≡ 0 mod p then recurse on I1 with kI1 := a. Otherwise, if b −

∑
i∈I2 αibi 6≡

0 mod p then recurse on I2 with kI2 := b.
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4. Otherwise (if a−
∑
i∈I1 αibi ≡ b−

∑
i∈I2 αibi ≡ 0 mod p), then this contradicts the invariant:

0 6≡ kI −
∑
i∈I

αbi =
∑
i∈I

αi(fi − bi)

=
∑
i∈I1

αi(fi − bi) +
∑
i∈I2

αi(fi − bi)

= (a−
∑
i∈I1

αibi) + (b−
∑
i∈I1

αibi) ≡ 0 mod p.

This recursion stops when |I| = 1, at which point we have an immediate contradiction between kI and the
single equation indexed by I .

It remains to implement this algorithm in SP. First, we need to show how to perform the queries in step
2. Querying the value of any sum

∑
i∈I αifi can be done in a binary tree with at most p2md leaves, one

corresponding to every possible query outcome. Internally, this tree queries all possible integer values for
this sum (e.g. (

∑
i∈I αifi ≤ 0,

∑
i∈I αifi ≥ 1), (

∑
i∈I αifi ≤ 1,

∑
i∈I αifi ≥ 2), . . .). For the leaf

where we have deduced
∑
i∈[m] αifi ≤ 0 we use the fact that each variable is non-negative to deduce that∑

i∈[m] αifi ≥ 0 as well. Note that p2md is an upper bound on this sum because there are m equations, each
containing at most d variables, each taking value at most (p−1) 2. Thus, step 2 can be completed in (p2md)2

queries.
Finally, we show how to derive refutations in the following cases: (i) when we deduced that

∑
i∈[m] αifi 6≡

0 mod p at the beginning, (ii) in step 4, (iii) when |I| = 1.

(i) Suppose that we received the value a 6≡ 0 mod p from querying
∑
i∈[m] αifi. Note that the coefficient

of every variable in
∑
i∈[m] αifi is a multiple of p. Query( ∑

i∈[m]

αifi/p ≤ da/pe − 1,
∑
i∈[m]

αifi/p ≥ da/pe
)
.

At the leaf that deduces
∑
i∈[m] αifi/p ≤ da/pe − 1, we can derive 0 ≥ 1 as a non-negative

linear combination of this inequality together with
∑
i∈[m] αifi ≥ a. Similarly, at the other leaf∑

i∈[m] αifi/p ≥ da/pe can be combined with
∑
i∈[m] αifi ≤ a to derive 0 ≥ 1.

(ii) Suppose that a −
∑
i∈I1 αibi ≡ b −

∑
i∈I2 αibi ≡ 0 mod p. Then 0 ≥ 1 is derived by summing∑

i∈I1 αifi ≥ a,
∑
i∈I2 αifi ≥ b and

∑
i∈I αifi ≤ kI , all of which have already been deduced.

(iii) When |I| = 1 then we deduced that aIz = kI for kI 6≡ bI mod p and we would like to derive a
contradiction using the axioms encoding aIz ≡ bI . These axioms are presented to SP as the linear-
inequality encoding of a CNF formula, and while there are no integer solutions satisfying both these
axioms and aIz = kI , there could in fact be rational solutions. To handle this, we simply force that
each of the at most d variables in aIz takes an integer value by querying the value of each variable one
by one. As there are at most d variables, each taking an integer value between 0 and p− 1, this can be
done in a tree with at most pd many leaves. At each leaf of this tree we deduce 0 ≥ 1 by a non-negative
linear combination with the axioms, the integer-valued variables, and aIz ≡ bI .

2Note that instead of querying the value of
∑

i∈I αifi we could have queried
∑

i∈I αifi ( mod p) to decrease the number of leaves
to pmd.
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The recursion terminates in at most O(logm) many rounds because the number of equations under consider-
ation halves every time. Therefore, the size of this refutation is (pmd)O(logm)pd. Note that by making each
query in a balanced tree, this refutation can be carried out in depth O(log2(mpd)).

4.4 The Relationship Between Stabbing Planes and Cutting Planes

It is an interesting question how Stabbing Planes compares to Cutting Planes, the main proof system based
on ideas from integer programming. By contrasting the two systems we see three major differences:

• Top-down vs. Bottom-up. Stabbing Planes is a top-down proof system formed by performing queries
on the polytope and recursing; while Cutting Planes is a bottom-up proof system, formed by deducing
new inequalities from previously deduced ones.

• Polytopes vs. Halfspaces. Individual “lines” in a Stabbing Planes proof are polytopes, while individual
“lines” in a Cutting Planes proof are halfspaces.

• Tree-like vs. dag-like. The graphs underlying Stabbing Planes proofs are trees, while the graphs un-
derlying Cutting Planes proofs are general dags: intuitively, this means that Cutting Planes proofs can
“re-use” their intermediate steps, while Stabbing Planes proofs cannot.

When taken together, these facts suggest that Stabbing Planes and Cutting Planes could be incomparable in
power, as polytopes are more expressive than halfspaces, while dag-like proofs offer the power of line-reuse.
Going against this intuition, we show next that Stabbing Planes and Cutting Planes are in fact very closely
related.

4.4.1 Cutting Planes as a Subsystem of Stabbing Planes

In this section we show that SP can simulate CP proofs. In fact, we characterize CP as a nontrivial subsystem
of SP, which we call Facelike SP.

Theorem 4.4.1. The proof systems CP and Facelike SP are polynomially-equivalent.

We begin by formally defining Facelike SP. Recall that for a polytope P and inequality cx ≥ dwe denote
P ∩ {x ∈ Rn : cx ≥ d} by P ∩ {cx ≥ d}.

Facelike Stabbing Planes. A Stabbing Planes query (cx ≤ d− 1, cx ≥ d) at a node P is facelike if one of
the sets P ∩ {cx ≤ d− 1} and P ∩ {cx ≥ d} is empty or is a face of P (see Figure 4.3b). An SP refutation
is facelike if every query in the refutation is facelike.

For polytopes P , P ′ we denote by P ` P ′ that P ′ can be inferred from P by a facelike query; that is,
there is (cx ≤ d− 1, cx ≥ d) such that P ∩ {cx ≤ d− 1} = ∅ and P ∩ {cx ≥ d} = P ′.

Enroute to proving Theorem 4.4.1, it will be convenient to introduce the following further restriction of
Facelike Stabbing Planes.

Pathlike Stabbing Planes. A Stabbing Planes query (cx ≤ d − 1, cx ≥ d) at a node corresponding to a
polytope P is pathlike if at least one of P ∩ {cx ≤ d− 1} and P ∩ {cx ≥ d} is empty (see Figure 4.3a). A
Pathlike SP refutation is one in which every query is pathlike.
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∅

∅

∅ ∅

c1x ≤ d1 − 1 c1x ≥ d1

c2x ≤ d2 − 1 c2x ≥ d2

csx ≤ ds − 1 csx ≥ ds

c1x ≤ d1 − 1 c1x ≥ d1

P

(a) A Pathlike query. The polytope P ∩ {c1x ≤ d1 − 1} = ∅, and c1x ≥ d1 is a CG cut for P .

cx ≥ dcx ≤ d− 1
cx ≤ d− 1 cx ≥ d

P

(b) A Facelike query. The polytope P ∩ {cx ≤ d− 1} = P ∩ {cx = d− 1} marked in orange is a face of P .

Figure 4.3: Pathlike and Facelike SP queries on a polytope P . On the left are the proofs and on the right are
the corresponding effects on the polytope.

The name “pathlike” comes from the fact that the underlying graph of a Pathlike Stabbing Planes proof
is a path, since at most one child of every node has any children. In fact, we have already seen (nontrivial)
Pathlike SP queries under another name: Chvátal-Gomory cuts.

Lemma 4.4.2. Let P be a polytope and let (cx ≤ d − 1, cx ≥ d) be a pathlike Stabbing Planes query for

P . Assume that P ∩ {cx ≤ d− 1} = ∅ and that P ∩ {cx ≥ d} ( P . Then cx ≥ d is a CG cut for P .

Proof. Since cx ≥ d is falsified by some point in P , it follows that there exists some 0 < ε < 1 such that
cx ≥ d− ε is valid for P — note that ε < 1 since otherwise cx ≤ d− 1 would not have empty intersection
with P . This immediately implies that cx ≥ d is a CG cut for P .

With this observation we can easily prove that Pathlike SP is equivalent to CP.

Lemma 4.4.3. Pathlike SP is polynomially equivalent to CP.
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Proof. First, let c1x ≥ d1, c2x ≥ d2, . . . , csx ≥ ds be a CP refutation of an unsatisfiable (over Zn) system of
linear inequalitiesAx ≥ b. Consider the sequence of polytopes P0 = {Ax ≥ b} and Pi = Pi−1∩{cix ≥ di}.
By inspecting the rules of CP, it can observed that Pi ∩ {cix ≤ di − 1} = ∅ and thus Pi+1 can be deduced
using one pathlike SP query from Pi for all 0 ≤ i ≤ s.

Conversely, let P be any polytope and let (cx ≤ d − 1, cx ≥ d) be any pathlike SP query to P (so,
suppose w.l.o.g. that the halfspace defined by cx ≤ d− 1 has empty intersection with P ). By Lemma 4.4.2,
cx ≥ d is a CG cut for P , and so can be deduced in Cutting Planes from the inequalities defining P in length
O(n) (see Proposition 2.2.2). Applying this to each query in the Pathlike SP proof yields the theorem.

Next, we show how to simulate Facelike SP proofs by Pathlike SP proofs of comparable size. The proof of
Lemma 4.4.5 is inspired by Dadush and Tiwari [48], and will use the following lemma due to Schrijver [138].
Recall that we write P ` P ′ for polytopes P, P ′ to mean that P ′ can be obtained from P by a single facelike
query from P .

Lemma 4.4.4. Let P be a polytope defined by a system of integer linear inequalities and let F be a face of

P . If F ′ is a polytope such that F ` F ′ then there is a polytope P ′ such that P ` P ′ and P ′ ∩ F ⊆ F ′.

Proof. Let P = {Ax ≤ b} and F = {A0x = b0, A1x ≤ b1}. Suppose F ′ = F ∩ {cx ≤ d} is obtained by
the Pathlike SP inference cx ≤ d. Since F ∩ {cx ≥ d + 1} is empty, there is some 0 < ε < 1 such that
cx ≤ d+ ε is valid for F . It follows that there are vectors y0, y1 such that y1 ≥ 0 and

y0A0 + y1A1 = c

y0b0 + y1b1 ≤ d+ ε.

Let z0 be any integral vector such that y0 − z0 is non-negative — for instance, we could choose z0 = by0c.
Let c′ = c − z0A0 and d′ = d − z0b0. Observe that c′x ≤ d′ + ε is valid for P as it can be deduced from
P since y0 − z0 is non-negative. Indeed, we have shifted cx ≤ d + ε so that it no longer depends on the
inequalities in A0x ≥ b0. Let P ′ := P ∩ {c′x ≤ d′}, noting that P ` P ′ as c′ and d′ are integral and
P ∩ {c′x ≥ d′ + 1} = ∅ because c′x ≤ d′ + ε is valid for P .

Let x ∈ P ′ ∩ F , and thus x ∈ F and c′x ≤ d′. Expanding c′ and d′ we have

c′x = (c− z0A0)x ≤ d′ = d− z0b0.

Rearranging we have that c′x ≤ d′ implies that

cx ≤ d+ z0(A0x− b0).

However since x ∈ F , A0x = b0 and thus cx ≤ d, implying that x ∈ F ′.

Lemma 4.4.5. Facelike SP is polynomially equivalent to Pathlike SP.

Proof. That Facelike SP simulates Pathlike SP follows by the fact that any Pathlike SP query is a valid
query in Facelike SP. For the other direction, consider an SP refutation π of size t. We describe a recursive
algorithm for generating a Pathlike SP proof from π. The next claim will enable our recursive case.

Claim. Let P be a polytope and suppose ax ≥ b is valid for P . Assume that P ∩ {ax = b} has a Pathlike
SP refutation using s queries. Then there is a polytope contained in P ∩ {ax ≥ b+ 1} which can be derived
from P in Pathlike SP using s+ 1 queries.
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Proof of Claim. Since cx ≥ d is valid for P it follows that F = P ∩ {cx = d} is either a face of P or
empty by definition. Consider the Pathlike SP refutation F0, F1, . . . Fs = ∅, where the ith polytope Fi for
i < s is obtained from Fi−1 by applying a pathlike SP query and proceeding to the non-empty child. That is,
Fi−1 ` Fi for all i. Thus, by applying Lemma 4.4.4 repeatedly, we get a sequence of polytopes P = P0 `
P1 ` · · · ` Ps such that Pi ∩ F = Pi ∩ {cx = d} ⊆ Fi. This means that Ps ∩ {cx = d} ⊆ Fs = ∅, and so
(cx ≤ d, cx ≥ d+ 1) is Pathlike SP query for Ps. Therefore, Ps ` Ps ∩{cx ≥ d+ 1} ⊆ P ∩{cx ≥ d+ 1},
completing the proof.

We generate a Pathlike SP refutation by the following recursive algorithm, which performs an in-order

traversal of π. At each step of the recursion (corresponding to a node in π) we maintain the current polytope
P we are visiting and a Pathlike SP proof Π — initially, P is the initial polytope and Π = ∅. We maintain
the invariant that when we finish the recursive step at node P , the Pathlike SP refutation Π is a refutation of
P . The algorithm is described next:

1. Let (cx ≤ d − 1, cx ≥ d) be the current query. Because the query is pathlike, either cx ≤ d or
cx ≥ d− 1 is valid for P ; suppose that it is cx ≥ d− 1.

2. Recursively refute P ∩ {cx ≤ d− 1} = P ∩ {cx = d− 1}, obtaining a Pathlike SP refutation Π with
t queries.

3. Apply the above Claim to deduce P ∩ {cx ≥ d} from P in t+ 1 queries.

4. Refute P ∩ {cx ≥ d} by using the SP refutation for the right child.

Correctness follows immediately from the Claim, and also since the size of the resulting proof is the same as
the size of the SP refutation.

Theorem 4.4.1 then follows by combining Lemma 4.4.3 with Lemma 4.4.5.

Application: Cutting Planes Proofs of Systems of Linear Equations

We end by giving one application of the characterization of Cutting Planes as a subsystem of Stabbing Planes.
We show that it can be used to translate the short SP refutations of systems of linear equations over a prime
finite field from Theorem 4.3.1 into Cutting Planes. This extends the result of Dadush and Tiwari [48] who
gave quasipolynomial size CP refutations of the Tseitin formulas.

Corollary 1.3.6. Let F be the CNF encoding of an unsatisfiable system of m linear equations over a prime

finite field. Then there is a Cutting Planes refutation of F of size |F |O(logm).

Proof. Observe that the SP refutation from Theorem 4.3.1 is facelike. Indeed, to perform step (2) we query
(
∑
i∈I αifi ≤ t − 1,

∑
i∈I αifi ≥ t) for t = 1, . . . , q2md. For t = 1, the halfspace

∑
i∈I αifi ≥ 0 is

valid for the current polytope because the polytope belongs to the [0, 1]n cube. For each subsequent query,∑
i∈I αifi ≥ t− 1 is valid because the previous query deduced

∑
i∈I αifi ≥ t− 1. Similar arguments show

that the remaining queries are facelike. Thus, Lemma 4.4.5 completes the proof.

4.4.2 Translating Stabbing Planes into Cutting Planes

In this section we give a more general application of the characterization of Cutting Planes by Facelike
Stabbing Planes. We prove Theorem 1.3.5 restated below for convenience.
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Theorem 1.3.5. Let F be any unsatisfiable CNF formula on n variables and suppose that there is an SP∗

refutation of F in size s and maximum coefficient size c. Then there is a Cutting Planes refutation of F of size

s(cn)log s.

To prove this theorem, we will show that any SP∗ proof can be converted into a Facelike SP proof with
only a quasipolynomial loss. If P is a polytope let d(P ) denote the diameter of P , which is the maximum
Euclidean distance between any two points in P . Theorem 1.3.5 follows immediately from the following
theorem.

Theorem 4.4.6. Let P be a polytope and suppose there is an SP refutation of P with size s and maximum

coefficient size c. Then there is a Facelike SP refutation of P in size

s(c · d(P )
√
n)log s.

Proof. The theorem is by induction on s. Clearly, if s = 1 then the tree is a single leaf and the theorem is
vacuously true.

We proceed to the induction step. Let P be the initial polytope and π be the SP proof. Consider the
first query (ax ≤ b, ax ≥ b + 1) made by the proof, and let πL be the SP proof rooted at the left child
(corresponding to ax ≤ b) and let πR be the SP proof rooted at the right child. Let PL denote the polytope at
the left child and PR denote the polytope at the right child. By induction, let π′L and π′R be the Facelike SP

refutations for PL and PR guaranteed by the statement of the theorem.
Suppose w.l.o.g. that |πL| ≤ |π|/2. Let b0 be the largest integer such that ax ≥ b0 is satisfied for

any point in P . The plan is to replace the first query (ax ≤ b, ax ≥ b + 1) with a sequence of queries
q0, q1, . . . , qt−1 such that

• For each i, qi = (ax ≤ b0 + i, ax ≥ b0 + i+ 1).

• The query q0 is the root of the tree and qi is attached to the right child of qi−1 for i ≥ 1.

• qt−1 = (ax ≤ b, ax ≥ b+ 1).

After doing this replacement, instead of having two child polytopes PL, PR below the top query, we have
t+ 1 polytopes P0, P1, . . . , Pt+1 where Pi = P ∩{ax = b0 + i} and Pt+1 = PR. To finish the construction,
for each i ≤ t use the proof π′L to refute Pi and the proof π′R to refute Pt+1.

We need to prove three statements: this new proof is a valid refutation of P , the new proof is facelike,
and that the size bound is satisfied.

First, it is easy to see that this is a valid proof, since for each i ≤ t the polytope Pi ⊆ PL and Pt+1 ⊆ PR
— thus, the refutations π′L and π′R can be used to refute the respective polytopes.

Second, to see that the proof is facelike, first observe that all the queries in the subtrees π′L, π
′
R are facelike

queries by the inductive hypothesis. So, we only need to verify that the new queries at the top of the proof
are facelike queries, which can easily be shown by a quick induction. First, observe that the query q0 is a
facelike query, since b0 was chosen so that ax ≥ b0 is valid for the polytope P . By induction, the query
qi = (ax ≤ b0 + i, ax ≥ b0 + i + 1) is a facelike query since the polytope Pi associated with that query is
P ∩ {ax ≥ b0 + i} by definition. Thus ax ≥ b0 + i is valid for the polytope at the query.

Finally, we need to prove the size upper bound. Let s be the size of the original proof, sL be the size of
πL and sR be the size of πR. Observe that the size of the new proof is given by the recurrence relation

f(s) = t · f(sL) + f(sR).
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where f(1) = 1. Since the queries q0, q1, . . . , qt−1 cover the polytope PL with slabs of width 1/‖a‖2, it
follows that

t ≤ d(PL)‖a‖2 ≤ d(P )
√
n‖a‖∞ = d(P )c

√
n

where we have used that the maximum coefficient size in the proof is c. Thus, by induction, the previous
inequality, and the assumption that sL ≤ s/2, we can conclude that the size of the proof is

f(s) ≤ sL(c · d(P )
√
n)(c · d(PL)

√
n)log sL + sR(c · d(PR)

√
n+)log sR

≤ sL(c · d(P )
√
n)(c · d(P )

√
n)log(s/2) + sR(c · d(P )

√
n)log s

≤ sL(c · d(P )
√
n)log s + sR(c · d(P )

√
n)log s

≤ s(c · d(P )
√
n)log s.

Theorem 1.3.5 follows immediately, since for any CNF formula F the encoding of F as a system of
linear inequalities is contained in the n-dimensional cube [0, 1]n, which has diameter

√
n. We may also

immediately conclude Theorem 1.3.7 by applying the known lower bounds on the size of Cutting Planes
proofs [68, 72, 86, 127]. Indeed, lower bounds on random Θ(log n)-CNF formulas follow from Chapter 3.

Application: Non-automatability of SP∗

As an application of Theorem 1.3.5 we can show that SP∗ — and therefore branch-and-cut — proofs cannot
be found efficiently unless P = NP. That is, they are not automatable as defined in Section 1.1.

Corollary 4.4.7. The SP∗ proof system is not automatable unless P = NP.

This follows almost immediately from the recent proof of Göös et al. [78] that Cutting Planes is not
automatable. Indeed, for unsatisfiable formulas F , the requisite lower bound on Ref(F ) ◦ IND follows
immediately from their lower bound together with Theorem 1.3.5. On the other hand, when F is satisfiable,
their upper bound on Ref(F ) ◦ IND in Cutting Planes can be implemented in SP∗ by observing that it does
not require large coefficients.

4.4.3 Towards a Topology Preserving Simulation of Cutting Planes

An artifact of both the simulations of CP by variants of SP and of SP∗ by CP is that they are far from
being depth-preserving; they convert shallow proofs into ones that are extremely deep. In this section, we
explore whether this explosion in depth is inherent to the simulation of CP by SP (Chapter 5 is devoted
to the other direction, understanding the depth of efficiently simulating SP∗ by CP). While we are unable
to conclusively resolve this question — indeed, at this time the only technique for proving superlogarithmic
depth lower bounds on SP works equally well for CP — we provide a number of depth-preserving simulations
of subsystems of CP.

To motivate our results, we will take a detour and discuss the relationship between SP, CP and real com-
munication protocols. Presently, almost all known lower bounds for CP (including the ones from Chapter 3)
are obtained by studying the communication complexity of the CNF search problem (defined in Chapter 2).
For instance, it is known that:

• A depth d CP refutation yields a d-round real communication protocol for the associated CNF search
problem.
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• A size s treeCP refutation yields a real communication protocol O(log s)-round real communication
protocol for the associated CNF search problem.

• A size s and space ` CP refutation yields a O(` log s)-round real communication protocol for the CNF
associated search problem.

• A size s CP proof yields a dag-like real communication protocol for the associated CNF search prob-
lem.

All of these results have been used to derive strong lower bounds on Cutting Planes by proving the corre-
sponding lower bound against the CNF search problem [28,56,68,86,100,127]. Furthermore, this technique
applies even to the stronger semantic CP system, as all one needs to exploit is that the lines are linear in-
equalities, rather than expoiting some weakness of the deduction rules. However, this strength also illustrates
a weakness of current techniques, as once the lines of a proof system become expressive enough, proof tech-
niques which work equally well for semantic proof systems break down since every tautology has a short
semantic proof. Therefore, it is of key importance to develop techniques which truly exploit the “syntax” of
proof systems, and not just the expressive power of the lines.

Hence, it is somewhat remarkable that we are able to show that each of the simulation results above still
hold if we replace real communication protocols with SP refutations, which are syntactic objects. That is, we
show

(i) A depth d CP refutation yields a depth 2d SP refutation.

(ii) A size s treeCP refutation yields a size O(s) and depth O(log s) SP refutation.

(iii) A size s and space ` CP refutation yields a size O(2`s) and depth O(` log s) SP refutation.

(iv) A size s CP refutation yields a size O(s) SP refutation

Simulating CP Depth

First, we exhibit a depth-preserving simulation of CP by SP, which establishes (i). Furthermore, if the proof
is tree-like then this simulation simultaneously preserves the size.

Theorem 4.4.8. depthCP(F ) ≥ 2 · depthSP(F ). Moreover, for any treeCP refutation of depth d and size s

there is an SP refutation of depth 2d and size O(s).

Proof. It is sufficient to prove the “moreover” part of the statement, since, by recursive doubling, any CP

refutation can be converted into a treeCP refutation where the depth remains the same.
Fix a treeCP refutation of size s and depth d, and let G be the its underlying tree. We will construct

an SP refutation of the same system of linear inequalities by proceeding from the root of G to the leaves.
In the process, we will keep track of a subtree T of G, which we have left to simulate, and an associated
“current” node v of the SP refutation that we are constructing. Along the way, the following invariant will be
maintained: at every recursive step (T, v) with T 6= G, if the root of T is labelled with the inequality ax ≥ b,
then the edge leading to v in the SP refutation is labelled with ax ≤ b− 1.

Initially, T = G and the SP refutation contains only a single root node v. Consider a recursive step (T, v).
We break into cases based on which rule was used to derive the root of T .
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λ(a+ c)x ≥ λ(c+ d)

ax ≥ b cx ≥ d

λ(a+ c)x ≤ λ(b+ d)− 1

ax ≤ b− 1 ax ≥ b

cx ≥ dcx ≤ d− 1

`3

∅`1

∅`2

Figure 4.4: A treeR(CP) refutation invoking the conic combination rule (left) and the corresponding partial
SP refutation (right).

• Conic Combination. Suppose that the root of T is labelled with an inequality λ(a + c)x ≥ λ(b + d)

which was derived as a conic combination of ax ≥ b and cx ≥ d. At the current node v in the SP

refutation, query (ax ≤ b−1, ax ≥ b). On the branch labelled with ax ≥ b, query (cx ≤ d−1, cx ≥
d). This sequence of queries results in three leaf nodes; see Figure 4.4. Let the leaf of the branch
labelled with ax ≤ b − 1 be `1 and let T1 be the subtree rooted at the child of the root of T labelled
with ax ≥ b; recurse on (T1, `1). Similarly, for the leaf `2 of the branch labelled with cx ≤ d− 1, let
T2 be the sub-tree rooted at the child of the root of T labelled with cx ≥ d, and recurse on (T2, `2).

For the final leaf, obtained by traversing the edges labelled with ax ≥ b and cx ≥ d, we can derive
0 ≥ 1. To see this, first observe that if T = G (i.e. the base case) then the root node of T is labelled
with 0 ≥ 1 and ax ≥ b and cx ≥ d are the premises used to derive it by a conic combination. In this
case, we can derive 0 ≥ 1 by the same conic combination in SP. Otherwise, by the invariant, the edge
leading to v is labelled with the inequality λ(a+ c)x ≤ λ(b+ d)− 1. Therefore, a conic combination
of this inequality with ax ≥ b and cx ≥ d yields 0 ≥ 1.

• Division. If the root of T is labelled with an inequality ax ≥ db/δe obtained by division from δax ≥ b,
then query (δax ≤ b − 1, δax ≥ b). At the leaf `1 corresponding to the edge δax ≤ b − 1, let T1 be
the subtree of T rooted at the child of the root of T and recurse on (T1, `1). At the leaf corresponding
to the edge δax ≥ b we derive 0 ≥ 1 by a conic combination with ax ≤ db/δe − 1, which we have
already deduced by the invariant. To see this, observe that b− δ(db/δe − 1) > 0

• Axiom. If T is a single node — a leaf of the treeR(CP) refutation labelled with some initial inequality
ax ≥ b of the system that it is refuting — then, by the invariant, we have already deduced ax ≤ b− 1

and this can be added to ax ≥ b to derive 0 ≥ 1.

To see that the SP refutation that we have constructed has depth at most twice that of the treeCP refutation,
observe that conic combinations are the only inference rule of CP for which this construction requires depth
2 to simulate, while all other rules require depth 1.

To measure the size, note that every CP rule with a single premise is simulated in SP by a single query,
where one of the outgoing edges of that query is immediately labelled with 0 ≥ 1. Each rule with two
premises is simulated by two queries in the SP refutation, where one of the three outgoing edges is labelled
with 0 ≥ 1. Therefore, the size of the SP refutation is O(s).
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Tv

T \ Tv v cx ≤ d− 1 cx ≥ d

T \ TvTv

u2u1

u

Figure 4.5: A decomposition of treeR(CP) tree T into Tv and T \ Tv (left) and the corresponding partial SP
refutation (right).

Balancing treeCP Proofs into SP

A proof system can be balanced if any proof of size s implies one of simultaneous size poly(s) depth
polylog(s). While it is known that treeCP refutations cannot be balanced, we show next that if we permit the
resulting refutation to be in SP, then we can balance. This establishes (ii).

Theorem 4.4.9. Any size s treeCP refutation of a system of linear inequalities Ax ≥ b implies a size O(s)

and depth O(log s) SP refutation of Ax ≥ b.

Proof. Consider a treeCP refutation of Ax ≥ b and let T be its corresponding tree. As well, let |T | denote
the number of nodes in T . We will construct the SP refutation recursively; at each step we will keep track of
a current node u in the SP proof we are constructing. The base case is when |T | = O(1), in which case we
can use one of the previous simulation theorems (Lemma 4.4.3 or Theorem 4.4.8) to create an SP refutation
of Ax ≥ b satisfying these properties, and append it to u.

For the recursive step, observe that because the tree has fanin at most 2, there exists a node v in T such
that the subtree Tv rooted at v satisfies |T |/3 ≤ |Tv| ≤ 2|T |/3. Let cx ≥ d be the line corresponding to v.
At node u in the SP proof, query (cx ≤ d − 1, cx ≥ d). Let u1 (resp. u2) be the child of u obtained by
following the edge labelled with cx ≤ d− 1 (resp. cx ≥ d); see Figure 4.5. We recurse as follows:

• At u1; Observe that the sub-proof Tv is a treeCP derivation of the inequality cx ≥ d. Because we have
deduced cx ≤ d− 1 on the path to u1, if we also deduce cx ≥ d then this is sufficient to derive 0 ≥ 1.
Therefore, at u1 we recurse on the treeCP derivation Tv .

• At u2: Observe that the sub-proof T \ Tv is a treeCP refutation of Ax ≥ b where we have assumed
cx ≥ d as an axiom. Therefore, at u1 we recursively construct an SP refutation of the set of inequalities
{Ax ≥ b, cx ≥ d} using tree T \ Tv .

The size of the treeCP refutation is clearly preserved. Observe that the depth of the resulting SP refutation
becomes logarithmic in s, since we are reducing the size of the proof to be simulated by a constant factor on
each branch of a query.

Balancing Low-Space CP Proofs into SP

Next,we show how to balance CP proofs into SP, provided the space at each step of the proof is bounded.
The space for a proof system models the amount of information that must be remembered at each state

in the nondeterministic Turing machine that underlies a proof system. To capture this, we redefine a Cutting
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Cbi/2c+1, . . . , Ci C1, . . . , Cbi/2c

cx ≤ d− 1 cx ≥ d

Figure 4.6: The SP tree corresponding to a configuration Ci = {cx ≥ d}.

Planes refutation of a system of linear inequalities Ax ≥ b as a sequence of configurations C1, . . . , Cs where
a configuration Ci is a set of integer linear inequalities satisfying the following conditions: (i) C1 = ∅, (ii)
Cs contains the inequality 0 ≥ 1, (iii) each configuration Ct follows from Ct−1 by removing any number of
inequalities and including an inequality which was derived from inequalities in Ct−1 by one of the rules of
CP or an initial inequality belonging toAx ≥ b. The line space of a refutation is maxi∈[s] |Ci|, the maximum
number of inequalities in any configuration.

Theorem 4.4.10. For any CP refutation of size s and line space ` of a system of linear inequalities Ax ≥ b

there is an SP refutation of depth O(` log s) and size O(s · 2`).

This implies that strong depth lower bounds on SP proofs can lead to size-depth tradeoffs for CP.

Proof. Fix a Cutting Planes refutation C1, . . . , C` where |Ci| ≤ ` for all i ∈ [s]. The theorem will follow by
taking i = s in the following claim.

Claim. For any i ∈ [s] there exists an SP tree of depth 2` log i such that every root-to-leaf path ends in a leaf
labelled with 0 ≥ 1, except for one, along which we have deduced all of the inequalities in Ci.

Proof of Claim. It remains to prove the claim. If Ci contains only a single inequality aix ≥ bi and it belongs
to Ax ≥ b, then take the tree to be the one corresponding to the SP query (aix ≤ bi − 1, aix ≥ bi).
Otherwise, the SP tree begins with a complete binary tree in which every inequality in Cbi/2c is queried.
Exactly one path in this tree is labelled with the inequalities in Cbi/2c, and the remaining paths contain the
integer negation (i.e., cx ≤ d − 1) of at least one inequality cx ≥ d in Cbi/2c. We consider these two cases
separately (seen in Figure 4.6).

In the case that a path contains a negation of a line from Cbi/2c, we attach to its leaf the SP tree we
obtain recursively by running our construction on C1, . . . , Cbi/2c. The leaves of the resulting tree are all
labelled with 0 ≥ 1, except for one. By construction, at the leaf not labelled with 0 ≥ 1 we have deduced
all inequalities in Cbi/2c. Since we attached this tree to a path along which we had deduced the negation of
a line in Cbi/2c, we can label this leaf with a conic combination of these inequalities equalling 0 ≥ 1. The
overall depth in this case is ` for the initial tree and 2` log(bi/2c) for the tree obtained recursively. Altogether,
`+ 2` log(bi/2c) ≤ `(1 + 2 log(i)− 2) ≤ 2` log i.

For the path labelled with the inequalities in Cbi/2c, note that Cbi/2c+1, . . . , Ci can viewed as configu-
rations of a refutation of the original inequalities Ax ≥ b together with the inequalities in Cbi/2c. At the
leaf of this path we have deduced all inequalities in Cbi/2c. Thus, we can apply the recursive construction to
Cbi/2c+1, . . . , Ci to refute this leaf. The overall depth is `+2` log(bi/2c) ≤ `(1+2 log(i+2)−2) ≤ 2` log i.
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cx ≤ d− 1
cx ≥ d

ax ≥ b

Figure 4.7: A split cut ax ≥ b witnessed by (cx ≤ d− 1, cx ≥ d) on the polytope in green.

4.4.4 Simulating non-CG Cuts

So far we have focused on the relationship between Stabbing Planes and Chvátal-Gomory cutting planes. In
this section we discuss the relationship between SP and other popular types of cutting planes. First, we cover
the result of Basu et al. [13] which shows that SP can simulate split cuts. Split cuts, which were introduced
by Cook et al. [44], and form one of the most popular classes of cutting planes in practical integer linear
programming. Recall that an inequality ax ≥ b is valid for a polytope P if for every x∗ ∈ P , ax∗ ≥ b.

Split Cut. A split cut for a polytope P is any integer-linear inequality ax ≥ b for which there exists a
witnessing pair c ∈ Zn and d ∈ Z such that ax ≥ b is valid for both P ∩ {x ∈ Rn : cx ≤ d − 1} and
P ∩ {x ∈ Rn : cx ≥ d}.

Split cuts are known to be equivalent to mixed-integer rounding (MIR) cuts [117] and Gomory mixed

integer cuts [75], and generalize lift-and-project cuts [11]. As well, Dash [52] gave an example on which
split cuts are exponentially separated from Chvátal-Gomory cuts and lift-and-project cuts. Basu et al. [13]
showed that split cuts can be simulated in Stabbing Planes. For completeness, we include a proof of this.

Lemma 4.4.11 ( [13]). Let P be a polytope and let P ′ = P ∩ {ax ≥ b} be obtained by a split cut from P .

Then, there is an SP tree of size O(1) beginning from P such that every leaf is empty, except for one whose

corresponding polytope is P ′.

Proof. We simulate the deduction of P ′ from P in Stabbing Planes as follows:

(i) Query (ax ≤ b− 1, ax ≥ b)

(ii) On the branch labelled with ax ≤ b−1, query (cx ≤ d−1, cx ≥ b). Observe that because ax ≥ b was
valid for both P ∩{cx ≥ d} and P ∩{cx ≤ d− 1}, it follows that both P ∩{cx ≥ d}∩ {ax ≤ b− 1}
and P ∩ {cx ≥ d} ∩ {ax ≤ b− 1} are empty.

Therefore, the only non-empty leaf is the one corresponding to P ′.
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Dash [52] studied split cuts as a proof system, and showed that the Cutting Planes lower bound of
Pudlák [127] could be extended to prove exponential lower bounds on the length of split cut proofs. A
split cut refutation of a system of integer linear inequalities Ax ≥ b (representing a polytope P ) is a se-
quence of inequalities c1x ≥ d1, . . . , csx ≥ ds = 0 ≥ 1 such that cix ≥ di is a split cut for the polytope
P ∩ {cjx ≥ dj}j<i. The following is immediate corollary of Lemma 4.4.4.

Corollary 4.4.12. Stabbing Planes polynomially simulates split cut proofs.

Proof. To simulate any split cut refutation c1x ≥ b1, . . . , csx ≥ bs, we simulate each cut inductively using
Lemma 4.4.4.

Finally, we note that there exist cutting planes that cannot be efficiently simulated by SP. This is witnessed
by the fact that SP cannot polynomially simulate semantic CP [64]. A concrete example of a type of cutting
plane that SP likely cannot simulate are the matrix cuts of Lovász and Schrijver [110]. As we describe in
Section 4.5 CP, and therefore, SP∗ cannot quasipolynomially simulate the Lovasz-Schrijver proof system.
However, whether this holds for SP with unbounded coefficients remains an interesting open question.

4.5 Relationship to Other Proof Systems

Having explored in depth the relationship between Cutting Planes and Stabbing Planes, we now describe how
Stabbing Planes relates to other proof systems. A summary of these relationships can be seen in Figure 4.2.

Let us first note some of the separations that have already been established.

• Lower bounds for unsatisfiable systems of linear equations over prime finite fields, which are known
for Nullstellensatz [80], the Polynomial Calculus [32], Sum-of-Squares [81, 137], AC0-Frege [20, 71,
84, 124], rule out the possibility of these systems simulating CP.

• Göös et al. [77] gave an exponential separation between Nullstellensatz and Cutting Planes by observ-
ing that, for any unsatisfiable system of linear equations F , composing with the m-bit index gadget

can only increase the degree of refuting F in Nullstellensatz by O(logm). On the other hand, Garg
et al. [72] showed that composing any function which requires resolution refutations of width w when
composed with the index gadget requires Cutting Planes proofs of size nΩ(w). Thus, any function
which requires large resolution width but small Nullstellensatz degree provides such a separation.

• Semantic CP is not polynomially verifiable, and therefore, assuming P 6= NP, no propositional proof
system can simulate it. Indeed, Filmus, Hrubeš, and Lauria observed that it has O(1) size refutations
of unsatisfiable instances of the NP-complete subset sum problem.

We establish the remaining simulations and separations in Figure 4.2 next.

4.5.1 Equivalence Between Stabbing Planes and treelike R(CP)

The Resolution over Cutting Planes (R(CP)) proof system was introduced by Krajı́ček [99] as a mutual
generalization of both Cutting Planes and resolution — the lines of an R(CP) proof are clauses of integer-
linear inequalities, and in a single step one can take two previously derived disjunctions and either apply a
Cutting Planes rule to a single inequality in the disjunctions, or apply a resolution-style “cut”.
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Resolution over Cutting Planes. An R(CP) proof of a disjunction Γs from a system of integer-linear in-
equalities Ax ≥ b is a sequence of disjunctions P = {Γi}i∈[s] such that each Γi is a disjunction which is
either an inequality from Ax ≥ b or was derived from earlier disjunctions by one of the following deduction
rules:

• Conic Combination. From (ax ≥ b)∨Γ and (cx ≥ d)∨Γ deduce (λ(a+ c)x ≥ λ(b+ d))∨Γ for any
non-negative integer λ.

• Division. From (ax ≥ b) ∨ Γ and integer δ dividing each entry of a, deduce ((a/δ)x ≥ db/δe) ∨ Γ.

• Cut. From (ax ≥ b) ∨ Γ and (ax ≤ b− 1) ∨ Γ derive Γ.

• Weakening. From Γ deduce Γ ∨ (ax ≥ b)

• Axiom Introduction. Deduce (ax ≥ b) ∨ (ax ≤ b− 1) for any integer-linear inequality ax ≥ b.

• Elimination. From (0 ≥ 1) ∨ Γ deduce Γ.

The size of a proof is the number of disjunctions s in the proof and the width of the proof is the maximal
number of inequalities in any disjunction in the proof. An R(CP) refutation of Ax ≥ b is a proof of the
empty clause Λ from Ax ≥ b. The proof system treeR(CP) is the tree-like restriction of R(CP) in which
the underlying dag of the proof is required to be a tree, or equivalently, every line can be used at most once
before it must be re-derived.

The main result of this sub-section is that SP is polynomially equivalent to treeR(CP).

Theorem 4.5.1. The proof systems SP and treeR(CP) are polynomially equivalent.

Even though SP turns out to be equivalent to a system already in the literature, this new perspective has
already shown to be useful: none of aforementioned results were known for treeR(CP). Furthermore, this
theorem together with Theorem 1.3.7 allows us to obtain the treeR(CP) lower bounds under mild assumptions
(a bound on the magnitude of the coefficients) that were not previously known.

We will prove Theorem 4.5.1 in two parts.

Claim 4.5.2. Let Ax ≥ b be any system of m linear inequalities with no integer solutions. Any size s and
depth d SP refutation implies a treeR(CP) refutation of size O(s(d2 + dm)) and width d+ 1.

Proof. Consider an SP refutation ofAx ≥ b of size s and depth d. Fix any root-to-leaf path p in the refutation
and let c1x ≥ d1, . . . , ctx ≥ dt be the sequence of linear inequalities labelling p. We will first show how to
derive the clause

(c1x ≤ d1 − 1) ∨ . . . ∨ (ctx ≤ dt − 1) (4.1)

in treeR(CP). For every i ∈ [t], using axiom introduction, introduce (cix ≤ di− 1)∨ (cix ≥ di) and weaken

it to obtain

(cix ≥ di) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ctx ≤ dt − 1). (4.2)

As well, weaken each initial inequality aix ≥ bi in Ax ≥ b to

(aix ≥ bi) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ctx ≤ dt − 1) (4.3)
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Because p is a root-to-leaf path in the SP proof, it is labelled with a conic combination of Ax ≥ b and
cix ≥ di for every i ∈ [t] equalling 0 ≥ 1. By taking this conic combination of the first inequalities of the
lines in (4.2) and (4.3) we can deduce

(0 ≥ 1) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ctx ≤ dt − 1),

from which we can obtain (4.1) by elimination.
Repeat this process to deduce (4.1) for every root-to-leaf path in the SP proof. Applying the cut rule

appropriately to these inequalities yields the empty clause. To see this, let p and p′ be two root-to-leaf paths
which differ only on their leaf nodes. Then, their corresponding inequalities (4.1) are of the form

(cix ≥ di) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ct−1x ≤ dt−1 − 1) ∨ (ctx ≤ dt − 1),

(cix ≥ di) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ct−1x ≤ dt−1 − 1) ∨ (ctx ≥ dt).

That is, they differ in their final inequality. Applying the cut rule, we can deduce

(cix ≥ di) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ct−1x ≤ dt−1 − 1).

Therefore, by repeating this process we can derive the empty clause.
Each deduction of a clause (4.1) can be done in size O(t2 + tm+ t+m) = O(d2 + dm) and has width

at most d+ 1. Thus, the size of the proof is at most O(s(d2 + dm)).

We now prove the converse.

Claim 4.5.3. Let Ax ≥ b be any system of m linear inequalities with no integer solutions. If there is a
treeR(CP) proof of the line (a1x ≤ b1 − 1) ∨ . . . ∨ (amx ≤ bm − 1), where aix ≥ bi is the ith row of
Ax ≥ b, of size s and depth d then there is an SP refutation of Ax ≥ b of size O(s) and depth 2d.

Proof. Fix such a treeR(CP) proof of the disjunction. For any clause Γ = (c1x ≥ d1) ∨ . . . (cmx ≥ dm),
we will denote by ¬Γ the set of inequalities {c1x ≤ d1 − 1, . . . , cmx ≤ dm − 1}. We will construct the SP

refutation by structural induction, beginning at the leaves of the refutation and proceeding towards the root.
At each line Γ in the proof, deduced from children Γ1 and Γ2, we will assume that we have constructed SP

refutations ¬Γ1 and ¬Γ2 and use them to construct an SP refutation of ¬Γ.
First, consider a leaf of the proof which, by definition, is an axiom introduction of (cx ≤ d−1)∨(cx ≥ d)

for some arbitrary integer-linear inequality cx ≥ d. We can construct an SP refutation of (cx ≥ d) ∧ (cx ≤
d − 1) by querying (cx ≤ d − 1, cx ≥ d), and then labelling each leaves with the appropriate conic
combination equalling 0 ≥ 1.

Now, let Γ be some line in the proof which was derived from earlier lines {Γi}, and suppose that we have
constructed SP refutations of {¬Γi}. To construct a refutation of ¬Γ, we break into cases based on the rule
used to derive Γ.

• Conic combination. Let Γ := (λ(c1 + c2)x ≥ λ(d1 + d2)) ∨ ∆, let Γ1 := (c1x ≥ d1) ∨ ∆, and let
Γ2 := (c2x ≥ d2)∨∆. We construct an SP refutation of¬Γ by first querying (c1x ≤ d1−1, c1x ≥ d1).
On the branch labelled with c1x ≥ d1, apply the SP refutation of ¬Γ1. On the branch labelled with
c1x ≥ d1, query (c2x ≤ d2− 1, c2x ≥ d2), and use the refutation of ¬Γ2 to refute the branch labelled
with c2x ≥ d2. On the remaining branch, where we have deduced c1x ≤ d1− 1 and c2x ≤ d2− 1, we
have that 0 ≥ 1 is a conic combination with λ(c1 + c2)x ≥ λ(d1 + d2).
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• Division. Let Γ := ((c/δ)x ≥ dd/δe)∨∆ and let Γ1 = (δcx ≥ d)∨∆. Query (δcx ≤ d−1, δcx ≥ d).
On the branch labelled with cx ≤ d− 1 we can use the refutation of ¬Γ1. On the branch labelled with
cx ≥ d, it is enough to observe that the intersection of cx ≥ d and ((c/δ)x ≤ dd/δe − 1), provided by
¬Γ, is empty.

• Cut. Suppose Γ := ∆ was derived by cutting on Γ1 := (cx ≥ d) ∨∆ and Γ2 := (cx ≤ d − 1) ∨∆.
Query (cx ≤ d− 1, cx ≥ d). On the branch labelled with cx ≤ d− 1 apply the refutation of ¬Γ1, and
on the branch labelled with cx ≥ d use the refutation of ¬Γ2.

• Weakening. If Γ := (cx ≥ d)∨∆) was derived by weakening Γ1 := ∆, then query (cx ≤ d− 1, cx ≥
d). On the branch labelled with cx ≤ d − 1 use the refutation of ¬Γ1, and the branch labelled with
cx ≥ d we can deduce 0 ≥ 1 by adding this inequality to cx ≤ d− 1 with is an inequality of ¬Γ.

Simulating each rule requires at most two queries, of which at most two of the children are not immediately
the empty polytope. Therefore, the size of the resulting tree is at most 2s and the depth is at most 2d.

4.5.2 Stabbing Planes Simulates Tree-like DNF Resolution

Next, we show how to simulate the k-DNF resolution proof systems by variants of Stabbing Planes.

k-DNF Resolution. A Res(k) refutation of a CNF formula F is a sequence of k-DNF formulas P =

{Γi}i∈[s] such that Γs is the empty clause Λ, and each Γi is either a clause of F or was derived from earlier
DNFs by one of the following deduction rules, where a literal `i is either xi or ¬xi:

• Cut. From k-DNFs A ∨ (∧i∈I`i) and B ∨ (∨i∈I¬`i) deduce A ∨B.

• Weakening. From a (k − 1)-DNF A deduce A ∨ ` for any literal `.

• ∧-Introduction. From {A ∨ `i}i∈I deduce A ∨ (∧i∈I`i).

• ∧-Elimination. From A ∨ (∧i∈I`i) deduce A ∨ `i for any i ∈ I .

A refutation is tree-like if every deduced inequality is used at most once in the refutation (i.e., the underlying
implication graph is a tree). The proof system which produces only treelike Res(k) refutations is denoted
treeRes(k).

Theorem 4.5.4. For any integer k ≥ 1, any Res(k) refutation of size s implies an R(CP) refutation of size

O(ks). Similarly, any treeRes(k) refutation of size s implies an SP refutation of size O(ks).

The proof will follow by a straightforward application of the following claim.

Claim 4.5.5. From any disjunction
∨
i∈S(xi ≥ 1) ∨

∨
j∈T (−xi ≥ 0), together with inequalities xi ≥ 0 and

xi ≤ 1 for every i ∈ [n], there is a size O(|S|+ |T |) treeR(CP) derivation of
∑
i∈S xi+

∑
j∈T (1−xj) ≥ 1.

Proof. For every v ∈ T ∪S, derive
∑
i∈T\{v} xi+

∑
j∈S\{v}(1−xj) ≥ 0 by adding together the inequalities

xi ≥ 0 and xi ≤ 1. For v ∈ T ∪ S add the corresponding inequality to the disjunction in
∨
i∈S(xi ≥

1) ∨
∨
j∈T (−xj ≥ 0) containing the variable v. The result is the disjunction

∨
S∪T

(∑
i∈S

xi +
∑
j∈T

(1− xj) ≥ 1
)
,

which is the inequality
∑
i∈S xi +

∑
j∈T (1− xj) ≥ 1.
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Proof of Theorem 4.5.4. We will show that R(CP) can simulate Res(k). That SP simulates treeRes(k) will
follow by observing that the same proof also shows a simulation of treeRes(k) by treeR(CP), and then
applying Theorem 4.5.1.

Let {Γi}i∈[s] be a Res(k) refutation of a CNF formula F , and note that the encoding of F as a system
of inequalities (given by Proposition 2.2.1) includes xi ≥ 0 and xi ≤ 1 for every i ∈ [n]. We will encode
each disjunction Γ := ∆1 ∨ . . . ∨ ∆t as follows: each ∆ := (∧i∈Sxi) ∧ (∧j∈T¬xj) is represented by the
inequality

∑
i∈S(xi − 1) +

∑
j∈T −xj ≥ 0; observe that both representations are satisfied by the same set

of {0, 1}-assignments. Let LΓ be the encoding of Γ obtained by replacing each ∆i by its encoding as an
inequality.

It remains to show that R(CP) can simulate the deduction rules of Res(k).

• Cut. Suppose that Γ := A∨B be deduced by cutting on Γ1 := A∨ (∧i∈Sxi)∧ (∧j∈T¬xj) and Γ2 :=

B ∨ (∨i∈S¬xi) ∨ (∨j∈Txj). As well, suppose that we have already deduced the corresponding lines
LΓ1 := LA ∨ (

∑
i∈S(xi− 1) +

∑
j∈T −xj ≥ 0) and LΓ2 := LB ∨

∨
i∈S(−xi ≥ 0)∨

∨
j∈T (xj ≥ 1).

By Claim 4.5.5, R(CP) can reencode LΓ2 as LB∨(
∑
i∈S(1−xi)+

∑
j∈T xj ≥ 1), which when added

to LΓ1 gives LA ∨ LB ∨ (0 ≥ 1), which is LΓ.

• Weakening. This is already a rule of R(CP).

• ∧-Introduction. If Γ := A∨(∧i∈Sxi)∧(∧j∈T¬xj) was deduced from {A∨xi}i∈S and {A∨¬xj}j∈T
and we have already deduced LΓi := LA ∨ (xi ≥ 1) and LΓj := LA ∨ (−xj ≥ 0) for all i ∈ S and
j ∈ T . Then LΓ can be deduced by adding together all of the LΓi and LΓj .

• ∧-Elimination. If Γ = A ∨ xi was deduced from Γ1 := A ∨ (∧j∈Sxj) ∧ (∧t∈Txt), then LΓ can be
deduced from LΓ1 := A ∨ (

∑
j∈S(xj − 1) +

∑
t∈T −xt ≥ 0) by adding the inequalities xj ≤ 1 for

every j ∈ S \ {i} and xt ≥ 0 for every t ∈ T . A similar argument holds if xi is negated.

Atserias, Bonet, and Estaban [8] gave polynomial-size proofs of the clique-coclique formulas, for cliques
of size Ω(

√
n) and cocliques of size o(log2 n). For this range of parameters, quasipolynomial size lower

bounds are known [127]. This rules out the possibility of a polynomial simulation of R(CP) or treeRes(k) by
Cutting Planes.

4.6 Lower Bounds on Unrestricted Stabbing Planes Proofs

Next, we tackle the problem of proving lower bounds on Stabbing Planes proofs with unbounded coefficients.
First, we show that near-maximal depth lower bounds on unrestricted Stabbing Planes proofs can be obtained
by a straightforward reduction to communication complexity. While we are unable to prove unrestricted size
lower bounds, we explain why current techniques that would attempt to leverage the depth lower bounds
fail. In doing so, we show that real communication protocols cannot be balanced by establishing the first
superlogarithmic lower bound on the real communication complexity of the set disjointness function.

4.6.1 Depth Lower Bounds

In this section we prove Theorem 1.3.8, which we restate next for convenience.
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Theorem 1.3.8. There exists a family of unsatisfiable CNF formulas {Fn} for which any SP refutation

requires depth Ω(n/ log2 n)

Note that every unsatisfiable CNF formula has a refutation in depth n by simply querying (xi ≤ 0, xi ≥
1) for all i ∈ [n]. Therefore, this lower bound is tight up to a log2 n factor.

Our proof proceeds by a reduction to communication complexity, an approach that was pioneered in [89].
We show that from any shallow SP refutation we can extract a short randomized or real communication
protocol for the associated CNF Search Problem. The lower bound follows by appealing to known lower
bounds on the communication complexity of this problem.

Randomized Communication. A (bounded error) randomized communication protocol that solves a search
problem S ⊆ X × Y × O is a distribution over deterministic communication protocols such that for every
(x, y) ∈ X ×Y , with probability at least 2/3, the protocol outputs o for which (x, y, o) ∈ S. The randomized
communication complexity of S is the minimum number of rounds of any randomized protocol computing
S, where the number of rounds of a randomized protocol is the maximum number of rounds of any protocol
with non-zero support in the distribution.

Lemma 4.6.1. Let Az ≥ b be the system of linear equations encoding an unsatisfiable CNF formula F and

let (X,Y ) be any partition of the variables z. Every depth d SP refutation of Az ≥ b implies a O(d log n+

log2 n)-round randomized communication protocol and a O(d + log n)-round real communication protocol

for solving SearchX,Y (F ).

Proof. We will first present a general procedure for solving the CNF search problem and then show how to
instantiate it in both models of communication.

Fix an SP refutation of Az ≥ b. Let Alice be given a boolean assignment to X and Bob be given
a boolean assignment to Y . To solve the search problem, they will follow the root-to-leaf path through
the refutation, maintaining the invariant that their joint assignment (X,Y ) satisfies all of the inequalities
labelling the root to leaf path. Suppose that they have arrived at a node in the refutation corresponding to a
query (cz ≤ d − 1, cz ≥ d). Observe that their joint assignment (X,Y ) to z satisfies exactly one of these
two inequalities. They will proceed down the path corresponding to the satisfied inequality, thus preserving
their invariant.

Once they arrive at a leaf, they will use the conic combination of inequalities which evaluates to 0 ≥ 1

that labels it in order to search for an inequality of Az ≥ b (corresponding to a clause of F ) which is falsified
by (X,Y ). Indeed, by the invariant, the only inequalities in this conic combination which could be falsified
by (X,Y ) are those belonging toAz ≥ b, and a falsified inequality must exist because (X,Y ) falsifies 0 ≥ 1.
Let the conic combination be

∑
i∈[`] αiciz ≤

∑
i∈[`] αid, where αi ≥ 0. By Carathéodory’s Theorem (point

(ii) in Farkas’ Lemma), we can assume that ` ≤ n + 2. To find a falsified inequality, we binary search over
the conic combination: test whether

∑`/2
i=1 αiciz ≤

∑`/2
i=1 αidi is falsified by (X,Y ). If it is, recurse on it;

otherwise, recurse on
∑`
i=`/2+1 αiciz ≤

∑`
i=`/2+1 αidi. Because ` ≤ n + 2, this process terminates in

O(log n) rounds having found an inequality belonging to Az ≥ b which is falsified by (X,Y ).
To implement this procedure in communication, it remains to show that linear inequalities can be evalu-

ated efficiently in each of the models.

• Real communication: this can be done in a single round of communication. if Alice and Bob want to
evaluate c1x+ c2y ≥ d, then Alice can send d− c1x to the referee and Bob can send c2y. The referee
returns whether c1x ≥ d− c2y.
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• Randomized communication: this can be done in O(log n) rounds of communication by combining the
following two results. The first is the O(log b + log 3) protocol of Nisan [118] for deciding a linear
inequality representable in b bits. The second is a result due to Muroga [116] which states that for any
linear inequality on n variables, there exists a linear inequality whose coefficients are represented in
O(n log n) bits and which has the same output on points in {0, 1}n.

To establish Theorem 1.3.8, it remains to lower bound the communication complexity of Search(F ).
Strong lower bounds on the randomized communication complexity of the CNF search lower bound were
proven by Göös and Pitassi [79]. In particular, Theorem 8.1 in [79] gives an unsatisfiable CNF formula F on
poly(n) many clauses and partition (x, y) of the variables for which the randomized commutation complexity
of Searchx,y(F ) requires Ω(n/ log n) rounds. Together with Lemma 4.6.1, this establishes Theorem 1.3.8.

We remark that the formula provided by Göös and Pitassi is somewhat artificial — it is the formula
obtained by composing the Tseitin formulas with a “versatile gadget”. By Theorem 4.3.1 we know that the
Tseitin formulas have O(log2 n)-depth SP refutations, and hence the hardness of these formulas of Göös and
Pitassi is derived from the composition with this gadget. It remains an open problem to obtain strong lower
bounds on the depth of SP refutations for more natural families of formulas.

4.6.2 Barriers to Size Lower Bounds

Next, we explore whether it is possible to leverage this depth lower bound in order to obtain size bounds.
Throughout this section, we will heavily make use of results of de Rezende, Nordström, and Vinyals [56].

They established a lifting theorem that translates decision tree lower bounds for a function f : {0, 1}n →
{0, 1} to lower bounds on the real communication complexity of the composed function f ◦ INDn

t , which
we define next. Let INDt : [t] × {0, 1}t → {0, 1} be the t-bit index function mapping (x, y) to yx. The
function f ◦ INDn

t is obtained by replacing each variable of f with a copy of INDn
t on new variables. For

any function f , composing with INDt induces a standard partition, where Alice is given x ∈ [t]n and Bob is
given y ∈ {0, 1}tn.

The decision tree complexity of a function f is closely related to the DPLL complexity of refuting an
unsatisfiable formula. A decision tree is a binary tree in which: (i) every internal node is labelled by a
variable xi and has two outgoing edges labelled with 0 and 1, (ii) the leaves are labelled with either 0 or 1. A
decision tree computes f if for every x ∈ {0, 1}n, the leaf obtained by following the root-to-leaf path which
agrees with x is labelled with f(x). The decision tree complexity of f , denoted DT(f), is the minimal depth
of any decision tree computing f .

Theorem 4.6.2 (de Rezende et al. [56]). The following statements hold:

• For any function f : {0, 1}n → {0, 1}, the real communication complexity of f ◦ INDn
n4 is at least

DT(f).

• There is CNF formula F with poly(n) many clauses which has poly(n) size resolution refutation but for

which any real communication protocol for Searchx,y(F ) requires Ω(
√
n1/4 log n) rounds, for some

partition of the variables.



CHAPTER 4. STABBING PLANES 80

SP Proofs Cannot be Balanced

As an immediate corollary of Lemma 4.6.1 and Theorem 4.6.2, we show that SP proofs cannot be balanced.
That is, an SP refutation of size s does not imply one of size poly(s) and depth poly(log s). Thus, superpoly-
nomial SP size lower bounds do not immediately follow from depth lower bounds.

Corollary 4.6.3. There exists a CNF formula F which has poly(n) size SP refutations but any SP refutation

requires depth Ω(n1/8/ log n).

Proof. This follows immediately by combining Theorem 4.6.2 with Lemma 4.6.1 together with the fact that
SP can simulate resolution proofs.

Real Communication Cannot be Balanced

Unlike the randomized protocols, the real communication protocols that result from Lemma 4.6.1 preserve
the topology of the SP proof. That is, the size — the number of nodes — of the resulting real communication
protocol is equivalent, up to a poly(n) factor, to the size of the SP refutation. Therefore, while SP proofs
cannot be balanced, one might hope that the resulting real communication protocols could be, and thus size
lower bounds could still be obtained from depth bounds. This is not without precedent; both deterministic
and randomized communication complexity can be balanced. Furthermore, although it known that treeCP

cannot be balanced, Impagliazzo et al. [89] show that treeCP refutations of size s can be balanced into
O(log s)-round randomized communication protocols for the CNF search problem.

Surprisingly, we show that real communication protocols cannot be balanced. To do so, we establish the
first lower bound on the real communication of the set disjointness function, perhaps the most well-studied
function in communication complexity, which we define next. Let ORn : {0, 1}n → {0, 1} be the n-bit
∨-function and AND2 : {0, 1}n → {0, 1}. Then the set disjointness function, DISJn := ORn ◦ ANDn

2 ,
is obtained by replacing each of the n input variables of ORn by a copy of AND2 on new variables. As
before, this function induces a standard partition where Alice is given one of the two input bits of each
AND2 function, and Bob is given the other.

Theorem 4.6.4. There is a partition of the variables such that DISJn has a real communication protocol of

size O(n), but any real communication protocol requires Ω((n log n)1/5) rounds of communication.

This lower bound was subsequently improved to Ω(n/ log2 n) in [35].
The main technique for obtaining lower bounds on the real communication complexity of a function is

by a lifting theorem, reducing the task of proving lower bounds on certain composed functions to the decision
tree complexity of the un-composed function. Although DISJn is a composed function, there is currently no
lifting theorem for composition with the AND2 function. We circumvent this by exploiting the fact that DISJn

is complete for the class NPcc of functions with polylogarithmic nondeterministic communication protocols.

Nondeterministic Communication Complexity. The nondeterministic communication complexity of a func-
tion f : {0, 1}n → {0, 1} and a partition (X,Y ), is the length of the shortest string z ∈ {0, 1}` that can
convince Alice and Bob to accept an input (x, y) ∈ f−1(1) (without communicating). That is, it is the small-
est ` such that for every (x, y) ∈ f−1(1) there is a string z ∈ {0, 1}` such that both Alice and Bob accept,
and for every (x, y) ∈ f−1(0) and every strong z ∈ {0, 1}`, either Alice or Bob rejects.

To prove the lower bound on DISJn we find a function in NPcc to which known lifting theorems for real
communication can be applied. Then, we use NPcc-completeness to transfer this lower bound to DISJn. The
function that we will use is ORn ◦ INDt. First, we show that this function belongs to NPcc.
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Figure 4.8: A covering of the communication matrix with monochromatic rectangles (left) and the corre-
sponding DISJn instance (right).

Lemma 4.6.5. There is a O(log t+ log n) NPcc protocol computing ORn ◦ INDn
t for the standard partition

associated with INDt.

Proof. Fix some input (x, y) ∈ [t]n × {0, 1}nt and observe that the ith input bit to ORn can be computed in
log t + 1 rounds of communication by brute-forcing the index gadget: Alice sends xi := xi,1, . . . , xi,log t to
Bob who can then compute INDt(xi, yi), where yi := yi,1, . . . , yi,t, and return the answer to Bob in a single
bit.

Consider the following protocol NPcc for ORn◦INDn
t : Alice and Bob are given a log n-bit string encoding

the index i ∈ [n] where INDt(xi, yi) = 1; that is, iwitnesses that (x, y) is accepting input of ORn◦ INDn
t ; see

Figure 4.8. Alice and Bob verify that indeed INDt(xi, yi) = 1 by performing the above brute force protocol
in log t rounds of communication.

Lemma 4.6.6. Letm = n4, then any real communication protocol computing ORn ◦ INDn
t over the standard

partition requires Ω(n log n) rounds.

Proof. Observe that the decision tree complexity of computing ORn is n (since the sensitivity of ORn is n).
The proof follows by combining this with Theorem 4.6.2.

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 4.6.4. First, we prove the lower bound. We will reduce ORn ◦ INDn
t for t = n4 to DISJn.

By Lemma 4.6.5 there is an cover of the 1-entries of the communication matrix of ORn ◦ INDn
t by at most

2nt monochromatic rectangles. Enumerating this rectangle covering gives us an instance of set disjointness:
on input (x, y) to ORn ◦ INDn

t , Alice and Bob construct indicator vectors IA(x) and IB(y) of the rectangles
in this rectangle covering in their respective inputs lie. Then ORn ◦ INDn

t = 1 iff DISJ(IA(x), IB(y)) = 1.
This instance of DISJn is on tn/2 variables, and therefore Lemma 4.6.6 implies a lower bound of

Ω(n log n). Letting ` = tn be the total number of variables, this is a bound of the form `1/5 log `.
For the upper bound, we give a real communication protocol for DISJn = ORn ◦ ANDn

2 that has O(n)

nodes. Let x, y be the inputs given to Alice and Bob respectively. Sequentially from i = 1, . . . , n, they will
solve xi ∧ yi by Alice sending xi to the referee and Bob sending 2− yi. If they discover that xi ∧ yi = 0 then
they halt and output 0, otherwise they continue.
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4.7 Conclusion

We end this chapter by discussing some problems left open by this work.

Problem 4.1. An Improved Simulation. An important question left open by this work is whether the sim-
ulation of SP∗ by CP can be improved. First, is it possible to remove the assumption of on the coefficients
from this simulation and obtain a quasipolynomial simulation of SP? Another direction in which this simu-
lation could be improved is by reducing the complexity: is it possible to obtain a polynomial simulation of
SP∗ by CP?

Problem 4.2. Coefficient-Preserving Simulation of Stabbing Planes. The simulation of SP∗ by CP in-
curs incurs a significant blow-up in the coefficients due to Lemma 4.4.4, and therefore does not imply a
quasipolynomial simulation of SP∗ by CP∗. This is a consequence of the fact that we apply Schrijver’s
lemma (Lemma 4.4.4) a number of times that is proportional to the depth of the SP∗ proof, with each appli-
cation potentially blowing up the size of the coefficients by a factor of 2.

Problem 4.3. Relationships Between CP, SP, and R(CP). Another question is how SP and CP relate
to the R(CP) proof system, which corresponds to dag-like SP. As discussed in Section 4.5, CP cannot
polynomially simulate R(CP), since there are upper bounds on the clique-coclique formulas for certain ranges
of parameters in Res(k) (and therefore R(CP)) [8]; however, a quasipolynomial simulation has not been ruled
out. A potential approach for resolving this question is to use the added expressibility of R(CP) over Res(k)

to extend the upper bound on clique-coclique to the range of parameters for which superpolynomial CP lower
bounds are known.



Chapter 5

Depth Lower Bounds and Supercritical
Tradeoffs

5.1 Introduction

Depth captures the degree to which proofs — and therefore algorithms which employ the reasoning used in
these proofs — can be parallelized. For proof systems such as Cutting Planes, depth is closely related to rank

measures of polytopes, which have been extensively studied in integer programming theory.
The results from Chapter 4 suggest an interesting interplay between the depth and size of Cutting Planes

proofs. In particular, we note that there are trivial depth n and exponential size refutation of any unsatisfi-
able CNF formula in Cutting Planes. However, our translation (Theorem 1.3.3) converts shallow Facelike
SP proofs into very deep Cutting Planes proofs: the Stabbing Planes refutations of the Tseitin formulas have
depth O(log2 n) and quasipolynomial size, while the resulting Cutting Planes refutations have quasipolyno-
mial size and depth. This is also true for the Cutting Planes refutations given by Dadush and Tiwari [48]. This
is quite unusual since simulations between proof systems typically preserve the structure of the proofs. For
contrast: another simulation from the literature which emphatically does not preserve the structure of proofs
is the simulation of bounded-size resolution by bounded-width resolution by Ben-Sasson and Wigderson [22].
In this setting, it is known that this simulation is tight [29], and moreover that there exist formulas which are
refutable in resolution width w but require maximal size nΩ(w) [9]. Furthermore, under the additional as-
sumption that the proofs are tree-like, Razborov [132] proved a supercritical size/width tradeoff. Roughly
speaking, a supercritical tradeoff shows that if one parameter is restricted, then another must be pushed past
the “critical” (i.e., worst-case) regime.

These small but deep Cutting Planes proofs bring up the possibility that the Tseitin formulas yield a
supercritical size/depth tradeoff, which we formalize as the following conjecture.

Conjecture 1.3.9. There exists a family of unsatisfiable formulas {Fn} such that Fn has quasipolynomial

size CP proofs, but any quasipolynomial-size proof requires superlinear depth. Furthermore, {Fn} can be

taken to be the Tseitin formulas on some family of graphs.

A supercritical tradeoff for CP, roughly speaking, states that small size CP proofs must sometimes nec-
essarily be very deep — that is, beyond the trivial depth upper bound of O(n) [24, 132]. Establishing su-
percritical tradeoffs is a major challenge, both because hard examples witnessing such a tradeoff are rare,

83
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and because current methods seem to fail beyond the critical (i.e., worst-case) regime. In fact, to date the
only supercritical tradeoffs between size and depth for known proof systems are due to Razborov, under
the additional assumption that the proofs have bounded width. Namely, Razborov exhibited a supercritical
size-depth tradeoff for bounded width tree-like resolution [132], and then extended this result to CP proofs
in which each inequality has a bounded number of distinct variables [133]. While a supercritical tradeoff
for Tseitin appears to be out of reach of current techniques, “critical” lower bounds are known for Cutting
Planes. Buresh Oppenheim et al. [31] gave linear lower bounds on the depth of Cutting Planes proofs of the
Tseitin formulas.

While Cutting Planes can somewhat efficiently reason about systems of linear equations over prime finite
fields, the quasipolynomial depth of these proofs prohibits any possibility of implementation. This motivates
up a second important question — by how much do we need to increase the power of Cutting Planes before
proofs of Tseitin, and systems of linear equations over prime finite fields, can be parallelized. A natural
candidate proof system is semantic Cutting Planes, where the CG cut rule is replaced by allowing for any
sound deductions from a constant number of previously derived linear inequalities. Semantic Cutting Planes
is known to be extremely powerful, Filmus Hrubeš and Lauria [64] showed that there are instances that can
be refuted in semantic CP but which require exponential size Cutting Planes refutations. Furthermore, its
proofs are not even polynomially verifiable unless P = NP.

Contributions

In this chapter we make progress towards resolving both of these questions. Our first contribution is a linear
lower bound on the depth of semantic CP refutations of the Tseitin formulas.

Theorem 5.1.1. For all sufficiently large n, there exists a graphG on n vertices and labelling ` : V → {0, 1}
such that any semantic Cutting Planes refutation of Tseitin(G, `) requires depth Ω(n).

Theorem 5.1.1 is established via a new technique for proving lower bounds on the depth of semantic
Cutting Planes proofs. Our technique is inspired by the result of Buresh-Oppenheim et al. [31], who proved
lower bounds on the depth of Cutting Planes refutations of Tseitin by studying the Chátal rank of the asso-
ciated polytope P . Letting P (d) be the polytope composed of all inequalities which can be derived in depth
d in Cutting Planes. The Chátal rank of P is the minimum d such that P (d) = ∅. Thus, in order to establish
a depth lower bound of depth d, one would like to show the existence of a point p ∈ P (d). To do so, they
give a sufficient criterion for a point p to be in P (i) in terms of the points in P (i−1). This criterion relies on
a careful analysis of the specific rules of Cutting Planes, and is no longer sufficient for semantic CP. Instead,
we develop an analogous criterion for semantic CP by using novel geometric argument (Lemma 5.3.5) which
we believe will be of independent interest. Indeed, part of our motivation behind this depth bound is as a step
towards proving a supercritical tradeoff in CP for Tseitin formulas.

As our second contribution, we establish supercritical size/depth tradeoffs for resolution (Res), k-DNF
resolution (Res(k)), and semantic CP (sCP).

Theorem 1.3.11. For any constant ε > 0, positive integers k, n sufficiently large, P ∈ {Res,Res(k),CP},
and any arbitrary real parameter 1 ≤ c < n

1−ε
2+ε , there is a CNF formula F on n variables and nO(c) clauses

such that

• There is a P-refutation of F of size nO(c).
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• If Π is a P-refutation of F with size(Π) = 2o
(
n

1−ε
2+ε /c

)
then

depth(Π) log2 size(Π) = Ω

(
nc/(2+ε)

c log n

)
.

Varying the “compression parameter” c between O(1) and nδ , for some small constant δ, allows us to
obtain an, interesting family of tradeoff results. In one extreme, when c = O(1) we obtain a formula F which
has refutations of size poly(n), however any proof of size� 2n

1−ε
must have polynomial depth. In the other

extreme, setting c = nδ implies an exponential blowup in the depth.
The main technical lemma behind these tradeoff is Razborov’s supercritical width/depth tradeoff for res-

olution [132]. We give a simplified proof of this tradeoff in Subsection 5.4.2 which uses the “top-down”
language of lifting theorems. Our tradeoffs follow by combining this with known lifting theorems [72, 139],
which preserve depth.

5.1.1 Related Work

Supercritical Tradeoffs. Besides the work of Razborov [132], a number of supercritical tradeoffs have
been observed in proof complexity. Perhaps most relevant for our work, Razborov [133] proved a supercritical
tradeoff for Cutting Planes proofs under the assumption that each inequality has a bounded number of distinct
variables (mimicking the bound on the width of each clause in the supercritical tradeoff of [132]).

A number of supercritical tradeoffs are also known between proof width and proof space, which is known
to be closely related to depth [62, 134]. Beame et al. [14] and Beck et al. [19] exhibited formulas which
admit polynomial size refutations in Resolution and the Polynomial Calculus respectively, and such that
any refutation of sub-linear space necessitates a superpolynomial blow-up in size. Recently, Berkholz and
Nordström [24] gave a supercritical trade-off between width and space for Resolution.

Depth in Cutting Planes and Stabbing Planes. It is widely known (and easy to prove) that any unsatis-
fiable family of CNF formulas can be refuted by exponential size and linear depth Cutting Planes. It is also
known that neither Cutting Planes nor Stabbing Planes can be balanced, in the sense that a depth-d proof can
always be transformed into a size 2O(d) proof [15, 31]. This differentiates both of these proof systems from
more powerful proof systems like Frege, for which it is well-known how to balance arbitrary proofs [43].
Furthermore, even though both the Tseitin principles and systems of linear equations in prime finite fields
can be proved in both quasipolynomial-size and O(log2 n) depth in Facelike SP, the simulation of Facelike
SP by CP cannot preserve both size and depth, as the Tseitin principles are known to require depth Θ(n) to
refute in CP [31].

We first recall the known depth lower bound techniques for Cutting Planes, semantic Cutting Planes, and
Stabbing Planes proofs. In all of these proof systems, arguably the primary method for proving depth lower
bounds is by reducing to real communication complexity [15, 89]; however, communication complexity is
always trivially upper bounded by n, and it is far from clear how to use the assumption on the size of the
proof to boost this to superlinear.

A second class of methods have been developed for syntactic Cutting Planes, which lower bound rank

measures of a polytope, such as the Chvátal rank. In this setting, lower bounds are typically proven using
so-called protection lemmas [31], which seems much more amenable to applying a small-size assumption
on the proof. We also remark that for many formulas (such as the Tseitin formulas!) it is known how to
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achieve Ω(n)-depth lower bounds in Cutting Planes via protection lemmas, while proving even ω(log n)

lower bounds via communication complexity is impossible, due to a known folklore upper bound.
The first lower bound on the Chvátal rank was established by Chvátal et al. [36], who proved a linear

bound for a number of polytopes in [0, 1]n. Much later, Pokutta and Schulz [126] characterized the polytopes
P ⊆ [0, 1] with P ∩ Zn = ∅ which have Chvátal rank exactly n. However, unlike most other cutting planes
procedures, the Chvátal rank of polytopes P ∩ [0, 1]n with P ∩Zn = ∅ is not upper bounded by n. Eisenbrand
and Schulz [60] showed that the Chvátal rank of any polytope P ⊆ [0, 1]n is at most O(n2 log n) and gave
examples where it is Ω(n); a nearly-matching quadratic lower bound was later established by Rothvoß and
Sanita [135]. For CNF formulas, the Chvátal rank is (trivially) at most n. Buresh-Oppenheim et al. [31] gave
the first lower bounds on the Chvátal rank a number of CNF formulas, including an Ω(n) lower bound for
the Tseitin formulas.

The rank of a number of generalizations of Cutting Planes has been studied as well. However, none of
these appear to capture the strength of semantic Cutting Planes. Indeed, semantic Cutting Planes is able to
refute Knapsack in a single cut, and therefore is known not to be polynomially verifiable unless P = NP [64].
Lower bounds on the rank when using split cuts and mixed integer cuts, instead of CG cuts, was established
in [47]. Pokutta and Schulz [125] obtained Ω(n/ log n) rank lower bounds on the complete tautology (which
includes every clause of width n) for the broad class of admissible cutting planes, which includes syntactic
Cutting Planes, split cuts, and many of the lift-and-project operators. Bodur et al. [26] studied the relationship
between rank and integrality gaps for another broad generalization of Cutting Planes known as aggregate cuts.

5.2 Games for Depth and Expansion

We begin with some definitions that will be used throughout this chapter. To prove our depth lower bounds,
it will be convenient to work with the following characterization of resolution depth by the Prover-Adversary

games of Pudlák [128].

Prover–Adversary Game. The Prover–Adversary game associated with an n-variate formula F is played
between two competing players, Prover and Adversary. The game proceeds in rounds, where in each round
the state of the game is recorded by a partial assignment ρ ∈ {0, 1, ∗}n to the variables of F . Initially the
state is the empty assignment ρ = ∗n. Then, in each round, the Prover performs the following:

• Query. The Prover chooses an i ∈ [n] with ρi = ∗, and the Adversary chooses b ∈ {0, 1}. The state is
updated by ρi ← b and play continues.

• Forget. The prover chooses a (possibly empty) set S ⊆ [n] with ρi 6= ∗ for all i ∈ S. The state is
updated by ρi ← ∗ for all i ∈ S.

The game ends when the state ρ falsifies an axiom of F .

It is known [128] that depthRes(F ) is exactly the smallest d for which there is a Prover strategy that ends
the game in d rounds, regardless of the strategy for the Adversary.

As is the case for most lower bounds in proof complexity, our depth lower bounds will, in a sense, be
reductions to strong expansion properties of graphs which underly our formulas. Let G = (U ∪ V,E) and a
subset S ⊆ U ∪ V , define the neighbourhood of S in G as Γ(S) := {v ∈ U ∪ V : ∃u ∈ S, (u, v) ∈ E}. The
following definition records the expansion properties of bipartite graphs that we will use.
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Boundary Expansion. For a bipartite graph G = (U ∪ V,E) the boundary of a set W ⊆ U is

δ(W ) := {v ∈ V : |Γ(v) ∩W | = 1}.

The boundary expansion of a set W ⊆ U is |δ(W )|/|W |. The graph G is a (r, s)-boundary expander if the
boundary expansion of every set W ⊆ U with |W | ≤ r has boundary expansion at least s.

That is, G is a boundary expander if for any small enough subset of left-vertices, the number of unique

neighbours is large.

5.3 Depth Lifting for Semantic Cutting Planes

In this section we develop a new method for proving depth lower bounds which we believe should be more
useful for resolving the Conjecture 1.3.9. Our method works not only for CP but also for semantic CP.
Using our technique, we establish the first linear lower bounds on the depth of Semantic CP refutations of
the Tseitin formulas.

Lower bounds on the depth of syntactic CP refutations of Tseitin formulas were established by Buresh-
Openheim et al. [31] using a rank-based argument. Our proof is inspired by their work, and so we describe it
next. Briefly, their proof proceeds by considering a sequence of polytopes P (0) ⊇ . . . ⊇ P (d) where P (i) is
the polytope defined by all inequalities that can be derived in depth i from the axioms in F ; in the language
of integer programming, P (i) is the polytope obtained by taking the Chvátal closure i times starting with P .
The goal is to show that P (d) is not empty. To do so, they show that a point p ∈ P (i) is also in P (i+1) if for
every coordinate j such that 0 < pj < 1, there exists points p(j,0), p(j,1) ∈ P (i) such that p(j,b)

k = b if k = j

and p(j,b)
k = pk otherwise. The proof of this fact is syntactic: it relies on the careful analysis of the precise

rules of CP.
When working with semantic CP, we can no longer analyze a finite set syntactic rules. Furthermore, it

is not difficult to see that the aforementioned criterion for membership in P (i+1) is no longer sufficient for
semantic CP. We develop an analogous criterion for semantic CP given later in this section. As well, we
note that the definition of P (i) is not well-suited to studying the depth of bounded-size CP proofs like those
in Conjecture 1.3.9 — there does not appear to be a useful way to limit P (i) to be a polytope derived by a
bounded number of halfspaces. Therefore we develop our criterion in the language of lifting, which is more
amenable to supercritical tradeoffs [24, 132].

Through this section we will work with the following top-down definition of Semantic CP.

Semantic Cutting Planes. Let F be an n-variate unsatisfiable CNF formula. An sCP refutation of F is a
directed acyclic graph of fan-out ≤ 2 where each node v is labelled with a halfspace Hv ⊆ Rn (understood
as a set of points satisfying a linear inequality) satisfying the following:

1. Root. There is a unique source node r labelled with the halfspace Hv = Rn (corresponding to the
trivially true inequality 1 ≥ 0).

2. Internal-Nodes. For each non-leaf node u with children v, w, we have

Hu ∩ {0, 1}n ⊆ Hv ∪Hw.

3. Leaves. Each sink node u is labeled with a unique clause C ∈ F such that Hv ∩ {0, 1}n ⊆ C−1(0).
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The above definition is obtained by taking a (standard) sCP proof and reversing all inequalities: now, a
line is associated with the set of assignments falsified at that line, instead of the assignments satisfying the
line. Another way to view this top down definition is that an sCP refutation is a Stabbing Planes refutation
where at every node we remember a halfspace, rather than a polytope.

To establish the lower bound on the depth of an sCP proof we will need to find a long path in the proof. To
find this path we will be take a root-to-leaf walk down the proof while constructing a partial assignment ρ ∈
{0, 1, ∗}n to the variables. For a partial restriction ρ, denote by free(ρ) := ρ−1(∗) and fix(ρ) := [n]\ free(ρ).
Let the restriction of H by ρ be the halfspace

H �ρ := {x ∈ Rfree(ρ) : ∃α ∈ H, αfix(ρ) = ρfix(ρ), αfree(ρ) = x}.

It is important to note that H �ρ is itself a halfspace on the free coordinates of ρ.
One of our key invariants needed in the proof is the following.

Good Halfspace. A halfspaceH ⊆ Rn is good if it contains the all- 1
2 vector. That is, ( 1

2 )n = ( 1
2 ,

1
2 , . . . ,

1
2 ) ∈

H .

To prove our depth lower bound, we will need two technical lemmas. The first lemma shows that if a
good halfspace H has its boolean points covered by halfspaces H1 and H2, then one of the two covering
halfspaces must also be good modulo restricting a small set of coordinates.

Lemma 5.3.1. Let H ⊆ Rn be any good halfspace, and suppose H ∩ {0, 1}n ⊆ H1 ∪ H2 for halfspaces

H1, H2. Then there is a restriction ρ and an i = 1, 2 such that |fix(ρ)| ≤ 2 and Hi �ρ is good.

The second lemma shows that good halfspaces are robust, in the sense that we can restrict a good halfspace
to another good halfspace while also satisfying any mod-2 equation.

Lemma 5.3.2. Let n ≥ 2 and H ⊆ Rn be a good halfspace. For any I ⊆ [n] with |I| ≥ 2 and b ∈ {0, 1},
there is a partial restriction ρ ∈ {0, 1, ∗}n with fix(ρ) = I such that

•
⊕
i∈I

ρ(xi) = b and

• H �ρ ⊆ Rfree(ρ) is good.

With these two lemmas we can already get an idea of how to construct a long path in the proof. Suppose
we start at the root of the proof; the halfspace is 1 ≥ 0 (which is clearly good) and the restriction we maintain
is ρ = ∗n. We can use the first lemma to move from the current good halfspace to a good child halfspace
while increasing the number of fixed coordinates by at most 2. However, we have no control over the two
coordinates which are fixed by this move, and so we may fall in danger of falsifying an initial constraint.
Roughly speaking, we will use the second lemma to satisfy constraints that are in danger of being falsified.

We delay the proofs of these technical lemmas to the end of the section, and first see how to prove the
depth lower bounds.

5.3.1 Lifting Decision Tree Depth to Semantic CP Depth

As a warm up, we show how to lift lower bounds on resolution depth to semantic CP depth by composing
with a constant-width XOR gadget. If F is a CNF formula then we can create a new formula by replacing by
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replacing each variable zi with an XOR of 4 new variables xi,1, . . . , xi,4:

zi := XOR4(xi,1, . . . , xi,4) = xi,1 ⊕ · · · ⊕ xi,4.

We call zi the unlifted variable associated with the output of the XOR4 gadget applied to the i-th block of
variables. Formally, let XORn4 : {0, 1}4n → {0, 1}n be the application of XOR4 to each 4-bit block of a
4n-bit string. Let F ◦ XORn4 denote the lifted formula obtained by performing this substitution on F and
transforming the result into a CNF formula in the obvious way.

The main result of this section is the following.

sCP Depth Lifting Theorem. For any unsatisfiable CNF formula F ,

depthsCP(F ◦ XORn4 ) ≥ 1

2
depthRes(F ).

Our proof will rely on the Prover–Adversary game characterization of resolution depth. The proof of the
sCP Depth Lifting Theorem will follow by using an optimal Adversary strategy for F to construct a long path
in the sCP proof of F ◦ XORn4 . For this, we crucially we need to understand how halfspaces H transform
under XORn4 :

XORn4 (H) := {z ∈ {0, 1}n : ∃x ∈ H ∩ {0, 1}4n ,XORn4 (x) = z}.

As we have already stated, we will maintain a partial assignment ρ ∈ {0, 1, ∗}4n on the 4n lifted variables.
However, in order to use the Adversary, we will need to convert ρ to a partial assignment on the n unlifted

variables. To perform this conversion, for any ρ ∈ {0, 1, ∗}4n define XORn4 (ρ) ∈ {0, 1, ∗}n as follows: for
each block i ∈ [n], define

XORn4 (ρ)i =

XOR4(ρ(xi,1), . . . , ρ(xi,4)) if (i, j) ∈ fix(ρ) for j ∈ [4],

∗ otherwise.

We are now ready to prove the sCP Depth Lifting Theorem.

Proof of the sCP Depth Lifting Theorem. Fix any semantic CP refutation of F ◦ XORn4 , and suppose that
there is a strategy for the Adversary in the Prover-Adversary game of F certifying that F requires depth d.
Throughout the walk, we maintain a partial restriction ρ ∈ {0, 1, ∗}4n to the lifted variables satisfying the
following three invariants with respect to the current visited halfspace H .

– Block Closed. In every block either all variables in the block are fixed or all variables in the block are
free.

– Good Halfspace. H �ρ is good.

– Strategy Consistent. The unlifted assignment XORn4 (ρ) does not falsify any clause in F .

Initially, we set ρ = ∗4n and the initial halfspace is 1 ≥ 0, so the pair (H, ρ) trivially satisfy the invariants.
Suppose we have reached the halfspaceH in our walk and ρ is a restriction satisfying the invariants. We claim
that H cannot be a leaf. To see this, suppose that H is a leaf, then by definition H ∩ {0, 1}4n ⊆ C−1(0) for
some clauseC ∈ F ◦XORn4 . By the definition of the lifted formula, this implies that XORn4 (H) ⊆ D−1(0) for
some clause D ∈ F . Since (H, ρ) satisfy the invariants, the lifted assignment XORn4 (ρ) does not falsify D,
and so by the block-closed property it follows that there must be a variable zi ∈ D such that all lifted variables
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in the block i are free under ρ. But then applying Lemma 5.3.2 to the block of variables {xi,1, xi,2, xi,3, xi,4},
we can extend ρ to a partial assignment ρ′ such that zi = XOR4(ρ(xi,1), ρ(xi,2), ρ(xi,3), ρ(xi,4)) satisfiesD.
But H �ρ′ is a projection of H �ρ and so this contradicts that XORn4 (H) violates D.

It remains to show how to take a step down the proof. Suppose that we have taken t < d/2 steps down
the Semantic CP proof, the current node is labelled with a halfspace H , and the partial assignment ρ satisfies
the invariants. If H has only a single child H1, then H ∩{0, 1}4n ⊆ H1 ∩{0, 1}4n and ρ will still satisfy the
invariants for H1. Otherwise, if H has two children H1 and H2 then applying Lemma 5.3.1 to the halfspaces
H � ρ,H1 � ρ,H2 � ρ we can find an i ∈ {1, 2} and a restriction τ such that Hi � (ρτ) is good and τ restricts
at most 2 extra coordinates. Let i1, i2 ∈ [n] be the two blocks of variables in which τ restricts variables, and
note that it could be that i1 = i2.

Finally, we must restore our invariants. We do this in the following three step process.

• Query the Adversary strategy at the state XORn4 (ρ) on variables zi1 , zi2 and let b1, b2 ∈ {0, 1} be the
responses.

• For i = i1, i2 let Ii be the set of variables free in the block i, and note that |Ii| ≥ 2. Apply Lemma 5.3.2
to H � (ρτ) and Ii to get new restrictions ρi1 , ρi2 so that blocks i1 and i2 both take values consistent
with the Adversary responses b1, b2.

• Update ρ← ρτρi1ρi2 .

By Lemma 5.3.2 the new restriction ρ satisfies the block-closed and the good halfspace invariants. At each
step we fix at most two blocks of variables, and thus the final invariant is satisfied as long as t < d/2. This
completes the proof. �

5.3.2 Semantic CP Depth Lower Bounds for Unlifted Formulas

Next we show how to prove depth lower bounds directly on unlifted families of F2-linear equations. The
strength of these lower bounds will depend directly on the expansion of the underlying constraint-variable
graph of F . That is, expansion will essentially play the role that lifting did in the previous section.

Throughout this section, let F denote a set of F2-linear equations. In a Semantic CP proof, we must
encode F as a CNF formula, but while proving the lower bound we will instead work with the underlying
system of equations. For a set F of F2-linear equations let GF := (F ∪ V,E) be the bipartite constraint-

variable graph defined as follows. Each vertex in F corresponds to an equation in F and each vertex in V
correspond to variables xi. There is an edge (Ci, xj) ∈ E if xj occurs in the equation Ci. For a subset of
vertices X ⊆ F ∪ V define the neighbourhood of X in GF as Γ(X) := {v ∈ F ∪ V : ∃u ∈ X, (u, v) ∈ E}.
Recall that we say that a system of linear equations F is an (r, s)-boundary expander if its constraint graph
GF is. The main result of this section is the following theorem, analogous to the sCP Depth Lifting Theorem.

Theorem 5.3.3. For any system of F2-linear equations F that is an (r, s+ 3)-boundary expander,

depthsCP(F ) ≥ rs/2.

The proof of this theorem follows the proof of sCP Depth Lifting Theorem with some small changes.
As before, we will maintain a partial assignment ρ ∈ {0, 1, ∗}n that will guide us on a root-to-leaf walk
through a given Semantic CP proof; we also require that each halfspace H that we visit is good relative to
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our restriction ρ. Now our invariants are (somewhat) simpler: we will only require that F �ρ is a sufficiently
good boundary expander.

We first prove an auxiliary lemma that will play the role of Lemma 5.3.2 in the proof of Theorem 5.3.3.
We note that it follows immediately from Lemma 5.3.2 and boundary expansion.

Lemma 5.3.4. Suppose F is a system of F2-linear equations that is an (r, s)-boundary expander for s > 1,

and suppose F ′ ⊆ F with |F ′| ≤ r. Let H be a good halfspace. Then there exists a ρ ∈ {0, 1, ∗}n with

fix(ρ) = Γ(F ′) such that

• F ′ is satisfied by ρ, and

• H �ρ is good.

Proof. We first use expansion to find, for each constraint Ci ∈ F ′, a pair of variables yi,1, yi,2 that are in
Ci’s boundary. To do this, first observe that |δ(F ′)| ≥ s|F ′| > |F ′| by the definition of boundary expansion.
The pigeonhole principle then immediately implies that there are variables yi,1, yi,2 ∈ δ(F ′) and a constraint
Ci ∈ F ′ such that yi,1, yi,2 ∈ Ci. Since yi,1, yi,2 do not occur in F ′ \ {Ci}, it follows that F ′ \ {Ci} is still
an (r, s)-boundary expander. So, we update F ′ = F ′ \ {Ci} and repeat the above process.

When the process terminates, we have for each constraint Ci ∈ F ′ a pair of variables yi,1, yi,2 that occur
only in Ci. Write the halfspace H =

∑
i wixi ≥ c, and let I = Γ(F ′) \

⋃
i∈I {yi,1, yi,2} be the set of

variables occurring in F ′ that were not collected by the above process. We define a partial restriction ρ with
fix(ρ) = I that depends on |I| as follows.

• If |I| = 0 then ρ = ∗n.

• If I = {xi} then define ρ(xi) = 1 if wi ≥ 0 and ρ(xi) = 0 otherwise, and for all other variables set
ρ(x) = ∗.

• If |I| > 2 then apply Lemma 5.3.2 to generate a partial restriction ρ with fix(ρ) = I that sets the XOR

of I arbitrarily.

Observe that H � ρ is good. The only non-trivial case is when |I| = 1, but, in this case we observe that
(H �ρ)((1/2)n−1) = 1 because

wiρ(xi) +
∑
j 6=i

wi/2 ≥
∑
i

wi/2 ≥ c,

where we have used that H is good and the definition of ρ.
Next we extend ρ as follows: for each i = 1, 2, . . . , |F ′| apply Lemma 5.3.2 to Ii = {yi,1, yi,2} to

generate a partial restriction ρi with fix(ρi) = Ii so that the constraint Ci � ρρ1 · · · ρi−1 is satisfied by ρi.
Observe that this is always possible since Ii is in the boundary of Ci. Finally, we update ρ ← ρρ1 · · · ρ|F ′|.
It follows by Lemma 5.3.2 that F ′ is satisfied by ρ and H �ρ is good.

We are now ready to prove Theorem 5.3.3.

Proof of Theorem 5.3.3. We are now ready to prove Theorem 5.3.3. Fix any Semantic CP refutation of F
and let n be the number of variables. We take a root-to-leaf walk through the refutation while maintaining a
partial assignment ρ ∈ {0, 1, ∗}n and an integer valued parameter k ≥ 0. Throughout the walk we maintain
the following invariants with respect to the current halfspace H:
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– Good Expansion. F �ρ is a (k, t)-boundary expander with t > 3.

– Good Halfspace. H �ρ is good.

– Consistency. The partial assignment ρ does not falsify any clause of F .

Initially, we set k = r, ρ = ∗n, and t = s + 3, so the invariants are clearly satisfied since F is an
(r, s+ 3)-expander. So, suppose that we have reached a halfspace H in our walk, and let k, ρ be parameters
satisfying the invariants. We first observe that if k > 0 then H cannot be a sink node of the proof. To see
this, it is enough to show that H contains a satisfying assignment for each equation C ∈ F . Because H � ρ
is non-empty (since it is good) there exists a satisfying assignment in H for every equation satisfied by ρ,
so, assume that C is not satisfied by ρ. In this case, since F � ρ is a (k, t)-expander for k > 0 we can apply
Lemma 5.3.4 to {C} and H �ρ and obtain a partial restriction τ with fix(τ) = Γ(C) such that τ satisfies C.
It follows that H is not a leaf.

Next, we show how to take a step down the proof while maintaining the invariants. If H has only a single
child H1, then H ⊆ H1 and we can move to H1 without changing ρ or k. Otherwise, let the children of H
be H1 and H2. Applying Lemma 5.3.1 to H �ρ,H1 �ρ,H2 �ρ we get a partial restriction τ and an i ∈ {1, 2}
such that Hi � ρτ is good and |fix(τ)| ≤ 2. Due to this latter fact, since F � ρ is a (k, t)-expander it follows
that F � ρτ is a (k, t − 2)-expander in the worst case. Observe that since t > 3 it follows that F � ρτ still
satisfies the consistency invariant. It remains to restore the expansion invariant.

To restore the expansion invariant, let W be the largest subset of equations such that |W | ≤ k and W has
boundary expansion at most 3 in F �ρτ , and note thatW has boundary expansion at least t−2 > 1. Applying
Lemma 5.3.4, we can find a restriction ρ′ such that W � ρτρ′ is satisfied, and H � ρτρ′ is a good halfspace.
SinceW is the largest subset with expansion at most 3, it follows that F �ρτρ′ is now a (k−|W |, t′)-boundary
expander with t′ > 3. Suppose otherwise, then there exists a subset of equations W ′ which has boundary
expansion at most 3 in F � ρτρ′. Then W ∪W ′ would have had boundary expansion at most 3 in F � ρτ ,
contradicting the maximality of W . Now update ρ ← ρτρ′ and k ← k − |W |. Finally, we halt the walk if
k = 0.

We now argue that this path must have had depth at least rs/2 upon halting. Assume that we have taken
t steps down the proof. For each step i ≤ t let Wi be the set of equations which lost boundary expansion
during the ith cleanup step. Note that Wi ∩Wj = ∅ for every i 6= j. Let W ∗ = ∪ti=1Wi, note that |W ∗| = r

because at the ith step we decrease k by |Wi|. Furthermore, at the end of the walk, W ∗ has no neighbours
and therefore no boundary in F �ρ. Before the start of the ith cleanup step, Wi has at most 3|Wi| boundary
variables. Therefore, at most 3|W ∗| = 3r boundary variables were removed during the cleanup step. Since
F started as an (r, s+ 3)-boundary expander, it follows that W ∗ had at least r(s+ 3) boundary variables at
the start of the walk. But, since all variables have been removed from the boundary by the end, this means
that rs variables must have been removed from the boundary during the move step. Thus, as each move step
sets at most 2 variables, it follows that t ≥ rs/2 before the process halted.

5.3.3 Proofs of the Technical Lemmas

In this section we prove our two key technical lemmas: Lemma 5.3.1 and Lemma 5.3.2. We begin by proving
the latter, which is restated next, as it is simpler.
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Lemma 5.3.2. Let n ≥ 2 and H ⊆ Rn be a good halfspace. For any I ⊆ [n] with |I| ≥ 2 and b ∈ {0, 1},
there is a partial restriction ρ ∈ {0, 1, ∗}n with fix(ρ) = I such that

•
⊕
i∈I

ρ(xi) = b and

• H �ρ ⊆ Rfree(ρ) is good.

Proof. Let H be represented by
∑
i∈[n] wixi ≥ c and suppose without loss of generality that c ≥ 0 and

that I = {1, . . . , k}. Let the weights of I in H be ordered |w1| ≥ |w2| ≥ . . . |wk|. Define ρ by setting
ρ(xi) = ∗ for i 6∈ I , for i ≤ k − 1 set ρ(xi) = 1 if wi ≥ 0 and ρ(xi) = 0 otherwise, and set ρ(xk) so that⊕

i∈I ρ(xi) = b. Clearly the parity constraint is satisfied, we show that H � ρ is good. This follows by an
easy calculation:

wk−1ρ(xk−1) + wkρ(xk) +
∑
i≤k−2

wiρ(xi) +
∑
i≥k+1

wi/2

≥ wk−1/2 + wk/2 +
∑
i≤k−2

wiρ(xi) +
∑
i≥k+1

wi/2

≥
∑
i∈[n]

wi/2 ≥ c

where the first inequality follows by averaging since |wk−1| ≥ |wk|, and the final inequality follows since H
is good. Therefore, (H �ρ)((1/2)[n]\I) = 1, and H �ρ is good.

In the remainder of the section we prove Lemma 5.3.1. It will be convenient to work over {−1, 1}n

rather than {0, 1}n, so, we restate it over this set and note that we can move between these basis by using the
bijection v 7→ (1− v)/2. We restate Lemma 5.3.1 next for {−1, 1}n.

Lemma 5.3.5. Let H ∈ Rn be a halfspace such that 0n ∈ H and suppose that H ∩ {−1, 1}n ⊆ H1 ∪H2.

Then one of H1 or H2 contains a point y ∈ {−1, 0, 1}n such that y has at most two coordinates in {−1, 1}.

The key ingredient in our proof of Lemma 5.3.5 is the following simple topological lemma, which will
allow us to find a well-behaved point lying on a 2-face of the {−1, 1}n cube

2-Face. A 2-face of the n-cube with vertices {−1, 1}n are the 2-dimensional 2-by-2 squares spanned by four
vertices of the cube that agree on all but two coordinates; That is, a two face is a set A ⊆ [−1, 1]n such that
there exists ρ ∈ {−1, 1, ∗}n with |free(ρ)| = 2 and A = [−1, 1]n �ρ.

Lemma 5.3.6. Letw1, w2 ∈ Rn be any pair of non-zero vectors, then we can find a vector v ∈ Rn orthogonal

to w1, w2, such that v lies on a 2-face.

Proof. We will construct the vector v iteratively by rounding one coordinate at a time to a {−1, 1}-value until
v contains exactly n − 2 coordinates fixed to {−1, 1}. At each step, we will maintain that v ∈ [−1, 1]n and
that v is orthogonal to w1 and w2. Therefore when the process halts v will lie on a 2-face.

Initially, set v = 0n and observe that the invariants are satisfied. Suppose that we have constructed a
vector v that is orthogonal to w1 and w2, all of its coordinates belong to [−1, 1], and exactly i < n − 2

of its coordinates belong to {−1, 1}; suppose w.l.o.g. that they are the first i coordinates. We will show
how to “booleanize” an additional coordinate of v. Let u be any non-zero vector that is orthogonal to
{w1, w2, e1, . . . , ei}, where ej is the jth standard basis vector. Begin moving from v in the direction of
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u and let α > 0 be the smallest value such that one of the coordinates j > i of v + αu is in {−1, 1}. We
verify that the following properties hold:

1. The first i coordinates of v + αu are in {−1, 1}. This follows because we moved in a direction that is
orthogonal to e1, . . . , ei.

2. v + αu is orthogonal to w1 and w2. Let w be either of the vectors w1 or w2 and observe that vi+1w =

viw + α(uw) = 0, where the final equality follows because w is orthogonal to vi by induction and to
u by assumption.

Finally, set v to be v + αu.

We are now ready to prove Lemma 5.3.5.

Proof of Lemma 5.3.5. Let the children H1 and H2 of H be given by the halfspaces w1x ≥ b1 and w2x ≥ b2
respectively. By Lemma 5.3.6 we can find a vector v which is orthogonal to w1 and w2, and which lies on
some 2-face F of the [−1, 1]n cube corresponding to some restriction ρ ∈ {0, 1, ∗}n. Then, v lies in (at least)
one of the four 1-by-1 quadrants of the 2-face, [0, 1]2, [0, 1] × [−1, 0], [−1, 0] × [0, 1], or [−1, 0]2; suppose
that v lies in the [−1, 0]× [0, 1] quadrant of F (see Figure 5.1), the other cases will follow by symmetry.

v

a− v

(0, 0)

(1, 1)

(1,−1)

a = (−1, 1)

(−1,−1)

Figure 5.1: A 2-face of the n-cube together with a depiction of the booleanizing process.

Let a ∈ Rn be the vector corresponding to the (−1, 1) corner of F , i.e., a is ρ extended by setting the two
free bits to −1 and 1. By symmetry and the fact that H is good (and therefore 0n ∈ H), we can assume that
a is contained in H — otherwise, simply exchange a and v for −a and −v. Since H ∩ {−1, 1}n ⊆ H1 ∪H2

and a ∈ {−1, 1}n, it follows that a is in one of H1 or H2. Assume that a ∈ H1; that is, w1a ≥ b1. Our goal
is to construct a vector y ∈ H1 that satisfies the statement of the lemma. Consider the following two cases:

(i) If w1(a − v) ≤ 0, then it follows that y := 0n ∈ H1. Indeed, w1y = w1v ≥ w1a ≥ b1, where
first equality follows because w1 and p are orthogonal by assumption, and the final inequality follows
because a ∈ H1.

(ii) Otherwise, we have that w1(a− v) > 0. We construct a point that satisfies the statement of the lemma
as follows. First, note that since a, v ∈ F , it follows that the vector a − v has at most two non-zero
coordinates. Beginning at the origin 0n, move in the direction a− v until a free coordinate coordinate
becomes fixed to −1 or 1; that is, let α > 0 be the minimum value such that α(a− v) has at most one
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coordinate which is not {−1, 1}-valued. Since both a and v belong to the same 1 × 1 quadrant of the
2-face, ‖a− v‖∞ ≤ 1 and so α ≥ 1. We can then verify that α(a− v) ∈ H1, since

w1α(a− v) = α(w1a)− 0 ≥ w1a ≥ b1,

where we have used the fact that v is orthogonal to w1 and α ≥ 1. Finally, since α(a − v) ∈ H1 we
can round the final non-zero coordinate to −1 or 1; since H1 is a halfspace one of the two vectors will
remain in H1.

5.3.4 Applications

We now use the theorems from the previous sections to obtain several concrete lower bounds. First, we give
strong depth lower bounds for sCP proofs of Tseitin formulas on expander graphs.

Theorem 5.1.1. For all sufficiently large n, there exists a graphG on n vertices and labelling ` : V → {0, 1}
such that any semantic Cutting Planes refutation of Tseitin(G, `) requires depth Ω(n).

Proof. A graph G = (V,E) is a γ-vertex expander if

min {|Γ(W )| : W ⊆ V, |W | ≤ |V |/2} ≥ γ|W |,

where Γ(W ) is the neighbourhood of W . We claim that if G is a γ-vertex expander then any Tseitin formula
over G is a (n/2, γ)-boundary expander. Fix any subset W of the equations with |W | ≤ n/2. By the
definition of vertex expansion we have that |Γ(W )| ≥ γ|W |, and since each variable is contained in exactly
two constraints, it follows that the boundary ofW in Tseitin(G, `) has size at least |δ(W )| ≥ γ|W |. The result
then follows from Theorem 5.3.3 and the existence of strong vertex expanders G (e.g. d-regular Ramanujan
graphs are at least d/4-vertex expanders, and exist for all d and n [113]).

Next, we give lower bounds on the depth of Semantic CP refutations of random k-XOR and random
k-CNF formulas for constant k. Recall from Chapter 3 that F(m,n, k) denotes the distribution on k-CNF
formulas where m clauses oare chosen uniformly at random over n variables.

Definition 5.3.7. Let XOR(m,n, k) be the distribution on random k-XOR formulas obtained by sampling m
equations from the set of all mod 2 linear equations with exactly k variables.

Theorem 5.3.8. The following holds for Semantic CP :

1. For any k ≥ 6 there exists m = O(n) such that F ∼ XOR(m,n, k) requires refutations of depth at

least Ω(n) with high probability.

2. For any k ≥ 6 there exists m = O(n) such that F ∼ F(m,n, k) requires refutations of depth at least

Ω(n) with high probability.

Proof. We first prove (1) and obtain (2) via a reduction. Fix m = O(n) so that F is unsatisfiable with high
probability. For any constant k, δ and m = O(n), F ∼ XOR(m,n, k) is an (αn, k − 2 − 2δ)-boundary
expander for some α > 0 (see e.g. [31, 40]). Thus, setting k ≥ 6 and ε to be some small constant, the
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boundary expansion of GF is at least 3. By Theorem 5.3.3, F requires depth Ω(n) to refute in Semantic CP

with high probability.
The proof of (2) is via a reduction fromF(m,n, k) to XOR(m,n, k). Every k-clause occurs in the clausal

encoding of exactly one k-XOR constraint. It follows that from any k-CNF formula F we can generate a k-
XOR formula whose clausal expansion F ′ contains F as follows: for each clause C ∈ F , if C contains
an even (odd) number of positive literals then add to F ′ every clause on the variables of C which contains
an even (odd) number of positive literals. The resulting F ′ is the clausal encoding of a set of |F | k-XOR

constraints. As there is a unique k-XOR consistent with the clauses of F , we can define the distribution
XOR(m,n, k) equivalently as follows:

1. Sample F ∼ F(m,n, k),

2. Return the k-XOR F ′ generated from F according to the aforementioned process.

It follows that the complexity of refuting F ∼ F(m,n, k) is at least that of refuting F ′ ∼ XOR(m,n, k) and
(2) follows from (1) with the same parameters.

Finally, we use Theorem 5.3.3 to extend the integrality gaps from [31] to sCP by essentially the same
argument. For a linear program with constraints given by a system of linear inequalities Ax ≤ b, the r-round

sCP relaxation adds all inequalities that can be derived from Ax ≤ b by a depth-r sCP proof. We show
that the r-round Semantic sCP linear program relaxation cannot well-approximate the number of satisfying
assignments to a random k-SAT or k-XOR instance.

First we define our LP relaxations. Suppose that F is a k-CNF formula with m clauses C1, . . . , Cm and
n variables x1, x2, . . . , xn. If Ci =

∨
i∈P xi ∨

∨
i∈N xi then let E(Ci) =

∑
i∈P xi +

∑
i∈N 1 − xi. We

consider the following LP relaxation of F :

max

m∑
i=1

yi

subject to E(Ci) ≥ yi ∀i ∈ [m]

0 ≤ xj ≤ 1 ∀j ∈ [n]

0 ≤ yi ≤ 1 ∀i ∈ [m]

If F is a k-XOR formula with m constraints and n variables then we consider the above LP relaxation
obtained by writing F as a k-CNF. Finally, recall that the integrality gap is the ratio between the optimal
integral solution to a linear program and the optimal solution produced by the LP.

Theorem 5.3.9. For any ε > 0 and k ≥ 6,

1. There is κ > 0 and m = O(n) such that for F ∼ XOR(m,n, k) the integrality gap of the κn-round

sCP relaxation of F is at least (2− ε) with high probability.

2. There is κ > 0 and m = O(n) such that for F ∼ F(m,n, k) the integrality gap of the κn-round sCP

relaxation of F is at least 2k/(2k − 1)− ε with high probability.

Proof. Let F ∼ XOR(m,n, k) and let Yi be the event that the ith constraint is falsified by a uniformly random
assignment. Let δ := ε/(2 − ε), then by a multiplicative Chernoff Bound, the probability that a uniformly
random assignment satisfies at least a 1/(2− ε)-fraction of F is Pr[

∑
i∈[m] Yi ≥ (1 + δ)m2 ] ≤ 2−δm/6. By
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a union bound, the probability that there exists an assignment satisfying at least a 1/(2 − ε) fraction of F is
2n−δm/6 which is exponentially small when m ≥ 7n(2− ε)/ε.

On the other hand, consider the partial restriction to the LP relaxation of F that sets yi = 1 for all i ∈ [m].
Setting m ≥ 7n(2− ε)/ε large enough, by Theorem 5.3.8 there some κ > 0 such that with high probability
F requires depth κn. Hence, the κn round Semantic CP LP relaxation is non-empty, and there is a satisfying
assignment α ∈ Rn. Thus α ∪ {yi = 1} satisfies all constraints of max(F ).

The second result follows by an analogous argument.

5.4 Supercritical Size/Depth Tradeoffs in Proof Complexity

In this section we observe supercritical size/depth tradeoffs for a number of prominent proof systems — res-
olution, k-DNF resolution (defined in Section 4.5), and semantic Cutting Planes. Our proof will follow the
general approach of Razborov [132] who established a supercritical width/size tradeoff for tree-like resolu-
tion. The key machinery in his proof is a technique — which has been termed hardness condensation — that
compresses the number of variables of the formula F in such a way that the depth of any bounded width tree-
like resolution refutation of the compressed formula remains proportional to the tree-like resolution depth of
refuting F .

The compression is done by composing the formula F with an XOR gadget. However, unlike the sCP

Depth Lifting Theorem, the XOR gadgets will be defined on overlapping sets of variables. This will allow us
to reduce the total number of variables of the composed function.

XOR Substitution. Let G = ([N ]∪ [n], E) be a bipartite graph and {y1, . . . , yN}, {x1, . . . , xn} be sets of
propositional variables. For a clause C in the variables {y1, . . . , yN} we will denote by C ◦ XORG the CNF
obtained from C by the F2-linear substitution

yi 7→
⊕

j:(i,j)∈E

xj ,

and then rewriting the formula in CNF (see Figure 5.2). For a CNF F , let F ◦ XORG be the CNF formula
that results from this substitution. If the clauses of F have width at most k and G has left-degree at most `,
then F ◦ XORG is a CNF formula on n variables and at most m · 2k`−1 clauses of width at most `k.

Similarly, we write F ◦ XORN2 to represent the CNF formula obtained by the substitution yi 7→ ui ⊕ vi
for each i, where ui and vi are new variables.

If G disperses the variables of [n] among the gadgets in such a way that learning the value of yi does not
tell us too much information about any yj , then provided we cannot remember the value of too many variables
xj at once, Razborov showed that the depth of refuting F ◦ XORG in tree-like resolution is proportional to
the depth of refuting F [132].

We are now ready to state Razborov’s hardness condensation theorem. [132]. We note that Razborov
originally proved his theorem for the case of tree-like Resolution, but (as we will see) it also holds for general
Resolution.

Depth Condensation Theorem. Let F be an unsatisfiable CNF formula on N variables and let G = ([N ]∪
[n], E) be an (r, 2)-boundary expander. If Π is a tree-like Resolution refutation ofF◦XORG with width(Π) ≤
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x1

x2

x3

`

[N ] = [nc]

[n]

x1 ⊕ x3

x1 ⊕ x2

x1 ⊕ x3

x2 ⊕ x3

x1 ⊕ x3

x1 ⊕ x2

Figure 5.2: The bipartite graph G, together with the XOR constraints that each left-vertex (y-variable) is
replaced with.

r/4, then

depth(Π)width(Π) ≥ depthRes(F )

2
.

In Subsection 5.4.2, we give a simplified proof of Depth Condensation Theorem. By combining this
theorem with known reductions from Resolution size to Resolution width [72, 139], we are able to establish
the following depth-to-size lifting theorems. When instantiated, these will allow us to prove our tradeoffs.

Theorem 5.4.1. Let F be any CNF formula onN variables and letG = ([N ]∪ [n], E) be an (r, 2)-boundary

expander. If Π is a resolution refutation of F ◦ XORG ◦ XORn2 such that log(size(Π) + 1) ≤ r/12, then

depth(Π) log(size(Π) + 1) ≥ depthRes(F )

6
.

Theorem 5.4.2. Let k ≥ 1 be any constant, let F be any CNF formula on N variables, and let G =

([N ] ∪ [n], E) be an (r, 2)-boundary expander. There is a constant δ := δ(k) > 0 such that if Π is a Res(k)

refutation of F ◦ XORG ◦ XORn2 with log(size(Π) + 1) ≤ δ · r, then

depth(Π) log2(size(Π)) = Ω
(
depthRes(F )

)
To obtain the depth-to-size lifting theorem for semantic Cutting Planes, we will instead use the t-bit

index function as our outer gadget. Recall that INDt : [t] × {0, 1}t → {0, 1} maps (x, y) to yx. For a
CNF formula on variables z1, . . . , zn, let F ◦ INDn

t be the CNF formula obtained from F by the substitution
zi 7→ INDt(xi, yi) on new sets of variables xi, yi. Note that if F is an unsatisfiable k-CNF formula with m
clauses, then F ◦ INDn

t is an unsatisfiable CNF formula on O(nt) variables and O(tmk + n) clauses.

Theorem 5.4.3. Let ε > 0 be any constant, let F be any CNF formula on N variables, and let G =

([N ] ∪ [n], E) be an (r, 2)-boundary expander. There is a constant δ > 0 such that if Π is a semantic CP
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refutation of F ◦ XORG ◦ INDn
n1+ε with log(size(Π)) ≤ δ · r log n, then

depth(Π) log2(size(Π)) = Ω(depthRes(F ) log2 n).

We delay the proofs of these theorems until Subsection 5.4.3. Instead, we will first instantiate them to
obtain our tradeoffs.

5.4.1 Parameterizing the Tradeoffs

From the previous theorems we can obtain a family of supercritical tradeoffs. To do so, we will need a formula
which has small resolution refutations, but requires large depth. The canonical example of such formulas are
the pebbling formulas of [1] on some hard-to-pebble graph H . It is known that for N -vertex graph H , PebH

has resolution refutations of size O(N) and width O(1). However, resolution depth required to refute these
formulas is equal to the reversible pebbling number of the graph [34]. Furthermore, there exist O(1)-degree
graphs with reversible pebbling number Ω(N/ logN) [123].

By combining the lower and upper bounds for the pebbling formulas with the previous lemmas we can
obtain a family of supercritical tradeoffs by varying the underlying expander graph G = ([N ] ∪ [n], E). The
following lemma provides us with a sufficient family of expander graphs.

Lemma 5.4.4 (Razborov [132]). Let n be any sufficiently large positive integer, and let N, r, ` be positive

integers depending on n such that ` ≥ 4. If

rN4/` = o(n/`)

then an (r, 2) boundary expander G = ([N ] ∪ [n], E) exists with left-degree `.

Our tradeoffs will be in terms of the number of variables n that we are“compressing” [N ] into. It will be
convenient to set N = nc, for some real parameter c ≥ 1, which we will call our compression parameter. As
well, let ε > 0 be some arbitrarily small real parameter. We will set

N := nc,

r := n1−ε/c,

` := 8c/ε.

We can verify that

rN4/` =
1

c
n1−εn4c/` ≤ 1

c
n1−εnε/2 =

n1−ε/2

c
= o(n/`).

Now, choosing different ranges of c allow us to obtain the following interesting tradeoff results.
For convenience, we record the following proposition stating how the parameters of F transform under

composition.

Proposition 5.4.5. Let H be any graph on N vertices with indegree O(1). Let G = ([N ] ∪ [n], E) be a

bipartite graph with left-degree at most `. Then,

• PebH has N variables, N + 1 clauses, and width O(1).
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• PebH ◦ XORG ◦ XORn2 has 2n variables, n2O(`) clauses, and width O(`).

• PebH ◦ XORG ◦ INDn
n1+ε has O(n2+ε) variables, nO(`) clauses, and width O(`)

Proof. We obtain PebH ◦ XORG by replacing each variable yi with an XOR of at most ` variables. Af-
ter expanding, this yields a CNF formula with n2(`−1)width(PebH) + n = n2O(`) clauses and width O(`).
Composing this with XOR2 has the same effect. To handle composition with the index gadget, we use the
encoding of [72] which, for any k-CNF formula F on n variables and m clauses, encodes F ◦ INDn

n1+ε as a
2k-CNF formula on O(n2+ε) variables and O(m · nk(1+ε)) clauses. For our choice of parameters, including
ε > 0 an arbitrarily small constant, this will be nO(`).

Now we can test different parameter regimes. In each of our regimes our tradeoffs are basically as
follows: we have a trivial proof of size 2n and depth n. However, if we demand that the proof has size
� 2n

1−ε
, then the depth of the proof will explode to roughly nc (which is supercritical in that it lies above

the worst-case upper bound of n). Increasing c obviously increases the final depth lower bound, but since we
must choose ` = O(c) it also increases the number of clauses proportionally. We first state a general tradeoff
parameterized by c (a formal version of Theorem 1.3.11), and then instantiate c.

Theorem 5.4.6. For all constants ε > 0, positive integers k, n sufficiently large, P ∈ {Res,Res(k),CP},
and arbitrary real parameter c ≥ 1, there is an unsatisfiable CNF formula FP on n variables such that

• If P = Res, then FP has a resolution refutation of size nc · 2O(c). However, any resolution refutation

Π of FP with size(Π) = 2o(n
1−ε/c) satisfies

depth(Π) log size(Π) = Ω

(
nc

c log n

)
.

• If P = Res(k), then FP has a Res(k) refutation of size nc · 2O(c). However, any Res(k) refutation Π

of FP with size(Π) = 2o(n
1−ε/c) satisfies

depth(Π) log2(size(Π)) = Ω

(
nc

c log n

)

• If P = sCP, then FP has a sCP refutation of size nO(c). However, any sCP refutation Π of FP with

size(Π) = exp
(
o
(
n( 1−ε

2+ε )/c
))

satisfies

depth(Π) log2(size(Π)) = Ω

(
nc/(2+ε) log n

c

)
.

Proof. Let the parameters N, r, ` be set as above, and let G = ([N ]∪ [n], E) be an (r, 2)-boundary expander
whose existence is guaranteed by Lemma 5.4.4. Let H be any directed graph on N vertices with indegree
O(1) whose reversible pebbling number is Ω(N/ logN). Then PebH requires resolution refutations of depth
Ω(N/ logN), but has resolution refutations of size O(N). For Res and Res(k), let F be PebH ◦ XORG ◦
XORn2 . The lower bounds on F follow from Theorem 5.4.1 and Theorem 5.4.2. For the upper bound, we
simulate the upper bound for PebH : every time the resolution proof for PebH would query a variable yi, we
query all of the variables that yi was replaced with in F ; that is, we query all uj , vj such that (i, j) is an edge
of G, in order to evaluate ⊕

j:(i,j)∈E

(uj ⊕ vj),
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which gives a value for yj . Because the left-degree of G is at most `, we query at most 2` = O(c) variables.
This can be done in a subproof (a decision tree) of size 2O(c). Altogether, this is a refutation of sizeN ·2O(c) =

nc · 2O(c) of F .
For sCP, let F be PebH ◦ XORG ◦ INDn

n1+ε . By Proposition 5.4.5, F has O(n2+ε) variables. The lower
bound follows from Theorem 5.4.3 together with the lower bound on PebH . For the upper bound, note that
INDn1+ε can be evaluated in resolution by querying (1 + ε) log n + 1 variables (the (1 + ε) log n “pointer
variables” x together with the single bit yx). Thus, by following the same strategy as before, we can simulate
the resolution refutation of PebH by every time the Res refutation queries a variable yi, evaluating the index
gadgets of all j ∈ [n] such that (i, j) ∈ E. As G has left-degree at most `, evaluating yi can be done by
querying at most ` · ((1 + ε) log n+ 1) variables. This results in a Res (and therefore sCP) refutation of size
N · 2`·((1+ε) logn+1) = nO(c).

In what follows we will explore different ranges of the compression parameter c. The next corollaries are
somewhat lossy, as they are stated in order to hold simultaneously for resolution, Res(k), and sCP. The first
interesting regime is when c = O(1). In this case, F is a polynomial size and constant width formula which
has a trivial depth n and size 2n proof, however any refutation of size� 2n

1−ε
, for some ε > 0, must have

polynomial depth.

Corollary 5.4.7. Let c = O(1) be any constant, let ε > 0 be an arbitrarily small constant, and let ∆sCP =

1 + ε and ∆Res = ∆Res(k) = 0. For any P ∈ {Res,Res(k),CP} there is a CNF formula FP on n variables,

such that

• There is a P-refutation of FP of size poly(n).

• Any P-refutation Π of FP with size(Π) = exp(o(n
1−ε

1+∆P )) has depth(Π) = Ω̃(nc/(1+∆P)).

The second interesting regime is when c = logO(1) n. In this case, we are compressing the number of
variables quasipolynomially, and we obtain quasipolynomial depth lower bounds for small proofs.

Corollary 5.4.8. Let c = logO(1) n and let ε > 0 be an arbitrarily small constant, and let ∆sCP = 1 + ε and

∆Res = ∆Res(k) = 0. For any P ∈ {Res,Res(k),CP} there is a CNF formula FP on n variables, such that

• There is a P-refutation of FP of size 2logO(1) n.

• Any P-refutation Π of FP has with size(Π) = exp(õ(n
1−ε

1+∆P )) has depth(Π) = Ω̃(nlogO(1) n).

Finally, we would like to test how large we can set c. The best possible compression afforded by Theo-
rem 5.4.6 is c = nδ for some small constant δ > 0. Surprisingly, this implies an exponential blowup in the
depth.

Corollary 5.4.9. Let ε > 0 be an arbitrarily small constant, and let ∆sCP = 1 + ε and ∆Res = ∆Res(k) = 0.

For P ∈ {Res,Res(k),CP} and any 0 < δ < (1− ε)/(1 + ∆). There is a CNF formula FP on n variables

such that

• FP has a P-refutation of size 2O(nδ/ logn).

• Any P-refutation Π of FP with size(Π) = exp(o(n
1−ε

1+∆P
−δ

)) has depth(Π) = exp(Ω(nδ)).
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5.4.2 Proof of the Depth Condensation Theorem

In this section we prove the Depth Condensation Theorem. To do so, it will be convenient to work with the
following variant of the classic Prover-Adversary games of Pudlák [128]. Our variant characterizes the depth
of bounded-width Resolution proofs.

Width–Bounded Prover–Adversary Game. Let w > 0 be an integer. A Prover–Adversary game is a
w-bounded Game if at every step in game, the Prover’s memory ρ remembers assignments to at most w
variables; i.e., |[n] \ ρ−1(∗)| ≤ w.

We will say that a game is non-bounded if it is not necessarilyw-bounded. By a similar argument to [128],
we can show the following.

Lemma 5.4.10. For any unsatisfiable CNF formula F , there is a depth d, width w resolution refutation of F

if and only if there the Prover has a strategy that ends the (w + 1)-bounded game in d rounds, regardless of

the strategy for the Adversary.

Proof. Let Π be a resolution proof of width w and depth d. We extract a strategy for the Prover as follows:
the Prover will take a root-to-leaf walk down the proof. At each step, corresponding to some clause C in the
resolution proof, she will maintain that she is remembering exactly the unique falsifying assignment ¬C to
the clause C. If C was obtained by resolving C1 ∨ x and C2 ∨ ¬x then she will query the variable x. If the
delayer responds with x = 0 then she will move to C1 ∨ x and forget all assignments except for ¬C1 ∧ ¬x.
Proceeding in this way, we arrive at a leaf C of Π in at most d steps. By our invariant, the Prover remembers
at most w + 1 variables at any point.

As the converse direction will not be used in our proofs, we only provide a sketch of the argument. We
can view the Prover’s strategy for a (w + 1)-bounded game as a dag, where every node is labelled with the
memory of the Prover at that step in the strategy, along with the variable that the Prover queries, and there are
two outgoing edges labelled 0 and 1 respectively, corresponding to possible answers of the Delayer. For each
node labelled with some memory ρ and variable x, we will relabel it with the clause formed by the negation
of the literals fixed by ρ, which will be obtained from its children by resolving on x.

Let us set up some notation. Let G = ([N ]∪ [n], E) be a bipartite graph; we will think of the left-vertices
as the variables of F and the right-vertices as the variables of F ◦ XORG. For a set S ⊆ [n] of right-vertices
of G, denote by

Fixed(S) := {i ∈ [N ] : ∀(i, j) ∈ E, j ∈ S}

the set of left-vertices which become isolated after removing the set S of right vertices. Similarly, for a partial
assignment ρ ∈ {0, 1, ∗}n let Fixed(ρ) := Fixed(S), where S = [n] \ ρ−1(∗), be the set of variables of F
which are determined by ρ. Finally, let G�ρ denote the graph obtained by removing all left-vertices that have
been set by ρ (i.e., those in [n] \ ρ−1(∗)), and removing all isolated vertices.

Proof Overview. First, we give a high-level sketch of the proof. Let F be a CNF formula which requires
depth d to refute in resolution. This gives us a strategy for the Adversary (for the non-bounded game) which
ensures that it scores at least d points. We will use this strategy to construct a strategy for the Adversary
in the w-bounded–game for F ◦ XORG. Ideally, we would like to proceed as follows: if the Prover (in the
w-bounded game for F ◦ XORG) queries a variable, we would like to set it according to the Delayer strategy
of the non-bounded game for F if it would determine the value of some variable yi of F , that is, i would
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be added to Fixed(ρ), and set it arbitrarily otherwise. However, in this setting the XOR gadgets may share
variables and so variables may be correlated. To circumvent this, we will exploit expansion. Indeed, if G is
a good enough boundary expander, then we can always set the constraints to whatever value we like. That
is, for any subset I ⊆ [N ] of XOR-constraints, we can always find a strong system of distinct representative

variables.

Strong SDR. If G = ([N ]∪ [n], E) is a bipartite graph and I = {I1, . . . , It} ⊆ [N ] then a system of distinct

representatives (SDR) for I is a set J = {J1, . . . , Jt} ⊆ [n] such that I and J form a matching where
(Ii, Ji) ∈ E for all i ∈ [t]. The SDR of I is strong if, furthermore, Ii is not adjacent to Jj for all j > i.

The following lemma can be viewed as a strengthening of the claim that expanders have matchings on
small sets.

Lemma 5.4.11. If G = ([N ]∪ [n], E) is an (r/2, 1/2)-boundary expander, then any I ⊆ [N ] with |I| ≤ r/2
has a strong SDR.

Proof. For i = 1 . . . t perform the following. Because I has boundary at least |I|/2 within G, by the pigeon-
hole principle there exists ` ∈ I and a column j ∈ [n] such that (`, j) ∈ E and (`′, j) 6∈ E for every `′ ∈ I
with `′ 6= `; fix Ii := ` and Ji := j. Set G to be the graph obtained by removing vertices Ii and Ji and any
edge incident to either of them, and update I ← I \ Ii. Because Ji was not adjacent to any vertex besides Ii,
removing Ji does not decrease the expansion of I in G and we can recurse.

If a partial restriction ρ ∈ {0, 1, ∗}n (thought of as the Prover’s memory) sets some variables, this may
decrease the boundary expansion of the current graph G � ρ. Therefore, at each step of the simulation, the
Delayer will track a closure of ρ which will set some additional variables, but will ensure that the residual
graph is a good boundary expander. The following operator will allow us to restore the expansion of G after
removing a subset of the vertices.

Closure Operator. For a J ⊆ [n], denote by G \ J the graph obtained by taking the subgraph induced by
the vertex set [N ] ∪ ([n] \ J) and removing any isolated vertices (i.e. yi for which i ∈ Fixed(J)) from [N ].

The following lemma states that for any small J there is a closure Cl(J) ⊇ J such that G \ Cl(J) is still
expanding; a proof can be found in [132] (Lemma 2.3), building on ideas in [3, 139].

Lemma 5.4.12. Let G = ([m] ∪ [n], E) be an (r, 2)-boundary expander. For every J ⊆ [n] with |J | ≤ r/4

there exists Cl(J) ⊇ J such that |Fixed(Cl(J))| ≤ 2|J | and G \ Cl(J) is an (r/2, 3/2)-boundary expander.

We are now ready to prove the main theorem of this section.

Proof of the Depth Condensation Theorem. Fix an optimal strategy D for the Delayer (in the unbounded
game) which scores at least d points on F . We will construct a Delayer strategy for the w-bounded game
which scores at least d/2w points. We will denote the Prover’s memory at each step in the bounded game by
ρ ∈ {0, 1, ∗}n. For convenience, we will also track an assignment to the closure Cl(ρ) of ρ, which we denote
by ρCl ∈ {0, 1, ∗}n. In each round ρ in the game, we will maintain the following invariants:

– Closed: ρCl
i ∈ {0, 1} iff i ∈ Cl(ρ).

– Expanding. G \ Cl(ρ) is an (r/2, 3/2)-boundary expander.

– Satisfying Closure. ρCl does not falsify any of the constraint of F ◦ XORG.
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Initially ρ = ρCl = ∗n and the invariants are satisfied.
At each round we will query the Delayer strategy D at most w times. Suppose that, that we (as the

Delayer for the bounded game) have scored at most d/2w− 1 points and the invariants are satisfied, then we
can claim we can continue for another round and restore the invariants. First, we handle ρ.

• Querying. Let xi be the variable that the Prover queries at this step. We will set xi to a value α ∈ {0, 1},
denoting the resulting restriction ρi←α according to one of these two cases:

1. If i ∈ Cl(ρ) then the Delayer sets α← ρCl
i .

2. If i 6∈ Cl(ρ) then choose α arbitrarily.

The Delayer sets ρCl
i ← α.

Note that by the expanding assumption, each yj with j 6∈ Fixed(Cl(ρ)) had at least two free variables
before xi was set, and therefore setting xi does not change the set Fixed(Cl(ρ)). Because G \ Cl(ρ)

was an (r/2, 3/2)-boundary before setting xi, after setting it,G\(Cl(ρ)∪{i}) is at least an (r/2, 1/2)-
boundary expander.

• Forgetting. If the Prover chooses to forget the value of a variable xi, then set ρi←αi = ∗.

It remains to restore the invariants by updating ρCl to fix exactly the variables in Cl(ρi←αi ). Denote by

I = {I1, . . . , It} := Fixed(Cl(ρi←α)) \ Fixed(Cl(ρ))

the set of indices of left-vertices yIj (XOR-constraints) whose neighbours (variables) are all contained within
Cl(ρi←α), but are not contained within Cl(ρ). Because G \Cl(ρ∪ {i}) is an (r/2, 1/2)-boundary expander,
by Lemma 5.4.12 we can find a strong SDR J = {J1, . . . , Jt} for I .

We are now ready to restore the invariants. For every j ∈ Cl(ρi←α) \ J , set ρCl
j arbitrarily. It remains to

set the strong SDR J , which we will do according to the Delayer strategy D. For ` = 1, . . . , t perform the
following: Query the Delayer strategy D for the response β ∈ {0, 1} when the current state is XORG(ρCl)

and the Prover is querying the variable yI` (of F ). Observe that because we have already fixed all of the other
variables in the neighbourhood of yI` , the only free variable in the constraint corresponding to yI` is xJ` . Fix
ρCl
J`

so that ⊕
j:(I`,k)∈E

xj = β.

Note that |Fixed(ρi←α)| ≤ w by definition of aw-bounded game. Thus, by Lemma 5.4.12, |Fixed(Cl(ρi←α))| ≤
2w, and we can conclude that we query the Delayer strategy at most 2w times during this round. Because we
have scored less than d/2w− 1 points, the Delayer has answered at most d− 2w queries so far, and therefore
the Delayer can still provide answers to these at most 2w queries which do not falsify any constraints of F ,
and therefore of F ◦ XORG. Set ρ← ρi←α; we have restored our invariants.

5.4.3 Proofs of the Tradeoffs

5.4.4 Proof of the Resolution Tradeoff

We begin with Theorem 5.4.1, which we restate next for convenience.
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Theorem 5.4.1. Let F be any CNF formula onN variables and letG = ([N ]∪ [n], E) be an (r, 2)-boundary

expander. If Π is a resolution refutation of F ◦ XORG ◦ XORn2 such that log(size(Π) + 1) ≤ r/12, then

depth(Π) log(size(Π) + 1) ≥ depthRes(F )

6
.

We require the following simple size-width lifting theorem for resolution.

Lemma 5.4.13. Let F be any unsatisfiable CNF formula. For any resolution refutation Π∗ of F ◦ XORn2
there is a resolution refutation Π of F such that

width(Π) ≤ 3 log(size(Π∗) + 1),

depth(Π) ≤ depth(Π∗).

Proof. Let x1, . . . , xn be the variables of F and let u1, v1, . . . , un, vn be the variables of F ◦XORn2 . LetD be
the collection of partial restrictions ρ ∈ {0, 1, ∗} that, for every i ∈ [n], set exactly one of ui or vi to a value
in {0, 1} and leave the other unset. Denote by ρ ∼ D sampling a restriction ρ uniformly at random from D.
It is easy to see that for any resolution refutation Π∗ of F ◦ XORn2 and any ρ∗ ∈ D, Π∗ � ρ is a resolution
refutation of F , and furthermore by closure under restrictions it follows that depth(Π∗ �ρ) ≤ depth(Π∗).

Let t be a positive integer to be set later. For any clause C of width(C) ≥ t in Π∗, it follows that
for ρ ∼ D, the probability C � ρ is not satisfied is at most (3/4)t. By a union bound, it follows that the
probability that Π∗ � ρ has a clause of width ≥ t is at most size(Π∗)(3/4)t, which is strictly less than 1

as long as size(Π∗) ≤ (4/3)t. Choosing t = log4/3(size(Π∗) + 1) ≤ 3 log(size(Π∗) + 1) completes the
proof.

By combining this lemma with the Depth Condensation Theorem, we can prove Theorem 5.4.1.

Proof of Theorem 5.4.1. Let Π∗ be a resolution refutation of F ◦XORG ◦XORn2 . By Lemma 5.4.13, there is
a resolution refutation Π of F ◦ XORG with depth(Π) ≤ depth(Π∗) and

width(Π) ≤ 3 log(size(Π∗) + 1) ≤ 3r/14 = r/4.

By the Depth Condensation Theorem, it follows that

depth(Π) log(size(Π) + 1) ≥ depthRes(F )/6.

5.4.5 Proof of the k-DNF Resolution Tradeoff

Next, we establish Theorem 5.4.2, which we restate next.

Theorem 5.4.2. Let k ≥ 1 be any constant, let F be any CNF formula on N variables, and let G =

([N ] ∪ [n], E) be an (r, 2)-boundary expander. There is a constant δ := δ(k) > 0 such that if Π is a Res(k)

refutation of F ◦ XORG ◦ XORn2 with log(size(Π) + 1) ≤ δ · r, then

depth(Π) log2(size(Π)) = Ω
(
depthRes(F )

)
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To do so, we will prove a generic lifting theorem for Res(k). For this, it will not be necessary to recall
the specific rules of Res(k), only that every line in a Res(k) proof is a k-DNF formula.

Res(k) Lifting Theorem. Let k ≥ 1 be an integer and F be any CNF formula. For any Res(k) refutation

Π∗ of F ◦ XORn2 there is a resolution refutation Π of F such that

width(Π) ≤ k
(

log size(Π∗)− log(4k)
)(4k+1k

log e

)k
,

depth(Π) ≤ k · depth(Π∗)
(

log size(Π∗)− log(4k)
)(4k+1k

log e

)k
.

This theorem follows in a straightforward way from the switching lemma of Segerlind Buss and Impagli-
azzo [139], which shows that low-width DNFs can be converted into short decision trees under a random
restriction.

Definition 5.4.14. A decision tree is a rooted binary tree in which every non-leaf node is labelled with a
variable, the edges leaving a a node are labelled with 0 and 1, and the leaves are labelled either 0 or 1.
Every root-to-leaf path π in a decision tree T can be viewed as a partial assignment π ∈ {0, 1, ∗}n, where,
if the π takes the edge labelled α ∈ {0, 1} at node xi then πi = α. We say that T computes a function
f : {0, 1}n → {0, 1} if for every x ∈ {0, 1}n, the leaf of the unique root-to-leaf path π in T which agrees
with x is labelled with f(x). The decision tree complexity of computing f , DT(f) is the minimum depth of
any decision tree computing f .

For a DNF D over variables {x1, . . . xn}, let C(D) denote the covering number of D — the minimum
size of a set S ⊆ {x1, . . . xn} such that for every term T of D, S contains at least one variable in T . The
switching lemma is argued by showing that if the size ofC(D) is large, then many terms ofD are independent
and thus D is set to 1 with high probability, and if C(D) is small then we can build a small decision tree
computing D.

Lemma 5.4.15 ( [139]). Let s0, . . . , sk−1 and p1, . . . , pk be positive numbers and letD set of partial assign-

ments such that for every i ≤ k and every i-DNF D′, if C(D′) > si−1 then Prρ∼D[D′ �ρ 6= 1] ≤ pi. Then,

for every k-DNF D,

Pr
ρ∼D

[
DT(D �ρ) >

k−1∑
i=0

si

]
≤

k∑
i=1

pi · 2(
∑k−1
j=i sj).

In the same paper, they showed that Res(k) refutations in which every line can be represented by a short
decision tree can be transformed into a low-width resolution refutation.

Lemma 5.4.16 ( [139]). Let F be any unsatisfiable CNF formula. If Π is a Res(k) refutation of F such that

for every line D ∈ Π, DT(D) ≤ t then there is a resolution refutation Π∗ of F with

width(Π∗) ≤ kt,

depth(Π∗) ≤ kt · depth(Π).

To prove the Res(k) Lifting Theorem, our strategy will be to show that for any small Res(k) refutation of
F ◦ XOR2 there is a restriction such that under this restriction every line in the proof can be computed by a
short decision tree.
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Proof of the Res(k) Lifting Theorem. Let F ◦ XORn2 be defined over variables u1, v1, . . . , un, vn. Let D be
the set of restrictions ρ ∈ {0, 1, ∗}2n such that for every i ∈ [n], ρ sets exactly one of ui, vi to some value in
{0, 1} and leaves the other unset. Note that for any ρ ∈ D, F ◦ XORn2 �ρ = F . Fix a Res(k) refutation Π of
F ◦ XORn2 satisfying the assumption of the lemma. It remains to argue that there exists a restriction ρ ∈ D
such that every line in Π�ρ can be computed by a short decision tree.

Fix any k-DNF D. By the pigeonhole principle, there is a set of at least C(D)/k variable-disjoint terms
T1, . . . , TC(D)/k ∈ D. Denote by ρ ∼ D sampling a restriction ρ from D uniformly at random, and observe
that the probability that ρ satisfies any term T is at most (1/4)k. Therefore,

Pr
ρ∼D

[D �ρ 6= 1] ≤ (1− (1/4)k)C(D)/k ≤ exp(−(1/4)kC(D)/k).

Denote w := (log size(Π) − log(2k))(4k+1k/ log e)k and let si := (w/2)(log e/4i+1i)k and pi := 2−4si .
Observe that si−1/4 ≤ si. Therefore,

k−1∑
j=i

sj ≤
k−1∑
j=i

si/4
j−i ≤ 2si,

and in particular,
∑k−1
i=0 si ≤ 2s0 ≤ (w/2) log e ≤ w. For any i-DNF D with C(D) ≥ si−1, we have

Pr
ρ∼D

[D �ρ 6= 1] ≤ exp(−(1/4)iC(D)/i) ≤ exp(−si−1pi/i).

Therefore, for any k-DNF, it follows from the switching lemma (Lemma 5.4.15) that

Pr
ρ∼D

[DT(D) > w] ≤ Pr
ρ∼D

[
DT(D) >

k−1∑
i=0

si

]
≤

k∑
i=1

pi · 2(
∑k−1
j=i sj) ≤

k∑
i=1

k22si(2−4si) ≤ k2−2sk .

Finally, we can conclude the lemma by taking a union bound over all DNFs in Π,

Pr
ρ∼D

[∃D ∈ Π : DT(D �ρ) > w] ≤ size(Π)k2−2sk = size(Π) · k2−w( log e

4k+1k
)
k

= 1/2,

where the final equality follows by our setting of w. Thus, there exists some restriction ρ ∈ D such that every
D ∈ Π�ρ has DT(D) ≤ w. Applying Lemma 5.4.16 we can conclude that there is a resolution refutation of
width at most kw and depth dkw.

With this lifting theorem in hand, we are ready to prove Theorem 5.4.2.

Proof of Theorem 5.4.2. Set δ > 0 such that δ = (4k+1k/ log e)−k/4k + log(4k)/r. Let Π∗ be any Res(k)

refutation of F ◦XORn2 with log size(Π∗) ≤ δ·r, and denote by t := (log size(Π∗)−log(4k))(4k+1k/ log e)k.
By the Res(k) Lifting Theorem, there exists a resolution refutation Π with depth(Π) ≤ kt · depth(Π∗) and

width(Π) ≤ kt ≤ k(δr − log(4k))

(
4k+1k

log e

)k
= r/4.

Applying the Depth Condensation Theorem, we have that

depthRes(F )

2
≤ depth(Π)size(Π) ≤ (kt)2depth(Π∗) = O

(
log2 size(Π∗)depth(Π)

)
,



CHAPTER 5. DEPTH LOWER BOUNDS AND SUPERCRITICAL TRADEOFFS 108

which completes the proof.

5.4.6 Proof of the Semantic Cutting Planes Tradeoff

Finally, we establish Theorem 5.4.3.

Theorem 5.4.3. Let ε > 0 be any constant, let F be any CNF formula on N variables, and let G =

([N ] ∪ [n], E) be an (r, 2)-boundary expander. There is a constant δ > 0 such that if Π is a semantic CP

refutation of F ◦ XORG ◦ INDn
n1+ε with log(size(Π)) ≤ δ · r log n, then

depth(Π) log2(size(Π)) = Ω(depthRes(F ) log2 n).

This theorem follows almost immediately by applying the dag-like lifting theorem of Garg et al. [72],
with the improved parameters from [111], and observing that their proof also preserves depth. We state this
theorem next, specialized to semantic Cutting Planes.

Theorem 5.4.17 ( [72, 111]). Let ε > 0 be any constant and let F be an unsatisfiable CNF formula on n

variables. For any semantic CP Π of F ◦ INDn
n1+ε there is a resolution refutation Π∗ of F satisfying

width(Π∗) = O

(
log size(Π)

log n

)
,

depth(Π∗) = O

(
depth(Π) log size(Π)

log n

)
.

By combining this lifting theorem with the Depth Condensation Theorem, we can prove Theorem 5.4.3.

Proof of Theorem 5.4.3. Let Π be a semantic CP refutation of F ◦ XORG ◦ INDn
n1+ε . By Theorem 5.4.17

there is a semantic Cutting Planes refutation Π∗ of F ◦ XORG with depth(Π∗) = O(log size(Π)/ log n) and
width(Π∗) = α · log size(Π)/ log n for some constant α > 0. Setting δ > 0 so that αδ = 1/4,

width(Π∗) =
α · log size(Π)

log n
≤ αδ · r = r/4.

By the Depth Condensation Theorem, it follows that

depth(Π) log2 size(Π) = Ω
(
depthRes(F ) log2 n

)
.

5.5 Conclusion

We end this chapter by discussing several questions left open by this work.

Problem 5.1. Supercritical Size/Depth Tradeoffs for Tseitin. The main open problem is to resolve Con-
jecture 1.3.9 for the Tseitin formulas. Our supercritical tradeoff for Cutting Planes relies on the lifting theorem
of Garg et al. [72] which lifts resolution width lower bounds to RCC1 (see Chapter 3) size lower bounds by
composing with the index gadget. This poses two major issues. First, it is not clear that the Tseitin formulas
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can be viewed as a function composed with any gadget beyond XOR. Second, the RCC1 proof system has
poly(n) and depth O(log n) refutations of the Tseitin formulas. Instead, we hope that our techniques from
the proof of the sCP Depth Lifting Theorem can be useful in this context.

Problem 5.3. Supercritical Size/Depth Tradeoffs for Clause-Size. Our supercritical tradeoffs are only
supercritical in terms of the number of variables, and not the number of clauses. This leaves open the pos-
sibility of establishing a tradeoff which is supercritical both in the number of clauses as well. For resolution
clause space rather than depth, Beame Beck and Impagliazzo [14] established a tradeoff which is supercriti-
cal in terms of the number of clauses. Can the techniques used to establish this tradeoff be leveraged in order
to obtain a size/depth tradeoff which is supercritical also in the number of clauses?



Chapter 6

Conclusion

In this thesis we developed and studied proof systems which formalize algorithms for integer programming.
By developing deeper connections between proof complexity and monotone circuit complexity, we estab-
lished strong lower bounds on the size of proofs of random CNF formulas in these systems. As well, we
proved lower bounds on the depth of proofs which go far beyond worst-case when the size of the proof is
limited. In what remains, we would like to record several interesting open problems related to this work.

Problem 6.1. Combinatorial Lower Bounds for (Treelike) Cutting Planes. Currently, all lower bounds
on Cutting Planes are proved for the much stronger RCC1 proof system. This includes Pudlák’s lower
bound [127], as well as the lifting theorem of Garg et al. [72]. The only properties of the proofs that are
exploited in these lower bounds is that they are sound, and that every line can be computed by a small (real)
communication protocol. This obscures our understanding of Cutting Planes. Moreover, this is also the case
for the treelike Cutting Planes proof system, where the only lower bounds are via reduction to communica-
tion complexity [89]. Therefore, an important open problem is to develop a lower bound technique which
works only for (treelike) Cutting Planes (or even semantic Cutting Planes), and not for RCC1. This requires
developing a deeper understanding how halfspaces transform throughout a Cutting Planes proof. We hope
that our geometric lemma (Lemma 5.3.1) is a useful step towards this.

Problem 6.2. Treelike Proofs of the Tseitin Formulas. Dadush and Tiwari’s upper bound on the Tseitin
formulas [48] went against the long-standing conjecture that these formulas should be hard for Cutting Planes.
Their proof is highly daglike, and therefore a natural question is whether this conjecture may still be true for
treelike Cutting Planes. This dovetails with the previous question; the Tseitin formulas are known to have
short communication protocols, and therefore they provide a natural (potentially) hard family of formulas for
developing a combinatorial lower bound technique for treelike Cutting Planes.

Problem 6.3. Supercritical Size/Depth Tradeoffs for Monotone Circuits. The lifting theorem of Garg et
al. [72] works equally well to prove monotone circuit lower bounds as it does Cutting Planes lower bounds.
Therefore, one might hope to leverage the same techniques in order to prove the same tradeoffs for monotone
circuits. While there are conversions of CNF formulas into monotone functions F (such as the one presented
in Chapter 3) which preserve the complexity of refuting F , they result in functions on a number of variables
which is proportional to the number of clauses of F . Unfortunately, our tradeoffs are only supercritical in
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terms of the number of variables and not the number of clauses. Indeed, the formula F in Theorem 1.3.11
has nO(c) clauses, and therefore the tradeoff that one obtains is not longer supercritical.

Problem 6.4. Lower Bounds for Stabbing Planes and R(CP). One of the major questions left open by
this work is to establish lower bounds on Stabbing Planes proofs with unbounded coefficients, as well as its
dag-like counterpart, R(CP). One potential approach is to establish a (quasipolynomial) simulation of SP

by CP which does not depend on the size of the coefficients. Garg et al. [72] suggested an approach for
proving lower bounds on R(CP) proofs by establish lower bounds on a model of communication, known as
intersections of triangles dags. Indeed, it is known that small R(CP) proofs convert to small protocols for
this model of communication. Similarly, SP proofs are captured by intersections of triangles trees.
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[78] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is NP-hard. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy,
editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC

2020, Chicago, IL, USA, June 22-26, 2020, pages 68–77. ACM, 2020.
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[94] Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunctions. Math. Program.,
128(1-2):403–436, 2011.

[95] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-logarithmic
depth. SIAM J. Discret. Math., 3(2):255–265, 1990.

[96] Scott Kirkpatrick and Bart Selman. Critical behavior in the satisfiability of random boolean expres-
sions. Science, 264(5163):1297–1301, 1994.

[97] Arist Kojevnikov. Improved lower bounds for tree-like resolution over linear inequalities. In João
Marques-Silva and Karem A. Sakallah, editors, Theory and Applications of Satisfiability Testing - SAT

2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings, volume 4501
of Lecture Notes in Computer Science, pages 70–79. Springer, 2007.

[98] Jan Krajı́cek. Interpolation theorems, lower bounds for proof systems, and independence results for
bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997.

[99] Jan Krajı́cek. Discretely ordered modules as a first-order extension of the cutting planes proof system.
J. Symb. Log., 63(4):1582–1596, 1998.

[100] Jan Krajı́cek. Interpolation by a game. Math. Log. Q., 44:450–458, 1998.
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