
Provably Total Functions in the Polynomial
Hierarchy

Noah Fleming Deniz Imrek Christophe Marciot
Memorial University UT Austin Memorial University

April 22, 2025

Abstract

TFNP studies the complexity of total, verifiable search problems, and represents the first layer of
the total function polynomial hierarchy (TFPH). Recently, problems in higher levels of the TFPH have
gained significant attention, partly due to their close connection to circuit lower bounds. However, very
little is known about the relationships between problems in levels of the hierarchy beyond TFNP.

Connections to proof complexity have had an outsized impact on our understanding of the relation-
ships between subclasses of TFNP in the black-box model. Subclasses are characterized by provability
in certain proof systems, which has allowed for tools from proof complexity to be applied in order to
separate TFNP problems. In this work we begin a systematic study of the relationship between sub-
classes of total search problems in the polynomial hierarchy and proof systems. We show that, akin to
TFNP, reductions to a problem in TFΣd are equivalent to proofs of the formulae expressing the totality
of the problems in some Σd-proof system. Having established this general correspondence, we examine
important subclasses of TFPH. We show that reductions to the STRONGAVOID problem are equivalent
to proofs in a Σ2-variant of the (unary) Sherali-Adams proof system. As well, we explore the TFPH
classes which result from well-studied proof systems, introducing a number of new TFΣ2 classes which
characterize variants of DNF resolution, as well as TFΣd classes capturing levels of Σd-bounded-depth
Frege.
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1 Introduction
The class TFNP consists of the total search problems whose solutions are verifiable in polynomial time . It has
received considerable attention since it captures fundamental problems in a broad range of areas, whose lack of efficient
algorithms is not readily explained by the theory of NP-completeness. Famous examples include NASH: output a
Nash equilibria of a given bimatrix game; and FACTORING: output a prime divisor of given integer. TFNP itself is
not believed to admit complete problems [Pud15], and as a consequence much of the work on TFNP has focused on
studying subclasses which do. However, we are limited to proving conditional or oracle separations, as a separation
between any TFNP subclasses would imply P ̸= NP.

A flurry of recent results have established a complete picture of the relationships between the major TFNP sub-
classes in the black-box setting, where the input is presented as a black-box oracle which can be queried [BCE+98,
GHJ+22b, GHJ+22a, FGPR24, GKRS19, FGPR24]. These results exploited a deep connection between black-box
TFNP — denoted TFNPdt — and proof complexity, an area which studies efficient provability in certain propo-
sitional logics, known as proof systems. The connection of proof complexity to TFNPdt can be summarized as
follows: A reduction between two total search problems is a proof that the first is total, assuming the totality of the
second. By employing this lens, it has been shown that many important TFNPdt sublcasses are characterized by
provability in certain well-studied proof systems in the sense that there is a simple proof of the totality of a search
problem if and only if there is an efficient reduction of that search problem to the complete problem for that sub-
class [GKRS19,GHJ+22b,BFI23,LPR24,DR23]. This connection has been highly impactful for the study of TFNPdt,
allowing for the rich set of tools in proof complexity to be leverage in order to provide separations between the major
TFNPdt subclasses.

TFNP = TFΣ1 is the first level of the total function polynomial hierarchy TFPH =
⋃

i TFΣi [KKMP21].
Recently, problems in higher levels of the polynomial hierarchy have received considerable attention, in part due
to their close connection to circuit lower bounds. Indeed, consider the task of finding (the truth table of) a function
which does not have circuits of size s. Using a standard encoding, any circuit of size s can be represented uniquely by
k = poly(s)-many bits. Consider the map T : {0, 1}k → {0, 1}n which maps circuits of size s to truth tables of the
function that they compute. Finding a truth table of a function with high circuit complexity is equivalent to finding a
string which is not in the range of T . This is an instance of the RANGEAVOIDANCE problem.

Definition 1.1. RANGEAVOIDANCE (or simply AVOID) is the following search problem: given a function f :
{0, 1}n → {0, 1}n+1, find a y ∈ {0, 1}n+1 such that for all x, f(x) ̸= y.

Observe that any solution y to AVOID can be checked by a coNP verifier — check that for every x ∈ {0, 1}n,
f(x) ̸= y. This means that AVOID belongs to the class TFΣ2. If there is an algorithm for solving AVOID which belongs
to a class C then this implies the existence of a function in C which does not have small circuits — a circuit lower
bound against C! This approach led to the recent breakthrough circuit lower bounds against symmetric exponential
time [Li24,CHR24,KP24]. Hence, understanding the complexity of TFΣ2 is important for understanding circuit lower
bounds. Indeed, the current best upper bound puts AVOID in the class of problems reducible to LOP — the TFΣ2

problem of finding a minimum element in a total order.
TFΣ2 contains numerous important problems beyond those connected to circuit lower bounds. For example,

AVOID is the complete problem for the class APEPP which also captures the complexity of finding pseudo-random
number generators, randomness extractors, and rigid matrices [Kor21]. We can restrict AVOID to only have one more
element in its range than in its domain to obtain the problem STRONGAVOID.

Definition 1.2. STRONGRANGEAVOIDANCE (or simply STRONGAVOID) is the following search problem: given a
function f : {0, 1}n \ {0} → {0, 1}n, find an empty hole y ∈ {0, 1}n, i.e., such that for all x ∈ {0, 1}n \ {0},
f(x) ̸= y.

STRONGAVOID is the complete problem for the class PEPP which captures the complexity of finding objects
whose existence is guaranteed by the union bound, including all of APEPP [KKMP21]. Important problems have
also been identified in higher levels of the polynomial hierarchy, such as those related to finding sets of large VC
dimension [KKMP21].

Despite the importance of problems in levels of the polynomial hierarchy beyond TFNP, there has been little
structural exploration into how they relate. Indeed, [KP24] provide the first black-box separation, showing that
STRONGAVOID is not reducible to any problem in TFΣ2 with a unique solution (in fact, they show that it cannot
be solved with non-adaptive oracle calls to any language in ΣP

2 ). Proof complexity has had an outsized impact on
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proving black-box separations for TFNP. To facilitate further structural exploration of TFPH, we would like to ex-
plore to what degree proof complexity tools can be used to provide separations between classes within higher levels
of the black-box total function polynomial hierarchy (denoted TFPHdt).

Our Results

PEPPSOPL2

TFΣ2

SOD

FNP

uCircular-Res(polylog)

PPADS2

Res(polylog)

PLS2

APEPP
LOP

uSherali-AdamsReversible-Res(polylog)

Figure 1: Relationships and characterizations of TFΣ2 classes studied. An arrow indicates containment.

In this paper we begin a systematic study of the connections between the total function polynomial hierarchy
in the black-box model and propositional proof complexity. First, we identify the form that proof systems which
characterize TFΣdt

d subclass take. In order to characterize TFΣd subclasses these proof systems must be able to prove
the validity of depth-(d + 1) propositional formulas. However, they cannot be Cook-Reckhow proof systems (NP-
verifiers) in general unless NP = coNP as there are syntactic subclasses of TFΣdt

2 which contain all of TFNPdt; a
characterization of which would imply a polynomially-bounded proof system. We show that in order to characterize
TFΣdt

d subclasses it suffices to augment Cook-Reckhow proof systems P with a Σd-weakening rule which generalizes
the resolution weakening rule to Σd formulas; we call the resulting proof system Σd-P (see Definition 3.5).

To begin, we explore the limits of these characterizations, verifying that this is indeed the correct definition of a
proof system for TFΣdt

d .

Theorem 1.3 (Informal). The following hold:

1. For every syntactic C ⊆ TFΣdt
d there is a Σd-proof system P such that R ∈ C if and only if P efficiently proves

that R is total.
2. For every well-behaved Σd-proof system P there is a syntactic TFΣdt

d subclass C such that R ∈ C if and only if
P proves that R is total.

Having established this scaffolding result, we begin to explore characterizations of specific TFΣdt
d subclasses;

our results for TFΣ2 can be seen in Figure 1. First, we show that PEPPdt is characterized by the Σ2-variant of the
Sherali-Adams proof system.

Theorem 1.4 (Informal). R ∈ PEPPdt iff there is an efficient Σ2-Sherali-Adams proof that R is total.

This allows one to use an extension to the pseudo-expectation technique in order to exclude total search problems
from PEPP, and hence also APEPP. Currently, no such exclusions are known.
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We also consider several variants of the DNF-resolution proof system: DNF Resolution (Res(polylog)), Circular
DNF resolution (uCircRes(polylog)), and Reversible DNF resolution (RevRes(polylog)). We introduce new TFΣdt

2

classes which characterize them.

Theorem 1.5 (Informal). Σ2-Res(polylog), Σ2-uCircRes(polylog), Σ2-RevRes(polylog) are characterized by the
TFΣdt

2 subclasses PLS2, SOL2, SOPL2, respectively.

We explore how these new classes relate to natural TFΣ2 classes, which can be seen in Figure 1. In doing so,
we introduce a natural TFΣ2 class SOD, of problems reducible to finding a source in a DAG given a sink, which we
believe may be of independent interest.

Finally, we show that our characterization of DNF resolution can be extended to characterize bounded-depth Frege
in higher levels of TFPH. The depth-d Frege system allows one to cut on depth-d propositional formulas; that is, with
d-many quantifier alternations.

Theorem 1.6 (informal). Σd+2-Depth d.5-Frege is characterized by the TFΣdt
d+2 class PLSdtd+2.

This result is inspired by the work of Beckmann and Buss who characterize PEd and GId in bounded arithmetic
[PT12]. It is also the TFΣd analogue of Thapen’s recent TFNP characterization of depth-d Frege [Tha24].

Comparison with Bounded Arithmetic. Characterizations of TFPH classes have been studied in the uniform set-
ting by theories of bounded arithmetic. Beckmann and Buss [BB09b] showed that Σb

k-definable functions of T d
2

correspond to the class PLSΣ
p
d−1 , which is defined by replacing the polynomial-time predicates and functions of the

complete problem for the TFNP subclass PLS with predicates and functions from PΣp
d−1 . This results in the gener-

alized polynomial local search problem GPLSd of [PT12]. However, these correspondences do not stray outside of
proof systems which correspond to bounded-depth Frege systems.

Open Problems. In this paper we provide the framework for characterizations between total search problems in the
polynomial hierarchy, leaving open many natural questions.

1. We study decision-tree reductions, as these are the query analogue of polynomial-time reductions. However, it
is natural also to consider more powerful reductions, such as PNP-reductions. What characterizations does one
obtain under such reductions?

2. There are several studied classes for which we do not yet have characterizations, such as APEPP and LOP. Due
to the connection between STRONGAVOID and Sherali-Adams, it would appear that PEPP should correspond to
a variant of Sherali-Adams which produces a large negative value, rather than −1. However we cannot maintain
this under decision-tree reductions.

3. TFΣ2 problems with unique solutions play a critical role in the recent circuit lower bounds [Li24,CHR24,KP24].
What properties do proof systems which characterize such problems posses?

2 Preliminaries on the Total Function Polynomial Hierarchy
Subclasses of TFPH are typically defined by a simple existence principle to which everything in the class reduces. For
example, any total order must have a minimal element. These existence principles naturally give rise to total search
problems. Continuing the example:

Definition 2.1. The Linear Ordering Principle (LOP) asks, given ≺: {0, 1}n × {0, 1}n → {0, 1}, to find:

− A minimal element: x ∈ {0, 1}n such that ∀y ̸= x, x ≺ y.
− A violation to the total order: either (i) x ∈ {0, 1}n such that x ≺ x, (ii) x ̸= y such that x ̸≺ y and y ̸≺ x, or

(iii) x ≺ y and y ≺ z and x ̸≺ z.

To make these problems non-trivial the input is presented as a circuit C so that the search space is exponential in
the number of input bits n. Formally, for any x, y ∈ {0, 1}n, C(x, y) =≺ (x, y). We call C a white-box encoding of
the problem. Unfortunately, a separation between any pair of total search problems in the white-box model is hard to
achieve, as it would imply P ̸= NP.
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Instead, we can gain intuition for the relationships between these classes by exploring their black-box variants. In
this setting C is given as an oracle which can be queried, but we no longer have access to the description of C. A
major benefit of considering the black-box model is that we can now prove unconditional separations between classes
without having to resolve P versus NP. These separations imply oracle separation in the white-box setting.

A query search problem is a sequence of relations Rn ⊆ {0, 1}n × On, one for each n ∈ N. It is total if for
every x ∈ {0, 1}n there is an o ∈ On such that (x, o) ∈ Rn. We think of x ∈ {0, 1}n as a bit string which can
be accessed by querying individual bits , and we will measure the complexity of solving Rn as the number of bits
that must be queried. Hence, an efficient algorithm for Rn will be one which finds a suitable o while making at most
polylog(n)-many queries to the input. We will not charge the algorithm for other computational steps, and therefore
an efficient algorithm corresponds to a shallow decision tree. Total query search problems which can be computed by
decision tress of depth polylog(n) belong to the class FPdt, where dt indicates that it is a black-box class. While search
problems are formally defined as sequences R = (Rn), we will often want to speak about individual elements in the
sequence. For readability, we will abuse notation and refer to elements Rn in the sequence as total search problems;
furthermore, we will often drop the subscript n, and rely on context to differentiate.

In this paper we will be considering total query search problems in the polynomial hierarchy TFPHdt.

Definition 2.2. We say that a total search problem R = (Rn), where Rn ⊆ {0, 1}n ×On, belongs to the dth level of
the query total function polynomial hierarchy TFΣdt

d if for every o ∈ On

(x, o) ∈ R ⇐⇒ ∀z1 ∈ {0, 1}ℓ1 ∃z2 ∈ {0, 1}ℓ2 . . . Qzd−1 ∈ {0, 1}ℓd−1 Vo,(z1,...,zd−1)(x) = 1,

where Q ∈ {∃,∀}, Vo,z⃗ = Vo,(z1,...,zd−1) is a decision tree of polylog(n)-depth, and each ℓi ∈ polylog(n).

Note that FPdt = TFΣdt
0 and TFNP = TFΣdt

1 . At this point one may ask about TFΠdt
d . Kleinberg et al. [KKMP21]

showed that TFΠd is efficiently reducible to TFΣd−1, and vice-versa. Hence, it does not offer a new perspective.
We can compare the complexity of total search problems by taking reductions between them. The following defines

decision tree reductions between total search problems, the query analogue of polynomial-time reductions.

Definition 2.3. For total search problems R ⊆ {0, 1}n ×On, S ⊆ {0, 1}m ×O′
m, there is an S-formulation of R if,

for every i ∈ [m] and o ∈ OS , there are functions fi : {0, 1}n → {0, 1} and go : {0, 1}n → On such that

(f(x), o) ∈ S =⇒ (x, go(x)) ∈ R,

where f(x) = (f1(x) . . . fn(x)). The depth of the reduction is

d := max
(
{depth(fi) : i ∈ [m]} ∪ {depth(go) : o ∈ O′

m}
)
,

where depth(f) denotes the minimum depth of any decision tree which computes f . The size of the reduction is m,
the number of input bits to S. The complexity of the reduction is logm+ d, and the complexity of reducing R to S is
the minimum S-formulation of R.

We extend this definition to sequences in the natural way. If S = (Sn) is a sequence and Rn is a single search
problem then the complexity of reducing Rn to S is the minimum over m of the complexity of reducing Rn to Sm.
For two sequences of search problems s = (Sn) and R = (Rn), the complexity of reducing S to R is the complexity
of reducing Rn to S for each n. A reduction from R to S is efficient if its complexity is polylog(n); we denote this by
R ≤dt S.

We say that a class of total search problems C ⊆ TFΣdt
d has R ∈ C as its complete problem if for every S ∈ C,

S ≤dt R. We call subclasses with complete problems syntactic.

3 Proof Systems for the Total Function Polynomial Hierarchy
Search problems in the black-box model are intimately tied to the complexity of propositional theorem proving. A
proof is a procedure for convincing a verifier that a statement is correct. In the propositional setting, a proof convinces
the verifier that a propositional formula is unsatisfiable (equivalently, its negation is a tautology).
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3.1 Recap: Proof Systems and TFNP
We begin by recalling how characterizations of proof systems by TFNPdt subclasses occur. We will then generalize
this to TFPH. Let UNSAT be the language of all unsatisfiable propositional formulas.

Definition 3.1. A Cook-Reckhow proof system is a polynomial-time function P : {0, 1}∗ → {0, 1} such that for every
propositional formula F ∈ {0, 1}∗,

F ∈ UNSAT ⇐⇒ ∃Π ∈ {0, 1}∗, P (Π, F ) = 1.

The size of proving an unsatisfiable formula F in P is min{|Π| : P (Π, F ) = 1}.
For many proof systems there is an associated width/degree measure. For example, in resolution it is the maximum

number of literals in any clause appearing in a proof, and in algebraic systems such as Sherali-Adams and Sum-of-
Squares it is the maximum degree of the polynomials appearing in the proof. Characterizations of TFNPdt subclasses
are in terms of a complexity parameter of the proof system, denoted

P (F ) := min
{
width(Π) + log size(Π) : Π is a P -proof of F

}
,

where width is the associated width measure for that system.

Typically one studies the complexity of proving the unsatisfiability of CNF formulas. As a CNF formula F =
C1 ∧ . . . ∧ Cm is falsified only when one of its clauses is falsified, a proof convinces the verifier that for every
assignment x ∈ {0, 1}n there is some clause Ci of F such that Ci(x) = 0. Hence, the complexity of proving that
F is unsatisfiable is intimately related to the complexity of exhibiting a falsified clause, given an assignment. This is
known as the false clause search problem SEARCHF ⊆ {0, 1}n × [m], defined as

(x, i) ∈ SEARCHF ⇐⇒ Ci(x) = 0.

As F is unsatisfiable this search problem is total, and if each clause of F contains at most polylog(n)-many variables
it belongs to TFNPdt.

The above intuition suggests that understanding TFNPdt (or at least the false clause search problem) is important
for understanding proof complexity. Remarkably, proof complexity is also crucial for understanding TFNPdt. It turns
out that TFNPdt is equivalent to a large sub-area of proof complexity! The intuition is the following: A reduction
between two total search problems is a proof that the first is total, assuming the totality of the second. By employing
this lens, works have shown that many common proof systems are characterized by certain well-studied tautologies in
the sense that they can prove a tautology iff there is a short reduction of that tautology to the characterizing one.

The heart of this connection is the following claim which shows that TFNPdt is exactly the study of the false clause
search problem. The proof proceeds by expressing the totality of any problem R in TFNPdt as a tautology and then
taking its negation.
Claim 3.2. If R ∈ TFNPdt then there is an unsatisfiable polylog(n)-width CNF formula FR such that SEARCHFR

∈
TFNPdt and R =dt SEARCHFR

.
From this, characterizations of TFNPdt subclasses by proof systems have been derived. We say that a syntactic

subclass C ⊆ TFNPdt is characterized by a proof system P if for every SEARCHF ∈ TFNPdt, SEARCHF ∈ C iff
P (F ) = polylog(n).

3.2 Proof Systems and TFPH
The aim of this paper is to explore characterizations of classes of problems belonging to higher levels of TFPHdt.
These will correspond to the provability of quantified formulas.

Definition 3.3. A Σd.5 formula F is the propositional translation of any quantified formula of the form

∃z1 ∈ {0, 1}ℓ1 ∀z2 ∈ {0, 1}ℓ2 . . . Qzd ∈ {0, 1}ℓd L(x, z1, . . . , zd),

where ℓi ∈ polylog(n), Q ∈ {∃,∀}, and L is a formula which depends on at most polylog(n)-many free variables (x).
That is, a Σd.5 formula is of the form

F =
∨

z1∈{0,1}l1

∧
z2∈{0,1}ℓ2

. . . ⃝
zd∈{0,1}ℓd

Lz1,...,zd(x),

where ⃝ ∈ {∧,∨}, and Lz1,...,zd(x) := L(x, z1, . . . , zd). Similarly, Πd.5 formulas are negations of Σd.5 formulas.
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Note that because Lz depends on polylog(n)-many variables, we may assume without loss of generality (with a
quasi-polynomial blow-up in size) that Lz is a CNF/DNF formula with clauses/terms of width polylog(n). Hence, a
Σd.5-formula is a layered circuit of depth d where the gates at each layer are the same, and the gates at the first d layers
are allowed 2polylog(n) fanin, while the final layer is restricted to have polylog(n) fanin. Observe that a Π1.5-formula
is a low-width CNF formula.

Our aim is to characterize the higher levels of the total function polynomial hierarchy. Towards this, we generalize
the false clause search problem to Σd.5 formulas.

False Formula Search. For a formula F :=
∧

o∈[m] Ho where each Ho is a Σd.5-formula, the False Formula search
problem FFF ⊆ {0, 1}n × [m] is defined as

(x, o) ∈ FFF ⇐⇒ Ho(x) = 0.

Observe that if F is unsatisfiable then FFF is total and FFF ∈ TFΣdt
d+1. The following lemma generalizes

Claim 3.2 to say that TFΣdt
d is exactly the study of the false formula search problem.

Lemma 3.4. For every R ∈ TFΣd there is an unsatisfiable Πd.5-formula FR such that (x, o) ∈ R iff (x, o) ∈ FFFR
.

Proof. Let R ⊆ {0, 1}n × [m] ∈ TFΣd. Then there are polylog(n)-depth decision trees Vo,(z1,...,zd−1) such that

(x, o) ∈ R ⇐⇒ ∀z1 ∈ {0, 1}ℓ1 ∃z2 ∈ {0, 1}ℓ2 . . . Qzd−1 ∈ {0, 1}ℓd−1 Vo,(z1,...,zd−1)(x) = 1,

where Q ∈ {∃,∀}, Vo,z⃗ = Vo,(z1,...,zi−1) is a decision tree of polylog(n)-depth, and each ℓj ∈ polylog(n). Slightly
abusing notation, let Vo be a propositional translation of the verifier as Σ(d−1).5-formula:

Vo(x) :=
∧

z1∈{0,1}ℓ1

∨
z2∈{0,1}ℓ2

. . . ⃝
zd−1∈{0,1}ℓd−1

Vo,z⃗(x),

where ⃝ ∈ {∧,∨}, and Vo,z⃗(x) is computable by a polylog(n)-depth decision tree, and hence propositionalized as a
polylog(n)-width CNF formula if ⃝ = ∧ or a polylog(n)-width DNF if ⃝ = ∨, collapsing the top gate into ⃝. This
is done as follows: say that a root-to-leaf path in Vo,z⃗ is a b-path if it ends at a leaf labeled b ∈ {0, 1}. Then, Vo,z⃗ is
propositionalized as

− If d− 1 is even:
∨

1-path p∈Vo,z⃗
p,

− If d− 1 is odd:
∧

0-path p∈Vo,z⃗
¬p,

where p is the conjunction of literals queried along p (if a variable x is queried and we take branch-0 then we consider
this as literal ¬x and otherwise as x). Note that in this case the outer gate of Vo,z⃗ matches ⃝, and the depth collapses
by 1. Consider the following Πd.5-formula which states that R is not total:

F :=
∧
o∈O

¬Vo(x).

Observe that if (x, o) ∈ R then there is some z1, . . . , zd such that Vo,z(x) = 1, and hence (x, o) ∈ FFF . Conversely,
if (x, o) ∈ FFF then (x, o) ∈ R.

We will call the formula FR the propositionalization of R. This lemma allows us to relate the complexity of total
search problems to the provability of propositional formulas. In the remainder we will develop what provability means
in this context. In particular, what are the properties of a proof system which proves the formulas that result from
TFPHdt search problems.

A characterization of a TFPHdt class by a proof system proceeds by showing that the proof system can prove the
correctness of reductions to the class. To discuss this we will need to propositionalize reductions.

Reduced Formula. Let R ⊆ {0, 1}n × O be a problem in TFΣdt
d and let Vz⃗,o, o ∈ O be its verifiers. Let (f, g)

be an R-formulation where f : {0, 1}m → {0, 1}n, g : {0, 1}m → O, then the reduced formula FR(f, g) is the
Πd.5-formula defined as

FR(f, g) :=
∧
o∈O

∧
path p∈go

¬Vo,p(f(x)),
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where Vo,p(f(x)) =
∧

z1∈{0,1}ℓ1

∨
z2∈{0,1}ℓ2 . . .⃝zd−1∈{0,1}ℓd−1 (Vo,z⃗(f(x))∧p) and Vo,z⃗(f(x)) can be represented

as a polylog(n)-width CNF/DNF as in Lemma 3.4, using that both Vo,z⃗ and f are computable by polylog(n)-depth
decision trees.

Reduced formulas capture formulations in the following sense. Let H :=
∧

o∈OH
Ho and (f, g) be an FFF -

formulation of FFH , where F =
∧

o∈OF
Fo. Then for any o ∈ OF and any path p in go labelled with some o∗ ∈ OH

we have that

Vo,p(f(x)) = 0 =⇒ Ho∗(x) = 0. (1)

That is, Ho∗ =⇒ Vo,p(f), and we say that Vo,p(f) is a weakening of Ho∗ .
A proof system P is characterized by a TFPHdt class C with complete problem FFF if efficient provability of F

in that proof system implies low-complexity reductions to the complete problem FFF for that class, and membership
in the class C implies that P can prove the correctness of the reduction to P . The latter takes the following form: if
(f, g) is a FFF -formulation of a FFH ∈ C then

i) From H , P can efficiently derive the reduced formula F (f, g).
ii) P has an efficient proof of F (f, g).

What properties must a proof system possess in order to perform (i) and (ii) for a subclass C ⊆ TFPHdt? If
TFNPdt ⊆ C then a Cook-Reckhow proof system (an NP-verifier) does not suffice unless NP = coNP1. Interestingly,
what fails is step (i) — Theorem 5.1 shows that step (ii) can always be carried out by a Cook-Reckhow system. We
will need to augment Cook-Reckhow proof systems in order to perform step (i). The issue is that Cook-Reckhow
systems cannot always perform the weakening from (1). That is, if F (f, g) =

∧
o∈OF (f,g)

Fo and H =
∧

o′∈OH
Ho′

then by correctness of the reduction we know that for every o ∈ OF (f,g), Fo is a weakening of some Ho′ . However,
Cook-Reckhow proof systems cannot necessarily derive Fo efficiently given H . For example, if Fo = ⊤, the trivial
tautology, then this is tantamount to proving that Fo is a tautology, which is a coNP-complete task. It will suffice to
augment our proof systems to be able to do so.

Definition 3.5. Let P be a Cook-Reckhow proof system. A proof of a Πd formula F =
∧

i∈[m] Fi in the proof system
Σd-P is a pair (H,Π) such that

1. Π is a P -proof that the Πd+1-formula H =
∧

j∈[k] Hj is unsatisfiable.

2. Each Hj is a Σd-formula such that there is some i ∈ [m] for which Fi =⇒ Hj . That is, Hj is a Σd-weakening
of Fi.

The complexity of the proof (H,Π) is log |H|+ log s+ d where log s+ d is the complexity of the proof Π.

Clearly such proofs are verifiable in Σd. As we will see, they suffice to characterize subclasses of TFΣdt
d .

4 Sherali-Adams and Strong Range Avoidance
We begin with an example of a characterization by showing that STRONGRANGEAVOIDANCE is characterized by
Σ2-Sherali-Adams. A full treatment of this proof system is given in the monograph [FKP19].

For any boolean formula F we will assume without loss of generality that all that all negations occur at the
leaves and let Vars+(F ) be the positive literals in F and Vars−(F ) be the negative literals. For any conjunct t =∧

x∈Vars+(t) x∧
∧

x∈Vars−(t) ¬x we associate the polynomial
∏

x∈Vars+(t) x
∏

x∈Vars−(t)(1−x), and refer to them also
as conjuncts. A conical junta is a sum of conjuncts J :=

∑
t.

Let D =
∨

t t be any DNF. We can express D as a degree deg(D) := maxt∈D deg(t) polynomial∑
t∈D

t− 1.

Observe that for any x ∈ {0, 1}n, D(x) = 1 iff
∑

t∈D t(x) − 1 ≥ 0. Henceforth we will abuse notation and refer to
D as both the DNF and the associated polynomial.

Throughout this section we will work with multi-linear arithmetic associating x2
i = xi for every variable x. This

has the effect of restricting the underlying linear program to {0, 1}-points.
1Indeed, for any unsatisfiable 3-CNF formula F , FFF ∈ TFNPdt.
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Definition 4.1. Let F = {Di}i∈[m] be an unsatisfiable collection of DNFs. A Σ2-Unary DNF Sherali-Adams (which
we denote by uSA) proof Π of F is a weakening F ′ = {D′

i}i∈[m′] of F together with a list of canonical juntas Ji,J ,
such that ∑

i∈[m′]

D′
iJi + J = −1.

The degree deg(Π) is the maximum degree among Di, D
′
iJi, and J , and the size size(Π) is the number of monomials

(counted with multiplicity) in Di, D
′
iJi,J . The complexity of the proof is uSA(Π) := deg(Π) + log size(Π), and

the complexity of proving F is uSA(F ) := minΠ uSA(Π), where the minimum is taken over all uSA proofs of F .

Note also that weakening subsumes the need to explicitly allow the additional conical junta in a uSA proof; we
could instead defined uSA as a Nullstellensatz proof

∑
D′

iJi = −1. This is because the additional junta J may be
introduced using weakening: for each conjunct t of J , weaken some Di in F to true or t. For example, Di can be
weakened to xi ∨ ¬xi ∨ t, the polynomial encoding of which is xi + (1− xi) + t− 1 = t.

Claim 4.2. uSA is sound and complete.

Proof. Suppose that uSA is not sound, then there exists a uSA refutation of a satisfiable DNF F = {Di}i∈[m],∑
i∈[m′]

D′
iJi + J = −1.

Let x ∈ {0, 1}n be a satisfying assignment to F , meaning that for every i, D′
i(x) = 1 for any weakening D′

i of Di,
and in particular the polynomial representation of D′

i(x) ≥ 0. As juntas are non-negative over {0, 1}n we have that∑
i∈[m′]

D′
i(x)Ji(x) + J (x) ≥ 0,

which is a contradiction.
For completeness, let F = {Di}i∈[m] be an unsatisfiable formula. Each assignment x ∈ {0, 1}n must falsify some

DNF of F , which we will denote by Dx. Let Ix be the indicator polynomial Ix :=
∏

i:xi=1 xi

∏
i:xi=0(1− xi) of the

assignment x. We claim that the polynomial ∑
x∈{0,1}n

IxDx = −1,

and is therefore a uSA proof. To see this, since we are working over the ideal ⟨xi − x2
i ⟩, it suffices to show that

the polynomial evaluates to −1 on every x ∈ {0, 1}n. Observe that if y ∈ {0, 1}n falsifies Dx then Dx(y) = −1,
additionally, if x ̸= y, then Ix(y) = 0. Hence, for every y ∈ {0, 1}n,∑

x∈{0,1}n

Ix(y)Dx(y) = Iy(y)Dy(y) = Dy(y) = −1.

In the rest of this section, we show that uSA is closely related to STRONGRANGEAVOIDANCE. We restate an
equivalent definition next.

Definition 4.3. An instance of STRONGRANGEAVOIDANCE (STRONGAVOID) is given by a map f : [n] → [n + 1].
A solution is any h ∈ [n+ 1] such that for every p ∈ [n], f(p) ̸= h.

STRONGAVOID can be encoded as a CNF formula by introducing, for every p ∈ [n], log n + 1-many binary
variables p1, . . . , plogn+1 naming in binary the hole h ∈ [n + 1] to which pigeon p flies. For exposition, it will be
convenient to think of p as an (n+1)-ary variable and we will denote by [[p = h]] the indicator conjunct that is satisfied
iff p maps to h ∈ [n+ 1] under the given assignment

[[p = h]] := ph1
1 ∧ . . . ∧ p

hlog n+1

logn+1 ,

where phi
i = pi if the ith bit of h is 1 and ¬pi otherwise. Note that

∑
h∈[n+1][[p = h]] = 1 as polynomials.
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We can express STRONGAVOID as the unsatisfiable family of DNFs,∨
p∈[n]

[[p = h]] ∀h ∈ [n+ 1].

The main theorem of this section is the following.

Theorem 4.4. For any FFF ∈ TFΣdt
2 , there is a complexity c STRONGAVOID-formulation of FFF iff there is a

Σ2-Sherali-Adams proof of complexity Θ(c).

We break the proof of this theorem into Lemma 4.5 and Lemma 4.8 which are proven over the following two sub-
sections. This theorem gives necessary and sufficient conditions for separating other TFΣ2 classes C from STRONGAVOID:
exhibit a pseudo-expectation (see e.g., [FKP19]) against any polylog(n)-width Σ2-weakening of the propositionaliza-
tion of STRONGAVOID.

4.1 SA Proofs Imply sRA Reductions
Lemma 4.5. If there is a size s and degree d uSA proof of F then there is a depth-d reduction from FFF to an instance
of STRONGAVOID of size O(s).

To prove this lemma, it will be convenient to work with the following problem which is equivalent to STRONGAVOID.

Definition 4.6. The Unmetered Source of Dag (USOD) problem is defined as follows. The input is a “successor”
function S : [n] → [n] which defines a graph in which each vertex has fan-out ≤ 1 but arbitrary fan-in. There is an
edge from i to j if S(i) = j. To make the problem total, we enforce that the vertex 1 is a sink, it will have fan-out 0
but fan-in at least 1. The goal is to find a source; the solutions are:

− 1 is a solution if either S(1) ̸= 1 or ∀v ̸= 1 ∈ [n], S(v) ̸= 1 (1 is not a sink).
− v ∈ [n] is a solution if S(v) ̸= v but ∀u ∈ [n], S(u) ̸= v (v is a source).

Lemma 4.7. USOD =dt STRONGAVOID. Furthermore, this reduction is by depth-1 decision trees.

Proof. From an instance S : [n] → [n] of USOD, we construct an instance f : [n] → [n + 1] of STRONGAVOID
as follows. For v ̸= 1 ∈ [n], let f(v) := S(v) and let f(1) := n + 1. We claim that any solution u to this
STRONGAVOID instance is a source in S. First observe that u ̸= n+ 1 as f(1) = n+ 1. Hence, by construction, we
have that ∀v ∈ [n], S(v) ̸= u, and in particular S(u) ̸= u, so u is a source.
For the converse direction, from an instance f : [n] → [n + 1] of STRONGAVOID we construct an instance S :
[n+1] → [n+1] of USOD by defining S(v+1) := f(v) for all v ∈ [n] and let S(1) = 1. Let v be a solution to this
instance of USOD, if v = 1, then, since S(1) = 1, for all u ∈ [n], f(u) ̸= 1. Otherwise, v ̸= S(u) for all u ∈ [n+1],
and so v ̸= f(u) for all u ∈ [n].

Proof of Lemma 4.5. Let F =
∧

o∈O Do and let Π be a size s and degree d uSA proof of F over n variables, where

Π :=
∑
i∈[m]

∑
j∈Ii

D′
iJj +

∑
k∈K

jd + 1 = 0,

for sets of indices Ii,K, each D′
i is a weakening of some Do ∈ F and each Jj , jd is a conjunct. We construct an

instance of USOD with one node per occurrence of a (signed) monomial in Π. Therefore, for simplicity, we will refer
to monomials as nodes and vice-versa. The constant 1 will be our distinguished sink, and we will set S(1) = 1. We
will define the remaining successor pointers as follows:

Negative Monomials. Since Π = 0, there is a positive and negative copy of every monomial occurring in the proof;
construct a pairing of the monomials in this way. Furthermore, under any assignment x ∈ {0, 1}n the number of
monomials which evaluate to 1 and to −1 is equal. For each negative monomial −m in Π, the decision tree S(−m)
queries the variables of m and outputs as follows:

i) If m(x) = 0 then S(−m) = −m.
ii) Otherwise, let m be the positive copy of −m that −m is paired with and set S(−m) = m.
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This completes the description of the successor pointer for negative monomials.

Positive Monomials. For any positive monomial m, the decision tree for S(m) first queries the (at most d-many)
variables of m to determine the value of m(x). If m(x) = 0, then S(m) = m. Otherwise, we will define S as follows.

We define the successor pointer for the positive monomials which belong to each D′
iJj first, and handle the

monomials from the conjuncts jd later. Fix some D′
iJj in Π, where D′

i =
∑

k∈[ℓ] td − 1 and consider the monomials
within it. We would like to satisfy the following property: there is a source within the monomials D′

iJj iff D′
i(x) = −1

(i.e., the DNF D′
i(x) = 0). To get some intuition, first suppose that Jj = 1 and that all monomials m in D′

i are positive
— that is, D′

iJj =
∑

k∈[ℓ] mk − 1. Then, the current assignment to S affects D′
iJj as follows:

− Each monomial mk such that mk(x) = 0 is an isolated vertex for which S(mk) = mk.
− Each monomial mk for which mk(x) ̸= 0 has a single incoming edge (from −mk).
− The monomial −1 has an outgoing edge.

If at least one of the monomials mk is non-zero we can send it to −1, and otherwise −1 becomes a source (see
Figure 2). Therefore, the only sources will come from the “−1 nodes” of falsified DNFs. To handle the general case,
we use the fact that in every conjunct, under any assignment, there are at least as many non-zero positive monomials
as non-zero negative monomials.

mℓ

m2

m1

−1

m1(x) = 0

m1(x) = 1

...

Figure 2: The “gadget” for a D′
iJj where Jj = 1 and D′

i contains only positive literals (each conjunct is a monomial).

We now describe the construction in general. Consider a D′
iJh in Π. For each positive monomial m in D′

iJj =
(
∑

k∈[ℓ] td − 1)Jj , belonging to some conjunct tdJj , the pointer S(m) will query the (at most d-many) variables in
tdJj . Let α ∈ {0, 1}Vars(Jj) be the assignment to the variables of Jj that was discovered.

If Jj ↾ α = 0: Then D′
iJj ↾ α = 0. Hence, for every positive monomial m in D′

iJj , either m ↾ α = 0, in which
case we have already set S(m) = m, or m must cancel with another monomial −m′ in D′

iJj under α. That is,
m ↾ α = −m′ ↾ α, and so we define S(m) = −m′. Note that in this case there are no sources within D′

iJj : every
monomial m D′

iJj either evaluates to 0 and and nothing points to it, or has exactly one incoming and one outgoing
edge.

If Jj ↾α ̸= 0: We define the successor pointer for the monomials in D′
iJj so that there is a source iff every ti(x) = 0.

Let Mons(Jj)
+,Mons(Jj)

− be the (non-zero) positive and negative monomials in Jj respectively. Let

δ := |Mons+(Jj ↾α)| − |Mons−(Jj ↾α)|

be the difference between the number of positive and negative monomials, and note that δ > 0 as Jj is a conjunct and
Jj ↾ α ̸= 0. Recall that D′

iJj =
∑

k∈[ℓ] tdJj − Jj . For each term, we will define a matching so that −Jj has only
δ-many negative monomials without incoming edges, and every negative monomial in tdJj has an incoming edge.

− For −Jj : Define an arbitrary pairing P := {(m,−m′)} ⊆ Mons+(Jj ↾ α) × Mons−(Jj ↾ α) such that each
positive monomial occurs in exactly one pair and each negative monomial occurs in at most one pair. Hence we
have δ-many negative monomials that are not paired. For each pair (m,−m′) ∈ P define S(m) = −m′.

Note that we have now defined the successor of every positive monomial in Jj .
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− For each tdJj : Observe that as td is a conjunct, under any assignment it contains at least as many positive
monomials as negative monomials. Define an arbitrary pairing P := {(m,−m′)} ⊆ Mons+(tdJj ↾ α) ×
Mons−(tdJj ↾ α) such that each negative monomial occurs in exactly one pair and each positive monomial
occurs in at most one pair. For each pair (m,−m′) ∈ P define S(m) = −m′. Let β ∈ {0, 1}Vars(tdJj) be
the assignment to the variables of tdJj that was discovered by the trees made by the decision tree of any of the
monomials m in tdJj . Let

c := |Mons+(td ↾β)| − |Mons−(td ↾β)|

be the difference between the number of non-zero positive and negative monomials in td under β.
If c = 0, then tdJj ↾β = 0 and so the the number of non-zero positive and negative monomials is equal. In

this case, each negative monomial has an incoming edge which is provided by this pairing.
Otherwise, if tdJj ↾ β ̸= 0 then there are cδ-many non-zero positive monomials whose successor is still

undefined, and parition them into c-many groups of C1, . . . Cδ of δ-many monomials each. Recall that −Jj
has exactly δ-many negative monomials with no incoming edge, −m1, . . . ,−mδ . For each m ∈ Ci define
S(m) = −mi. In this case, each monomial in tdJj and −Jj has an incoming edge.

Finally, we define the successor for each positive monomial in each conjunct jd, for some k ∈ K, in the conical
junta. To do so, we use the fact that jd contains at least as many positive monomials as negative monomials in order
to ensure that there is never any source among the monomials of jd. The successor for each positive monomial m
of jd queries the (at most d-many) variables in jd for an assignment α ∈ {0, 1}Vars(jd). Define an arbitrary pairing
P := {(m,−m′)} ⊆ Mons+(jd ↾ α) × Mons−(jd ↾ α) such that each negative monomial occurs in exactly one
pair and each positive monomial occurs in at most one pair. For each pair (m,−m′) ∈ P define S(m) = −m′. For
the remaining positive monomials m in jd whose successor is not defined, set S(m) = 1 (this choice is somewhat
arbitrary).

This completes the description of the successor function S (the f -part of the formulation). It remains to define the
output function g of the formulation. For each potential solution m,

− If m is a monomial from some D′
iJj , then D′

i is the weakening of some Do of F , and we output o.
− Otherwise, we output an arbitrary index o ∈ [m].

Finally, we prove that this formulation is correct. To do so, we show that the only monomials which do not have
incoming edges belong to some D′

iJj for which D′
i(x) is falsified. This suffices, as if m belongs to D′

iJj where
D′

i(x) = 0 then gm(x) = o for some Do of F of which D′
i is a weakening of. Hence, Do(x) is falsified and we have

found a solution to FFF . By the negative monomial case in the formulation, every positive monomial has an incoming
edge. By the pairings constructed in the formulation, every negative monomial in each jd in the conical junta also has
an incoming edge. As well, for each D′

iJj =
∑

k tdJj − Jj , each negative monomial in each tdJj has an incoming
edge. Hence, the only potential sources belong to the −Jj terms of each D′

iJj . As we argued before, if Jj(x) = 0
then there is no source in the monomials of D′

iJj , so suppose that this is not the case. As we have paired off positive
and negative monomials in −Jj , the only incoming edge to each of the δ-many remaining negative monomials of Jj
must come from some tdJj . If there is a td such that td(x) ̸= 0 (and hence D′

i(x) is satisfied) then tdJj has cδ-many
monomials which map to to the δ-many remaining negative monomials of Jj , meaning that there is no source in D′

iJj .
Thus, D′

iJj becomes a source only if Jj(x) ̸= 0 and D′
i(x) is falsified.

4.2 sRA Reductions Imply SA Proofs
We begin by observing that there is a trivial Sherali-Adams refutation of Range Avoidance:∑

h∈[n+1]

( ∑
p∈[n]

[[p = h]]− 1
)
=

∑
p∈[n]

∑
h∈[n+1]

[[p = h]]− (n+ 1) = n− (n+ 1) = −1,

where the third equality follows as we
∑

h∈[n+1][[p = h]] = 1.
In the remainder of this section we will show that Sherali-Adams can prove reductions to STRONGAVOID.

Lemma 4.8. If f, g is a STRONGAVOID-formulation of FFF of depth d and size s then there is a degree-O(d log n)
and size poly(s · nd) uSA proof of F .
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If (f, g) is a STRONGAVOID-formulation of FFF for some formula F =
∧

i∈[m] Di, let P (gh), P (fp) be the set
of all root-to-leaf paths in the decision trees gh and fp respectively. As well, for any hole h ∈ [n + 1], let Ph(fp) be
the set of paths in fp whose leaf is labelled by hole h.

We can express the reduction from FFF to STRONGAVOID as the unsatisfiable formula STRONGAVOID(f, g)
defined as

∀h ∈ [n+ 1], ∀σ∗ ∈ P (gh),
∨

σ ̸=σ∗∈P (gh)

∨
p∈[n]

[[p = h]] ∧ σ

= ∀h ∈ [n+ 1], ∀σ∗ ∈ P (gh),
∨

σ ̸=σ∗∈P (gh)

∨
p∈[n]

∨
ρ∈Ph(fp)

ρ ∧ σ

Letting Dh,σ∗ :=
∨

σ ̸=σ∗∈P (gh)

∨
p∈[n]

∨
ρ∈Ph(fp)

ρ ∧ σ, this becomes the unsatisfiable family of DNFs

STRONGAVOID(f, g) := {Dh,σ∗}h∈[n+1],σ∗∈P (gh).

The following lemma shows that uSA can deduce STRONGAVOID(f, g) from F .

Proof of Lemma 4.8. We will abuse notation and let [[p = h]] :=
∑

δ∈Ph(fp)
δ denote the decision-tree substitution of

the indicator [[p = h]]. To begin, we will weaken F to STRONGAVOID(f, g), the polynomials of which are

Dh,σ∗ :=
∑

σ ̸=σ∗∈P (gh)

∑
p∈[n]

[[p = h]] · σ − 1

for h ∈ [n + 1] and σ∗ ∈ P (gh). As each [[p = h]] contains O(log n)-many Boolean variables, and we are replacing
each one by a depth-d decision tree, the degree of STRONGAVOID(f, g) is O(d log n). Similarly, the size blows up by
a factor of nd.

For any h ∈ [n+ 1],

∑
σ∗∈P (gh)

Dh,σ∗ =
∑

σ∗∈P (gh)

 ∑
σ ̸=σ∗∈P (gh)

∑
p∈[n]

[[p = h]]σ − 1


=

∑
p∈[n]

∑
σ∗∈P (gh)

∑
σ ̸=σ∗∈P (gh)

[[p = h]]σ − |P (gh)|

=
∑
p∈[n]

[[p = h]]
∑

σ∗∈P (gh)

∑
σ ̸=σ∗∈P (gh)

σ − |P (gh)|

=
∑
p∈[n]

[[p = h]]
(
|P (gh)| − 1

) ∑
σ∈P (gh)

σ − |P (gh)|

=
∑
p∈[n]

[[p = h]]
(
|P (gh)| − 1

)
− |P (gh)| (Summing all paths in the DT g(h))

=
(
|P (gh)| − 1

)∑
p∈[n]

[[p = h]]− 1


By padding, we can assume without loss of generality that all decision trees gh have the same number of paths; that is
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|P (gh)| = |P (gh′)| = α for all h, h′ ∈ [n+ 1], and some α ∈ N with α > 1. Then,

∑
h∈[n+1]

∑
σ∗∈P (gh)

Dh,σ∗ =
∑

h∈[n+1]

(
α− 1

)∑
p∈[n]

[[p = h]]− 1


= (α− 1)

∑
p∈[n]

∑
h∈[n+1]

[[p = h]]− (n+ 1)


= (α− 1)

∑
p∈[n]

∑
h∈[n+1]

∑
δ∈Ph(p)

δ − (n+ 1)


= (α− 1)

∑
p∈[n]

∑
δ∈P (p)

δ − (n+ 1)


= (α− 1)

∑
p∈[n]

1− (n+ 1)

 (Summing all paths in the DT f(p))

= (α− 1)
(
n− (n+ 1)

)
= −(α− 1) ≤ −1.

5 A Generic Correspondence
In this section we establish a general correspondence between syntactic subclasses of total search problems in the
polynomial hierarchy and proof systems. Our characterizations will rely on the following two properties of a Σd-proof
system:

− Reduction-Closed. For unsatisfiable Πd.5 formulas F,H , if P has a complexity-s proof of F and there is a
complexity-c FFF -formulation of FFH then P (H) = poly(cs).

− Reflective. P has polylog(n)-complexity proofs of a reflection principle about itself—a formula encoding the
soundness of this proof system; we expand on the meaning of this below.

We show the following, generalizing [BFI23].

Theorem 5.1. The following hold:

i) Every syntactic subclass of TFΣd is characterized by a Σd-proof system.
ii) Every Σd-proof system which is reduction-closed and reflective is characterized by a subclass of TFΣd.

We prove (i) in subsection 5.1 and (ii) in subsection 5.2.

5.1 A Proof System for any TFΣd Problem
In this section we show how to construct a proof system from any total search problem R ⊆ {0, 1}n × O, which we
think of as the complete problem for some syntactic subclass. The key insight is that one can view a decision tree
reduction from a total search problem Q ⊆ {0, 1}m ×OQ to R as a proof that Q is total, if we take the totality of R
as an axiom. In what follows we formalize this intuition. We define proofs in the canonical proof system for a TFΣdt

d

subclass as reductions to one of its complete problems.

Definition 5.2. Let FFF ∈ TFΣdt
d where F =

∧
o∈[m] Fo. The canonical proof system for FFF , denoted PF , is

defined as follows. A proof Π in PF consists of a triple (f, g, F (f, g)), where

− (f, g) is a FFF -formulation (i.e., a set of decision trees), and
− F (f, g) =

∧
o∈[m∗] Lo is the reduced formula associated with this formulation.
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Π is a PF proof of an unsatisfiable formula H =
∧

t∈[m′] Ht, where each Ht is a Σd-formula, if for every Lo in
F (f, g) there exists some t ∈ [m′] such that Lo is a Σd-weakening of Lo; that is,

Ht =⇒ Lo.

The size of the proof Π is the number of bits needed to write down Π, and the width of Π is the maximum depth
among the decision trees in the formulation,

depth(Π) := max
i∈[n],o∈[m]

{
depth(fi), depth(go)

}
.

The complexity of proving H in PF is the minimum over all PF -proofs of H ,

PF (H) := min
{
width(Π) + log size(Π) : Π is a PF -proof of H

}
.

This proof system is sound, since any substitution of an unsatisfiable formula remains unsatisfiable. As well, it
is complete for unsatisfiable Πd+1 formulas as depth-n decision trees suffice to solve any total search problem. Note
that this proof system agrees with the definition of [BFI23] when d = 1.

We will show that PF characterizes the subclass with complete problem FFF , proving the first direction of Theo-
rem 5.1.

Lemma 5.3. If FFF , FFH ∈ TFΣdt
d then there is a complexity-c FFF -formulation of FFH iff PF (H) ≤ c ·polylog(n).

Proof. Let (f, g) be a complexity-c FFF -formulation of FFH . We claim that (f, g, FFF (f, g)) is a PF proof of H . As
FFF ∈ TFΣdt

d , F is a Πd.5 formula, and so the reduced formula FFF (f, g) is a Πd+1-formula (Πd.5 if c = polylog(n)).
As well, the size of FFF (f, g) is at most size(FFF ) · exp(O(c)), as each clause/term on the bottom layer of F has
width at most polylog(n) and we replace it by the CNF/DNF representation of a depth-O(c) decision tree, which has
width O(c) and size at most exp(O(c)). Finally, for F (f, g) :=

∧
o∈[m∗] Lo and H :=

∧
t∈[m] Ht, by the correctness

of the formulation, we can conclude that for every o ∈ [m∗] there exists some t ∈ [m′] such that Ht =⇒ Lo, and so
Lo is a Σd-weakening of Ht.

For the converse direction, suppose that (f, g, F (f, g)) is a PF proof of an unsatisfiable formula H :=
∧

i∈[m] Hi,
where each Hi is a Σd-formula. By definition, (f, g) constitutes a complexity-c FFF -formulation of FFH . Indeed,
each decision tree of (f, g) has depth at most c and there are at most 2c-many of them, and so this is a complexity-c
formulation.

5.2 A TFΣd Problem for any Proof System which Reflects
In this section we show that a Σd-proof system P corresponds to a TFΣd-problem if that proof system is reduction
closed and reflective.

A reflection principle states that P -proofs are sound; we will restrict ourselves to proofs of Σd.5 formulas. Typ-
ically, the provability of a proof system’s reflection principle is sufficient in order to simulate that system. In our
setting, a reflection principle will falsely assert that there is a complexity-c P -proof Π of a Σd.5-formula H and that
H is satisfied by a truth assignment α:

REFP := PROOF(H,Π) ∧ SAT(H,α).

This formula will be parameterized by nH , the number of variables of H , as well as c the complexity of the proof Π.

SAT. The formula SAT(H,α) states that α ∈ {0, 1}nH is a satisfying assignment to H , where α ∈ {0, 1}n and H
are given as input. A generic Πd.5-formula has the following structure:

H =
∧
o∈O

∨
z1∈{0,1}ℓ1

∧
z2∈{0,1}ℓ2

. . . ⃝
zd−1∈{0,1}ℓd−1

Ho,z1,...,zd−1

where ⃝ ∈ {∧,∨} and Ho,z1,...,zd−1
, is a width w ∈ polylog(n) clause if ⃝ = ∧ or conjunct if ⃝ = ∨. Each

Ho,z⃗ := Ho,z1,...,zd−1
is specified by w-many (2n+1)-ary variables vo,z,1, . . . , vo,z,w ∈ [2(n+1)], where vo,z,i = j

denotes the variable
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− xj if i ∈ [n],
− ¬xj−n if j ∈ {n+ 1, . . . , 2n},
− constant 1 if j = 2n+ 1,
− constant 0 if j = 2n+ 2.

We could allow the formula REFP to be parameterized by |O|, ℓ1, . . . , ℓd−1. However, for simplicity, since we are
considering complexity-c proofs, it suffices to simply set all of these parameters to 2c and w = c. In this case, the
number of Ho,z⃗ is 2cd, and hence the number of Boolean variables of H is c log(2nH +2) ·2cd. Then the Πd.5 formula
SAT can be written as

SAT(H,α) :=
∧
o∈O

Ho(α) :=
∧
o∈O

∨
z1∈{0,1}ℓ1

∧
z2∈{0,1}ℓ2

. . . ⃝
zd−1∈{0,1}ℓd−1

[[Ho,z⃗(α) = 1]],

where [[Ho,z⃗(α) = 1]] is the width-O(w log nH) DNF (if ⃝ = ∨) or CNF (if ⃝ = ∧) defined by the following
decision tree To,z⃗: First query the w log(2nH+2)-many Boolean variables Ho,z⃗,1, . . . ,Ho,z⃗,w to determine the literals
ℓ1, . . . , ℓw of Ho,z⃗ . Then, query the corresponding bits of α to determine if Ho,z⃗ is satisfied. If it is, then To,z⃗ outputs
1 and otherwise it outputs 0. This can be converted into a DNF or CNF in the usual way.

Proof. The formula PROOF(H,Π) states that Π is a P -proof of H . A complication is that there are many different
ways by which one could encode a P -proof as a formula, some of which may change the difficulty of proving the
reflection principle drastically. Following [BFI23] we define one reflection principle for each encoding of a P -proof;
we call such an encoding a verification procedure.

Definition 5.4. A verification procedure V for a Σd-proof system P , parameterized by nH , c, is Πd.5-formula which
generically encodes a complexity-c P -proof Π of an nH -variate formula H . Specifically, the formula VnH ,c(Π, H)
has two sets of variables H , Π, where:

− An assignment to the variables H = {Ho,z⃗,i|i ∈ [nH ]} specifies a Πd.5 formula as before.
− An assignment to the variables Π specifies a purported P -proof of H of complexity c, such that any error in Π

can be verified by an efficient Σd−1-algorithm (placing REF ∈ TFΣd).
− V has 2Θ(c)-many variables.

As c bounds the logarithm of the size of the proof, and the number of variables is exponential in Θ(c), the second
condition ensures that a violated sub-formula of V can be verified by a Σd−1-algorithm making polylog(c)-many
queries.

A reflection principle for a proof system P and verification procedure V is

REFP,V := PROOFnH ,c(H,Π) ∧ SATnH ,c(H,α),

where PROOFnH ,c(H,Π) := VnH ,c(H,Π). Often, we will suppress the subscripts P, V .
We now prove point (ii) of Theorem 5.1.

Lemma 5.5. Let P be a Σd-proof system that is reduction closed and reflective for some REF := REFP,V . Then for
any FFH ∈ TFΣd,

i) If there is a complexity-c FFREF-formulation of FFH then P (H) = poly(c · P (REF)).
ii) There is a complexity O(P (H)) FFREF-formulation of FFH .

Proof. To prove (i), suppose that there is a complexity-c FFREF-formulation of H . By the definition of being reduction
closed, there is a P proof of H of complexity poly(c · P (REF)) .

For (ii), let Π be a complexity-c proof of H in P . We construct a FFREF-formulation (f, g) of FFH as follows.
f will hard-wire (Π, H) as the input to REF, and map the input variables of FFH to the variables α1, . . . , αnH

of
REF. Since Π is a valid proof of H , PROOF(Π, H) is always satisfied and we can set go arbitrarily for any solution o
corresponding to a subformula of PROOF(Π, H). As PROOF(Π, H) is always satisfied under this reduction the only
solutions which may occur belong to SAT(H,α). In particular, as we have mapped the input variables of H to the bits
α1, . . . , αnH

, for any assignment x ∈ {0, 1}n, Ho(x) = 0 ⇐⇒ Ho(α) = 0. Hence, we define go = o.
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6 Characterizations in TFΣ2

In this section we uncover TFΣ2 characterizations of several well-studied proof systems — DNF Resolution, DNF
Circular Resolution [AL23, DR23], and DNF Reversible Resolution [GHJ+22b, DR23]. Along the way we introduce
several new TFΣ2 classes which are inspired by TFNP classes. These are analogs to the coloured TFNP classes
introduced in [KST07a, DR23]. In subsection 6.3 we explore the relationships between these and prominent TFΣ2

subclasses.
The DNF resolution proof systems are extensions of the resolution proof system (and restrictions of) to allow them

to operate with DNF formulas, rather than only clauses. Davis and Robere [DR23] gave characterizations of these
systems by coloured TFNP classes. We introduce several classes which characterize the Σ2-variants of these proof
systems; we believe these TFΣ2 classes herbrandize to the coloured classes.

Definition 6.1. A Res(polylog) refutation of a Π2-unsatisfiable formula F =
∧m

i=1 Ai is a sequence of polylog(n)-
width DNF formulas Π = (D1, . . . , Ds = ⊥) where each Di is deduced from previous DNFs by one of the following
rules:

− Axiom Introduction. Introduce Ai for some i ∈ [m].
− Symmetric Cut. From D ∨ t and D ∨ t derive D, where t is any term.
− Reverse Cut. From D derive Di = D ∨ t and Di+1 = D ∨ t, for some term t.

The size s of Π is the sum of the sizes of DNFs involved in Π, and the width w is the maximum width of any DNF in
Π. The complexity of Π is log s+ w.

A RevRes(polylog) proof is a Res(polylog) proof in which every DNF in the sequence is used as the premise to a
derivation rule at most once.

A uCircRes(polylog) proof has access to the additional rule

− DNF Creation. Si = Si−1 ∪ {D}, where D is any DNF formula.

provided that each copy of D that is created in this way is derived at least as many times at is used as the premise to a
derivation rule.

The following technical lemma will be key to our characterizations.

Lemma 6.2. [Theorem 3.6 in [DR23]] Res(polylog),RevRes(polylog), and uCircRes(polylog) are reduction closed.

Davis and Robere proved Lemma 6.2 for DNF resolution proofs of Π1.5-formulas (that is, when the axioms are
clauses). It is straightforward to see that it holds by exactly the same argument (Claim 1) when the axioms are DNF
formulas. In section 7 we prove this theorem for depth-d.5 Frege, for every d, of which Res(k) is d = 1.

In the following subsections we will prove Theorem 1.5, characterizing each of these proof systems by new TFΣdt
2

subclasses. To define each of these classes it will be convenient to use the following notion of a meta-pointer.

Definition 6.3. Given a function S : [m]× [t] → [m], the meta-pointer S̃ : [m] → [m] ∪ {undefined} is defined as

S̃(u) =


v if for every i ∈ [t], S(u, i) = v,
u if there is i ∈ [t] such that S(u, i) = u

undefined if there is i, j ∈ [t] such that u ̸= S(u, i) ̸= S(u, j).

Note that, if u ̸= v, S̃(u) = v is Π1-verifiable: For all i ∈ [t], we need to verify that S(u, i) = v, which takes
log(m) queries . Moreover, S̃(u) = u and S̃(u) = undefined are Σ1 verifiable: We can non-deterministically guess
i ∈ [t] such that S(u, i) = i, or i ̸= j ∈ [t] such that u ̸= S(u, i) ̸= S(u, j), in other words, they are efficiently
computable if we are given i (and j) as witnesses. The inclusion in TFΣ2 of the problems presented in this chapter
follows directly from this fact.
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6.1 DNF Resolution
polylog(n)-width resolution was characterized by the TFNPdt subclass PLS [BKT14]. In this section we introduce a
TFΣ2-variant of the PLS-complete problem iteration and show that it characterizes Σ2-Res(polylog). The iteration
problem encodes the principle that every DAG has a sink. The input is given by a pointer function S : [n] → [n]
giving the successor of a node u ∈ [n], thought of as the next node on a root-to-leaf walk in the dag. A solution is (i)
an invalid source S(1) = 1, (ii) a u which points backwards S(u) < u, (iii) a sink: u ∈ [n] such that S(u) ̸= u but
S(S(u)) = S(u), or (iv) a node u with an undefined pointer S(u) = undefined. Our TFΣ2 variant obfuscates the
successor function. Similar ideas were used to define the RWPHP2 problem in [KT21].

Definition 6.4. An instance of ITER2 is given by a function S : [m]× [t] → [m]. A solution is a witness of a solution
to the iteration instance defined by the meta-pointer S̃:

− (u, i, i′) such that S(u, i), S(u, i′) ̸= u and S(u, i) ̸= S(u, i′), (S̃(u) is undefined.)
− (u, i) such that S(u, i) < u. (A pointer which points backwards)
− (1, i) if S(1, i) = 1. (1 is not a source)
− (u, v, i) such that S̃(u) = v and S(v, i) = v. (v is a proper sink)

The class PLSdt2 is the set of R ∈ TFΣdt
2 such that R ≤dt ITER2.

Theorem 6.5. For any FFF ∈ TFΣdt
2 , there is a complexity-c ITER2-formulation of FFF iff there is a complexity

O(c) Σ2-Res(polylog) proof of F .

We prove this theorem in the following two lemmas, each giving one direction.

Lemma 6.6. For FFF ∈ TFΣ2, if Σ2-Res(polylog)(F ) = c then there is a complexity-O(c) ITER2-formulation of
FFF .

Proof. Let (Π, H) be a Σ2-Res(polylog)(F ) proof of F =
∧

i∈[ℓ] Fi, where H =
∧

i∈[k] Ai and each Ai is a Σ2-
weakening of a DNF of F . Up to padding, we may assume that each DNF in the proof has the same number of terms
t. Consider the proof Π = D1, . . . , Dm in reverse order so that D1 = ⊥; this will be our designated source.

Let tu,i be the ith term of Du. Given an assignment α ∈ {0, 1}n to the variables of F , we construct a function
Sα : [m]× [t] → [m] by setting Sα(u, i) to be:

− u if Du is an axiom, or if tu,i(α) = 1;
− v if tu,i(α) = 0 and Du was derived from Dv by the reverse cut rule or semantic weakening of an axiom;
− v if tu,i(α) = 0 and Du was derived from Dv = Du ∨ t and Dw = Du ∨ t̄ via symmetric cut and t(α) = 0 and

w if t̄(α) = 0;

Finally, for each solution o to the instance Sα we define the output of the reduction go(α) to be arbitrary if o does
not correspond to an axiom Ai of H , and otherwise this axiom Ai is a weakening of a DNF Fj of F , and we set
go(α) = j. Note that in this case Ai(α) = 0 =⇒ Fj(α) = 0. Observe that computing Sα(u, i) involves evaluating
at most two terms, and hence the depth of the reduction is at most twice the width of the proof. It remains to argue that
the reduction is correct.

Claim. The function S̃α satisfies the following properties:

i) S̃α is defined everywhere.
ii) If Du is not an axiom of H then Du(α) = 0 iff S̃α(u) ̸= u.

iii) If S̃α(u) = v ̸= u, then Dv(α) = 0.

Assuming the claim, we see that the only type of solution to this ITER2 instance Sα are proper sinks corresponding
to falsified axioms of H , which are weakenings of (falsified) axioms of F . Hence, g returns a correct solution to
FFF (α).

Proof of Claim. We prove each item, beginning with (i). Clearly S̃α is well defined for any u that was not derived
using the cut rule since Sα(u, i) only has one choice of value other than u. So now consider u such that Du was
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derived from Dv = Du ∨ t and Dw = Du ∨ t̄. For i ∈ [t], we see that Sα(u, i) depends on two values: tu,i(α), and
t(α) in the case where tu,i(α) = 0. Thus, t(α) being independent of i, Sα(u, i) is always identical when not equal to
u.

(ii) follows from the fact that Du(α) = 0 iff tu,i(α) = 0 for all i, and S̃α(u) = u iff tu,i(α) = 1 for at least one i.
Finally, (iii) follows by definition.

We will now prove the converse. First, we describe the encoding of ITER2 as a unsatisfiable formula. For each
(u, i) ∈ [m] × [t], the m-ary value of Su,i will be described by logm-many boolean variables Su,i,b, where the
indicator function

[[Su,i = v]] :=
∧

b∈[logm]

Svb
u,i,b,

where we think of v as being written in its binary encoding, vb is its bth bit, and S1
u,i,b = Su,i,b and S0

u,i,b = ¬Su,i,b.
As well, [[Su,i ̸= v]] = ¬[[Su,i = v]], and

[[S̃u ̸= v]] :=
∨
i∈[t]

[[Su,i ̸= v]].

Then ITER2 is the conjunction of the following subformulae:

− [[S1,i ̸= 1]] for each i ∈ [n]. (1 is not a source)
− [[Su,i ̸= v]] ∨ [[Su,i′ ̸= v′]] for all v ̸= v′ and i ̸= i′ such that u ̸= v, v′ (S̃ is defined everywhere)
− [[Su,i ̸= v]] for all v < u and i ∈ [n]. (Nothing points backwards)
− [[S̃u ̸= v]] ∨ [[Sv,j ̸= v]] for all u < v and j ∈ [n]. (v is not a proper sink)

Note that the subformulae of the ITER2 formula are clauses making the formula a CNF. We may then question what
makes ITER2 a TFΣdt

2 problem and not a TFNPdt one. The key to understanding this resides in the size of said clauses.
Indeed, for a the false formula problem corresponding to a CNF to be in TFNPdt, we need to be able to verify if a
given clause if falsified by an assignment by only querying a polylog(n) amount of bits. This in turns directly implies
that we would need each clause to be of polylog(n)-width. This is not the case here because of the fourth type of
axioms which are of poly(n)-width. On the other hand, considering clauses a 1-width DNFs, we see that this false
formula problem corresponding to this formula lands indeed in TFΣdt

2 . We now state the converse.

Lemma 6.7. For FFF ∈ TFΣ2, if there is a complexity-c ITER2-formulation of FFF then there is a complexity-O(c)
Res(polylog) proof of F .

Observe that the set of formulas {[[Su,i ̸= v]]}v∈[m] contains all clauses containing all of the variables Su,i,b.
Hence they can be cut in O(m logm)-many steps to obtain ⊥. Throughout the proof we will write the

Dv ∨ [[Su,i ̸= v]], ∀v
D

as a shorthand for this derivation with D =
∨

v∈[m] Dv .

Proof of Lemma 6.7. By Lemma 6.2 it suffices to show that Res(polylog) can prove ITER2. By induction from u = m
to u = 1 we will derive a set of formulae that state that does not point forward in S̃. Combining this with the fact that
the image of u by S̃ cannot be undefined and u may not point backwards, this is semantically equivalent to stating that
u points to itself. We then reach a contradiction when reaching u = 1 since 1 must be a proper source of our graph.
This will be achieved by deducing

Lu :=
{
[[S̃u ̸= v]] : u < v

}
,

which can be combined with axioms stating that no node points backwards for the desired statement.
The base case is trivial, as Lm = ∅. Consider some u ∈ [m] and suppose that we have derived Lv for all v > u. We

derive the formula [[S̃u ̸= v]] ∈ Lu as follows: consider some w > v > u and apply the reverse cut rule to [[S̃v ̸= w]]
in order to obtain [[S̃v ̸= w]] ∨ [[S̃u ̸= v]]. Now consider the cuts from a = t to a = 2

[[S̃u ̸= w]] ∨
∨

i<a+1[[Sv,i ̸= v]] [[S̃u ̸= v]] ∨ [[Sv,a ̸= v]] [[Sv,1 ̸= w]] ∨ [[Sv,a ̸= w′]],∀w′ ̸= v, w

[[S̃u ̸= v]] ∨
∨

i<a[[Sv,i ̸= v]]
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to the set of formulae [[S̃u ̸= v]] ∨ [[Sv,1 ̸= w]]. Finally, we do one last cut

[[S̃u ̸= v]] ∨ [[S(v, 1) ̸= w]], ∀w > v [[S̃u ̸= v]] ∨ [[Sv,1 ̸= v]] [[Sv,1 ̸= w]], ∀w < v

[[S̃u ̸= v]]
,

which derives the formula [[S̃u ̸= v]] ∈ Lu.
Finally, once we have derived L1 we can derive ⊥ as follows. For a fixed v > 1, starting from a = t down to

a = 2 we operate the cuts∨
i<a+1[[S1,i ̸= v]] [[S1,a ̸= 1]] [[S1,1 ̸= v]] ∨ [[S1,n ̸= v′]], ∀v′ ̸= v, 1∨

i<a[[S1,i ̸= v]]
.

Once we have derived [[S1,1 ̸= v]], we do one final cut

[[S1,1 ̸= v]], ∀v ̸= 1 [[S1,1 ̸= 1]]

⊥

6.2 Circular and Reversible DNF Resolution
In this section we characterize the Σ2-uCircRes(polylog) proof system by a TFΣ2-variant of the Sink-of-Line problem.
An instance of Sink-of-Line is given by functions S, P : [m]× [t] → [m] ∪ {undefined} which define a graph G as
follows: there is a directed edge (u, v) if S̃(u) = v and P̃ (v) = u. A solution to this instance is either i) 1 if 1 is not a
source in G, ii) a sink u in G, iii) a vertex u for which P̃ (u) or S̃(u) is undefined. We now describe the TFΣ2 variant.

Definition 6.8. An instance of SOL2 is given by functions S, P : [m]× [t] → [m]. A solution is a witness to a solution
to the SOL instance defined by the meta-pointers (S̃, P̃ ):

− (u, i, i′) if S(u, i′) ̸= u and S(u, i) ̸= S(u, i′) or P (u, i), P (u, i′) ̸= u and P (u, i) ̸= P (u, i′).
(Predecessor or Successor of u is undefined)

− (1, i) if S(1, i) = 1 or S̃(1) = v ̸= 1 and P (v, i) ̸= 1. (1 is not a source)
− (u, i) if u ̸= 1 and S(u, i) = 1. (u has a pointer to 1)
− (u, v, i) for u ̸= v if S̃(u) = v, P̃ (v) = u and S(v, i) = v; or S̃(u) = v, P̃ (v) = u, S̃(v) = w and P (w, i) ̸= v.

(v is a proper sink) [Noah: make sure this reads okay]

Theorem 6.9. For any FFF ∈ TFΣ2, there is a complexity-c SOL2-formulation of FFF iff there is a complexity O(c)
Σ2-uCircRes(polylog) proof of F .

This theorem follows by combining Lemma 6.10 and Lemma 6.14. We begin with the backwards direction,
showing that uCircRes(polylog) can prove SOL2 formulations. SOL2 is encoded as an unsatisfiable formula which is
the conjunction of the following

− [[Su,i ̸= 1]] for u ∈ [m], i ∈ [t], and [[S̃1 ̸= v]] ∨ [[Pu,i ̸= v]] for all u, v ̸= 1, i ∈ [t]. (1 is a source)
− [[Su,i ̸= v]] ∨ [[Su,i′ ̸= v′]] for all i ̸= i′, v ̸= v′. (S̃ is not undefined)
− [[Pu,i ̸= v]] ∨ [[Pu,i′ ̸= v′]] for all i ̸= i′, v ̸= v′. (P̃ is not undefined)
− [[Su,i ̸= 1]] for all i ∈ [t] and u ̸= 1. (Nothing points to 1)
− Let Ēu,v := [[S̃u ̸= v]] ∨ [[P̃v ̸= u]], we include (No proper sinks)

− Ēu,v ∨ [[Sv,i ̸= v]] for each u ̸= v and i ∈ [m], and
− Ēu,v ∨ [[S̃v ̸= w]] ∨ [[Pw,k ̸= w′]] for u ̸= v ̸= w ̸= w′ and k ∈ [t].

Lemma 6.10. For FFF ∈ TFΣ2, there is a complexity-uCircRes(polylog)(F ) SOL2-formulation of FFF .

Proof. By Lemma 6.2 it suffices to show that uCircRes(polylog) can prove SOPL2. For each u ∈ [m] we would like
to derive the set of formulas

Lu = {Ēu,v : v ̸= u, 1},

stating that u has no outgoing edges. Our proof will proceed by the following three steps:

1. Assume Lu for each u ̸= 1;
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2. From Lv for v ̸= u, deduce Lu. Since Lv is semantically equivalent to saying that node v points to itself, if u
were to point to any other node, then said node would be a proper sink. Hence Lu follows.

3. L1 is in direct contradiction with axioms stating that 1 is a source.

For step 1, we use the DNF creation rule

Ēu,v

For step 2 and u ∈ [m], we perform the following. For w ̸= v ̸= u with w, v ̸= 1, consider Ēv,w ∈ Lv and weaken it
successively to get

Ēu,v ∨ Ēv,w
,

then we cut as follows: starting with c = n down to c = 1,

Ēu,v ∨ [[S̃v ̸= w]] ∨
∨

k<c+1[[Pw,k ̸= v]] Ēu,v ∨ [[S̃v ̸= w]] ∨ [[Pw,c ̸= w′]], ∀w′ ̸= w

Ēu,v ∨ [[S̃v ̸= w]] ∨
∨

k<c[[Pw,k ̸= v]]

to get Ēu,v ∨ [[S̃v ̸= w]]. Next, starting from b = n down to b = 2,

Ēu,v ∨
∨

j<b+1[[Sv,j ̸= w]] Ēu,v ∨ [[Sv,b ̸= v]] [[Sv,1 ̸= w]] ∨ [[Sv,b ̸= w′]], ∀w′ ̸= v, w

Ēu,v ∨
∨

j<b[[Sv,j ̸= w]]

and end up with the formulae Ēu,v ∨ [[Sv,1 ̸= w]]. Finally,

Ēu,v ∨ [[Sv,1 ̸= w]], ∀w ̸= v, 1 Ēu,v ∨ [[Sv,1 ̸= v]] [[Sv,1 ̸= 1]]

Ēu,v

derives Ẽu,v ∈ Lu. Having derived L1 allows us to take Ē1,v ∈ L1 and, starting with b = n down to b = 1, we may
cut

[[S̃1 ̸= v]] ∨
∨

j<b+1[[Pv,j ̸= 1]] [[S̃1 ̸= v]] ∨ [[Pv,b ̸= w]], ∀w ̸= 1

[[S̃1 ̸= v]] ∨
∨

j<b[[Pv,j ̸= 1]]

to get [[S̃1 ̸= v]] for each v ̸= 1. Next, starting from a = n down to a = 2, we cut∨
i<a+1[[S1,i ̸= v]] [[S1,a ̸= 1]] [[S1,1 ̸= v]] ∨ [[S1,a ̸= v′]], ∀v′ ̸= v∨

i<a[[S1,a ̸= v]]

to get [[S1,1 ̸= v]] for v ̸= 1. We may then cut one final time

[[S1,1 ̸= v]], ∀v ̸= 1 [[S1,1 ̸= 1]]

⊥
.

We delay the proof of the other direction until the end of this section, and complete it together with the proof of
the same direction RevRes(polylog) as they are similar.

We characterize the RevRes(polylog) by a TFΣ2 variant of the Sink-of-Potential-Line (SOPL) problem. This is
a metered variant of SOL, meaning that edges must always point towards larger numbers. An instance of SOPL is
given by functions S, P : [m] → [m] ∪ {undefined} which defines a graph G with edges (u, v) iff S(u) = v and
P (v) = u. A solution is either i) 1 if 1 is not a source in G, ii) a sink u in G, iii) a vertex which points backwards
S(u) < u, or iv) a vertex u if S(u) or P (u) is undefined.

Definition 6.11. An instance of SOPL2 is given by functions S, P : [m] × [t] → [m]. A solution is a witness to a
solution to the SOPL instance defined by the meta-pointers (S̃, P̃ ):

− (u, i, i′) if S(u, i′) ̸= u and S(u, i) ̸= S(u, i′) or P (u, i), P (u, i′) ̸= u and P (u, i) ̸= P (u, i′).
(Predecessor or Successor of u is undefined)

− (1, i) if S(1, i) = 1 or S̃(1) = v ̸= 1 and P (v, i) ̸= 1. (1 is not a source)
− (u, i) if S(u, i) < u. (u points backwards)
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− (u, v, i) for u < v if S̃(u) = v, P̃ (v) = u and S(v, i) = v; or S̃(u) = v, P̃ (v) = u, S̃(v) = w and P (w, i) ̸= v.
(v is a proper sink)

Theorem 6.12. For any FFF ∈ TFΣ2, there is a complexity-c SOPL2-formulation of FFF iff there is a complexity
O(c) Σ2-RevRes(polylog) proof of F .

This theorem follows by combining Lemma 6.13 and Lemma 6.14. We begin with the backwards direction,
showing that RevRes(polylog) can prove SOPL2 formulations. SOPL2 is encoded as an unsatisfiable formula which
is the conjunction of the following

− [[Su,i ̸= 1]] for u ∈ [m], i ∈ [t], and [[S̃1 ̸= v]] ∨ [[Pu,i ̸= v]] for all u, v ̸= 1, i ∈ [t]. (1 is a source)
− [[Su,i ̸= v]] ∨ [[Su,i′ ̸= v′]] for all i ̸= i′, v ̸= v′. (S̃ is not undefined)
− [[Pu,i ̸= v]] ∨ [[Pu,i′ ̸= v′]] for all i ̸= i′, v ̸= v′. (P̃ is not undefined)
− [[Su,i ̸= v]] for all i ∈ [t] and v < u. (No backwards edges)
− Let Ēu,v := [[S̃u ̸= v]] ∨ [[P̃v ̸= u]], we include (No proper sinks)

− Ēu,v ∨ [[Sv,i ̸= v]] for each u < v and j ∈ [m], and
− Ēu,v ∨ [[S̃v ̸= w]] ∨ [[Pw,k ̸= w′]] for u < v < w and w ̸= w′ and k ∈ [t].

Lemma 6.13. For FFF ∈ TFΣ2, there is a complexity-RevRes(polylog)(F ) SOPL2-formulation of FFF .

Proof. By Lemma 6.2 it suffices to show that RevRes(polylog) can prove SOPL2. We will prove by induction on
u = m. . . 1 that u does not have any outgoing edges. That is, we will derive the set of formulas

Lu :=
{
Ēu,v : u > v

}
.

First observe that the base case is given by the no backwards edges axioms. Assuming that we can derive L1, we show
how to complete the proof. For v > 1, starting with b = n down to b = 1, we cut

[[S̃1 ̸= v]] ∨
∨

j<b+1[[Pv,j ̸= 1]] [[S̃1 ̸= v]] ∨ [[Pv,b ̸= w]], ∀w ̸= 1

[[S̃1 ̸= v]] ∨
∨

j<b[[Pv,j ̸= 1]]
.

Next, starting from a = n down to a = 2, we successively cut∨
i<a+1[[S1,i ̸= v]] [[S1,a ̸= 1]] [[S1,1 ̸= v]] ∨ [[S1,a ̸= w]], ∀w ̸= 1, v∨

i<a[[S1,i ̸= v]]
.

Once all those formulae are derived, we cut one final time to finish the proof

[[S1,1 ̸= 1]] [[S1,1 ̸= v]], ∀v > 1

⊥
.

We now describe how to derive Lu from all Lv with v > u. For a given v and Ēv,w ∈ Lv , we start by weakening
it to get [[P̃v ̸= u]] ∨ Ēv,w and again to get Ēu,v ∨ Ēv,w. Once this is done, starting at c = n down to k = 1, we cut

Ēu,v ∨ [[S̃v ̸= w]] ∨
∨

k<c+1[[Pw,k ̸= v]] Ēu,v ∨ [[S̃v ̸= w]] ∨ [[Pv,c ̸= w′]], ∀w′ ̸= w

Ēu,v ∨ [[S̃v ̸= w]] ∨
∨

k<c[[Pw,k ̸= v]]

to get Ēu,v ∨ [[S̃v ̸= w]]. Finally, from b = n down to b = 2, we cut

Ēu,v ∨
∨

j<b+1[[Sv,j ̸= w]] Ēu,v ∨ [[Sv,b ̸= v]] [[Sv,1 ̸= w]] ∨ [[Sv,c ̸= w]], ∀w′ ̸= v, w

Ēu,v ∨
∨

j<b[[Sv,j ̸= w]]

and once we derived Ēu,v ∨ [[Sv,1 ̸= w]] for each w > v, we have one final cut

Ēu,v ∨ [[Sv,1 ̸= w]], ∀w > v Ēu,v ∨ [[Sv,1 ̸= v]] [[Sv,1 ̸= w]], ∀w < v

Ēu,v

to get Ēu,v ∈ Lu.
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Finally, we prove the other direction of Theorem 6.12 and Theorem 6.9.

Lemma 6.14. Let FFF ∈ TFΣ2. Suppose that F admits a complexity-cΣ2-uCircRes(polylog) (-Σ2-RevRes(polylog))
proof, then there is a complexity-O(c) SOL2-(SOPL2-)formulation of FFF .

Proof. We first handle Circular DNF resolution, and discuss what needs to be changed in order to handle Reversible
DNF resolution at the end of the proof. The idea for the transformation of a uCircRes(polylog) proof into a an SOL2

formulation is the same as the transformation of a Res(polylog) into an ITER2 formulation (Lemma 6.6) with the
addition of defining a predecessor function. Let Π = (D1, . . . , Dm) be such a proof. By padding, we may assume
that each DNF in the proof has the same number of terms. Let us consider the proof in reverse order such that
D1 =

∨
i∈[t] ⊥.

Let tu,i be the ith term of Du. Given an assignment α ∈ {0, 1}n to the variables of F , we construct a function
Sα : [m]× [t] → [m] by setting Sα(u, i) to be:

− u if Du is an axiom, or if tu,i(α) = 1;
− v if tu,i(α) = 0 and Du was derived from Dv by the reverse cut rule or semantic weakening of an axiom;
− v if tu,i(α) = 0 and Du was derived from Dv = Du ∨ t and Dw = Du ∨ t̄ via symmetric cut and t(α) = 0 and

w if t̄(α) = 0;

As well, define the predecessor function Pα : [m]× [t] → [m], as Pα(u, i):

− u if either u = 1, or the formula Du was deduced but never used as the premise of a rule, or if tu,i(α) = 1;
− v if tu,i(α) = 0 and u is used as a premise to derive Dv via any of the rules but the reverse cut;
− v or w if tu,i(α) = 0 and Du was used as the premise of the reverse cut rule to derive Dv = Du ∨ t and

Dw = Du ∨ t̄. If t(α) = 0, then Pα(u, i) = v and Pα(u, i) = w otherwise.

Finally, for each solution o to the instance Sα we define the output of the reduction go(α) to be arbitrary if o does not
correspond to an axiom Ai of H , and otherwise this axiom Ai is a weakening of a DNF Fj of F , and we set go(α) = j.
Note that in this case Ai(α) = 0 =⇒ Fj(α) = 0. Observe that computing Sα(u, i) and Pα(u, i) involve evaluating
at most two terms, and hence the reduction is efficient.

It remains to argue that the reduction is correct.

Claim. The following hold:

1. P̃α and S̃α are defined everywhere;
2. If Du was used as the premise of a rule, Du(α) = 0 if and only if P̃α(u) ̸= u and S̃α(u) ̸= u;
3. If P̃α(u) = v ̸= u, then Dv(α) = 0;
4. For a pair u ̸= v, S̃α(u) = v if and only if P̃α(v) = u.

Assuming the claim, the only solutions are proper sinks corresponding to falsified axioms of H , which are weak-
enings of (falsified) axioms of F . Hence, g returns a correct solution to FFF (α).

Proof of Claim. The proof of this claim is, at heart, the same as the proof of the claim in Lemma 6.6. The behavior
of both functions implies that the only solutions one might get in the instance are proper sinks and that these proper
sinks can only be falsified axioms.

Finally, when Π is a RevRes(polylog) proof, Sα(u, i) ≥ u and Pα(v, j) ≤ v for any u and v since the graph
representation of Π does not include cycles, and thus we would not have fake solutions corresponding to edges pointing
backwards making our formulation a valid SOPL2-formulation.

6.3 Relationships in TFΣ2

In this subsection, we prove all the new inclusions in 1, relating the classes who’s combinatorial principle is artificially
brought up from TFNP to some naturally TFΣ2 classes.

Here the characterization helps us build the reduction.
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Proposition 6.15. (USOD)n admits an efficient uCircRes(polylog(n))-proof and STRONGAVOID ∈ SOL2.

Proof. Let us first give the explicit encoding of the (USOD)n by giving the axioms:

1. 1 is a sink: This is encoded by two axioms.

(a) [S1 = 1];
(b)

∨
t̸=1[St = 1];

2. No sources:
∨

t[St = u].

The strategy for the proof is:

1. assume that S(u) = u for any u ̸= 1;
2. from the fact that S(v) = v for all v ̸= u, deduce that S(u) = u. Indeed if all other nodes point to themselves,

u can not point to anything but itself since otherwise it would qualify as a source. We also derive S(u) ̸= 1
during this process;

3. once this is done, we will be left with the fact that S(u) ̸= 1 for each u ̸= 1 which is in direct contradiction with
the second axiom.

We start by introducing [Su = u] for each u ̸= 1 via the DNF creation rule for step 1.
Now, fixing u, for t ̸= u, let us weaken [St = t] to obtain [St = t] ∨ [Su ̸= w] for all w ∈ [n] and consider the case
w = t. Since u ̸= t, the formula [St ̸= t]∨ [Su ̸= t] is a tautology and thus we can introduce it. Then we may operate
the cut

[St = t] ∨ [St ̸= u] [St ̸= t] ∨ [St ̸= u]

[St ̸= u]

and get [St ̸= u] for each t ̸= u. Once this is is done, we may cut∨
t[St = u] [St ̸= u], ∀t ̸= u

[Su = u]

Observe that, as announced, we have derived [St ̸= 1] for all t ̸= 1. That is the end for step 2.
We can now simply cut one last time to finish the proof∨

t ̸=1[St = 1] [St ̸= 1], ∀t ̸= 1

⊥

The size of the proof and the characterization theorem shows that USOD ∈ SOL2. Also, the equivalence USOD =dt

STRONGAVOID gives us STRONGAVOID ∈ SOL2

The sink-of-DAG problem is the canonical PLS-complete problem in which one is given a source of a DAG and
one wants to find a sink. Our characterization of Sherali-Adams by STRONGAVOID proceeded via a (equivalent)
unmetered source-of-DAG problem. Hence, it is natural to also consider a metered version of these problem, where
one is given a sink of a DAG and one wants to find a source.

Definition 6.16. The Source of DAG (SOD) problem is defined as follows. The input is a “successor” function
S : [n] → [n] which defines a graph in which each vertex has fan-out ≤ 1 but arbitrary fan-in. There is an edge from i
to j if S(i) = j. A solution to the instance S is:

1. i if S(i) < i; (i has a backward edge)
2. n if for all i < n, S(i) ̸= n; (n is not a sink)
3. i if for all j ∈ [n], S(j) ̸= i. (A source)

The following result then arise naturally.

Proposition 6.17. SODn admits an efficient RevRes(polylog(n))-proof, and SOD ∈ SOPL2.

Proof. The axioms of SODn are:

1. n is a proper sink:
∨

t ̸=n[[St = n]];
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2. No sources:
∨

t[[St = u]] for each u ̸= 1;
3. No edges pointing backwards:[[Su ̸= v]] for any pair of nodes v < u.

The strategy of the proof is as follows:

1. given that S(t) = t for each t < u, deduce that S(u) = u. This must be true since otherwise u is a source.
2. use the fact that the derived formulae directly contradicts the first axiom.

Let us start by describing step 1. Assume we have derived [[St = t]] for each t < u. Then we may weaken these
formulae to get [[St = t]]∨ [[St ̸= v]] and let us consider the case v = u. Since t ̸= u, the formula [[St ̸= t]]∨ [[St ̸= u]]
is a tautology that we introduce, and we cut

[[St ̸= t]] ∨ [[St ̸= u]] [[St = t]] ∨ [[St ̸= u]]

[[St ̸= u]]

to obtain [St ̸= u]. Next, we cut∨
t[[St = u]] [[St ̸= u]], ∀t < u [[St ̸= u]],∀t > u

[[Su = u]]

to derive [[Su = u]] Once this is done, we may perform one final cut∨
t ̸=n[[St = n]] [[St ̸= n]], ∀t ̸= n

⊥

hence SOD ∈ SOPL2.

These proofs are interesting since they do indicate that up to complexifying a function, it is possible to build an in-
verse that is also hard-to-compute with an efficient reduction. Also, since we know how to transform uCircRes(polylog)-
refutations (resp. RevRes(polylog)-refutations) into SOL2-instances (resp. SOPL2-instances), following the instruc-
tions lets us concretely build those inverses.
The other inclusions are proved more directly, and do not rely on the characterization.

Proposition 6.18. LOP ≤dt ITER2.

Proof. Let ≺ be an LOP instance on [n]. By encoding it with
(
n
2

)
variables such that, for i < j ∈ [n], xi,j = 1 means

i ≺ j, and xi,j = 0 means j ≺ i, we can force the purported order to always be total. An output to the LOP instance
would thus either be a ≺-minimal element, or a proof that ≺ is not an order, i.e., that the transitivity does not hold.
Consider the ITER2 instance on

(
n
2

)
+ n meta-nodes with a meta-node for each (i, j) ∈ [n]2 with i ≥ j. Let (1, 1) be

the source. It helps to think of the meta-nodes as arranged in n levels, with the first element in the label being the level
a meta-node is at.
The idea is that (i, j) is valid (i.e., has an outgoing edge) if and only if ≺ is transitive and j is the ≺-minimal value in
[i]. If i < n, it will point to (i+ 1, j′), where j′ = j if j is still ≺-minimal in [i+ 1], and j′ = i+ 1 otherwise.

We now formally define the nodes with index (i, j). If i = n, then it contains a single node that points to itself.
Otherwise, there is two kind of nodes:

−
(
n
3

)
nodes verifying the transitivity of ≺. Each of those nodes are associated with 3 distinct elements (a, b, c) ∈

[n]3. We define S((i, j), (a, b, c)) as follows:

− Query a ≺ b, b ≺ c and a ≺ c. If the answers show that ≺ is not transitive on (a, b, c), point to (i, j).
− Query j ≺ i+ 1. If it holds, point to (i+ 1, j). Otherwise, point to (i+ 1, i+ 1).

− i − 1 nodes verifying the validity of (i, j). Each of those nodes are associated with a value k ∈ [i] \ {j}. We
define S((i, j), k) as follows:

− Query j ≺ k. If it does not hold, point to (i, j).
− Query j ≺ i+ 1. If it holds, point to (i+ 1, j), otherwise, point to (i+ 1, i+ 1).
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Since every node that points out of its index does the same query to decide where to point, the meta successor is
well-defined. If ≺ is not transitive, every meta-node will point to itself. The solution can thus only be of type ((1, 1), i),
with this node being of the transitive type. This immediately gives us a triple in [n] proving ≺ is not transitive. If ≺ is
indeed a total order, then it is clear that every level has a single active node, the only proper sink on level n indicates
the ≺-minimal value in [n].

Proposition 6.19. SOD ≤dt LOP.

Proof. Let S be an SOD instance on n vertices. Consider an LOP instance ≺ on 2n values split into two groups
C = [n] and L = [n], we denote elements of C by iC and elements of L by iL, for i ∈ [n]. The group C’s goal is
to ”check for backward pointers”, if the ≺-minimal element is iC , then i points backwards. The group L checks for
loops: if the ≺-minimal element is iL, then there are no backward edges. Moreover, if i = n, then n is not a proper
sink. Otherwise, i is the first node (in regular order) to not point to itself in S, i.e., i is a source.
Formally, for i, j ∈ [n], we define ≺ as follows:

− iC ≺ jC if and only if i < j;
− iC ≺ jL if and only if S(i) < i;
− iL ≺ jL if and only if either one of the following holds:

− S(iL) = i, S(jL) = j and i > j;
− S(iL) ̸= i and S(jL) = j;
− S(iL) ̸= i, S(jL) ̸= j and i < j.

It is clear that ≺ is total. If it is transitive, then the minimal element is either the first source in S, or n if it is not a
proper sink. If it is not transitive, the minimal element allows us to find a backward pointer.

Theorem 1 in [KKMP21] proves that FNP ⊆ PEPP, we prove that actually FNP ⊆ SOD. As it is straightforward
that SOURCEOFDAG reduces to UNMETEREDSOURCEOFDAG, which is equivalent to empty, this implies that every
TFΣ2 class studied in this paper, apart from APEPP, contains FNP.

Proposition 6.20. FNP ⊆ SOD.

Proof. Let x be an instance of Pn, a FNP problem, and let O be it’s set of solutions. By definition of FNP, this set is
at most quasipolynomial in n. Consider the PLS instance with |O|+ 1 nodes. Consider the extra node as n. To define
S(o), run the verification decision tree of Pn for (x, o). If it accepts, point to n, otherwise, point S(o) points to itself.
If n is not a proper sink, it means Px has no solution on x, if o is a proper source, then it is a solution for x.

7 TFΣd+1 Consequences of Depth-d.5 Frege
The PK proof system and its fragments PKk whose derived formulae are limited to depth-d formulae is one of the
most well-known and studied proof system in proof complexity. One particular use for these proof systems is that they
correspond to the theories T d

2 [Kra94, Kra01, ST11] of bounded arithmetic introduced by Buss in his seminal thesis
[Bus86]. These theories, together with the theories Sd

2 form a hierarchy akin to the polynomial hierarchy found in
complexity theory - with the caveat that Sd

2 ⊆ T d
2 instead of the double helix usually drawn to describe PH. As for the

latter questions of wether this hierarchy collapses, and if so at what level, is an important, if not the most important,
open problem in the field. Multiple pathways have been followed in tackling this problem, but one that stuck out
is looking at the ∀Σ1 consequences of such said theories. The characterization results for T 1

2 by the PLS class of
problems in [BB09a] and T 2

2 by the class C-PLS - a version of PLS whose nodes are each assigned a set of colors -
in [KST07b] translate to the characterization of the TFNP classes PLS and C-PLS by the propositional proof systems
Res and Res(polylog) [DR23] respectively in the field of propositional proof complexity.

In the following section, we prove a general characterization theorem for each of the proof systems Res(Cd) -
where Cd is the class of formulae Σd.5 ∪ Πd.5 - with Σd+1-weakening. The main idea for the complete problem is
more or less the same as in the case of ITER2. We aim at obfuscating a function corresponding to an ITER instance
that needs the power of cutting over Σd.5 ∪ Πd.5 formulae. As usual, the Σd+1-semantic weakening of axioms is
mainly part of the definition to ensure that the class defined by the proof system is closed under efficient decision tree
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reduction. What differs really from the level 2 case is how we obfuscate. Here the trick of asking for all indices to
agree does not work anymore - or at least not to our best efforts. That is where the problems GPLSd and PEd from
[PT12] inspired us with the idea of alternating min’s and max’s. The fact that these problems also already characterize
the ∀Σ1 consequences of T d

2 leads us to believe that this the right way to proceed.

We start by defining our proof system Res(Cd) subsection 7.1 and prove that is it closed under decision tree
substitution. We then go on with defining our problem ITERd and the corresponding class PLSdtd in subsection 7.2.
We also prove that our problem is indeed in TFΣdt

d . Finally, in subsection 7.3 we attack the characterization result.
We apply the template we have already profusely used to prove characterizations:

1. prove that we can transform efficient proof into efficient decision tree reductions to the complete problem in
Proposition 7.11;

2. find an efficient refutation of the formula corresponding to the complete problem in Proposition 7.14.

For the second part, we will use a popular method used to find refutations of some proof systems like Res: The
Prover-Delayer game.

7.1 The Res(Cd) proof system
Writing Cd = Σd.5 ∪ Πd.5, the Res(Cd) proof system follows a simple intuition: in proof complexity, it is usual
to consider CNF formulae and resolve over opposite literals, and CNFs are basically conjunctions of disjunctions of
literals which we denote by ΠΣL with L being the class of literals. When dealing with higher order search problems,
as seen previously, we see that their translation does not yield CNFs anymore, but unsatisfiabe Π(d+1).5 = ΠΣCd-
formulae and this motivates the considering the following proof system.

Definition 7.1. For d ≥ 1, a Res(Cd) refutation of a Πd+2-unsatisfiable formula F = ∧m
i=1 is a sequence of

polylog(n)-width Σd-formulae Π = (π1, . . . , πl = ⊥) where each πi is deduced from the previous Σd-formulae
by one of the following rules:

− Axiom Introduction. Introduce Ai for some i ∈ [m].
− Cd-Cut From π ∨ C and σ ∨ C̄ derive π ∨ σ where C is any Cd-formula.
− Cd-weakening. From π derive π ∨ C where C is any Cd-formula.

The size s of Π is
∑s

i=1 |πi| and its width w is the maximum width of any formula in Π. The complexity of Π is
log(s) + w

We usually see a Res(Cd) proof in the form of a DAG where each node corresponds to a formula of the proof
and has zero, one, or two parents depending on what rule was used to derive it. Looking at proof this way leads to
a following characterization very close to what we already have for the resolution proof system: The Prover-Delayer
game.
Pascal the Prover and Danielle the Delayer have a disagreement over a particular ΠΣC-formula F =

∧m
i=1 Ai. Pascal

says they are convinced that the formula F is unsatisfiable, while Danielle insists on the contrary. Danielle goes even
so far as asserting that they have in their possession an assignment α satisfying the formula F , but they refuse to give it
to Pascal. Pascal, not being born yesterday, trusts their intuition, and says they can not simply believe Danielle at their
word and need more information to verify such a claim. An argument ensues, but both of our protagonists ultimately
find an agreement. Danielle will not give the value of α to Pascal, however they agree on answering the following
type of queries: Pascal may choose a formula C ∈ Cd and Danielle answers with the alleged evaluation C(α). The
game then proceeds as follows: Pascal chooses a formula C ∈ Cd, Danielle answers with b ∈ {0, 1}, and Pascal
remembers the equality C(α) = b. The game ends when the set of equalities remembered by Pascal {Ci(α) = bi}i∈I

is incompatible with all axioms Ai being satisfied.

Definition 7.2. Let F =
∧m

i=1 Ai be an unsatisfiable Πd+2-formula. A strategy for the Prover is the data of a DAG
G of maximum fan-out two and one root. Each node n is labeled with a set of boolean equalities of Cd-formulae Mn

which we call the memory of the Prover at node n. Given Mn = {Ci = 0}i∈I , we write V (Mn) := {α | Ci(α) =
0, ∀i ∈ I} The memories relate to each other in the following way:

− if n = r is the root, then Mr = ∅;
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− if n has one child c, then Mc = Mn\{C = 0} for some C ∈ C;
− if n has two children nodes c0 and c1, then Mc0 = Mn ∪{C = 0} and Mc1 = Mn ∪{C̄ = 0} for some C ∈ C.
− if l is a leaf, then there exists i ∈ [m] such that Ai(α) = 0 for each α ∈ V (Ml).

The size of the strategy is the
∑

n∈V (G)

∑
C∈Mn

|C| and its width is the maximal width of any Cd-formula queried.

As for the original Prover-Delayer game for the resolution proof system and the Buss-Pudlák game for bounded-
depth Frege proofs, finding a strategy for a formula closely relates to finding a refutation.

Lemma 7.3. Let F be a Πd+2 unsatisfiable formula. If F admits a Σd+2-Res(Cd) refutation of size s and width w,
then there is a strategy for the Prover for F of size s and width w and conversely.

Proof. Given a Σd+2-Res(Cd) proof of F (H , Π), the strategy is given by the following.

− The Prover starts at the end of the proof Π, that is on the node corresponding to ⊥ and its memory is empty.
− At the node corresponding to the formula π, if it was derived via:

− the weakening rule, i.e. π = π′ ∨ C for some C ∈ Cd: the Prover forgets the equality {C = 0};
− the cut rule over C ∈ Cd from π0 = A∨C and π1 = B∨C̄: Then the Prover queries the formula C. When

the Delayer answers with response b ∈ {0, 1}, then the Prover adds the equality C = 0 to its memory if
b = 0 and moves to the node labeled with π0, and else they add the equality C̄ = 0 and moves to the node
labeled with π1.

− the axiom introduction rule: the Prover stops

Moving this way through the graph of the proof ensures that the set of satisfying assignments for the current memory
is incompatible with the formula labeling the node. Thus, when the Prover stops, the current memory is incompatible
with either an axiom of H .
Now suppose we have a strategy for the Prover and consider its graph. Then at each node n replace the memory
Mn = {C1 = 0, . . . , Cmn

= 0} with the formula
∨

i∈[mn]
Ci. This is indeed a derivation as querying a formula

C ∈ C a formula C ∈ C ends being an instance of the cut rule and the weakening of the memory corresponds to an
instance of the weakening rule. Moreover, the leafs are labeled with weakenings of axioms of F . We may then take
our weakening H to be the conjunction of the formulae labeling the leaves.

To make sure that Σd+2-Res(Cd) defines indeed a TFPH class, we need the proof system to be closed under
decision tree reductions, since otherwise the mere notion of the class does not apply to the proof system. We check
here that Σd+2-Res(Cd) verifies this property soon, but first let us consider the following lemma about Cd-formulae.

Lemma 7.4. For d ≥ 1, f = (f1, . . . , fn) a vector of polylog(n)-depth decision trees and C ∈ Cd a formula on n
variables. Then C(f) ∈ Cd.

We can now prove that Σd+2-Res(Cd) verifies the wanted property.

Lemma 7.5. Let F be an unsatisfiable Πd+2-formula on n variables and let f = (f1, . . . , fn) be a vector of
polylog(n)-depth decision trees. Then if F admits a Σd+2-Res(Cd) refutation of size s, F (f) admits a refutation
of size spolylog(n).

Proof. We prove this result using the characterization of proof by the Prover-Delayer game. Say we have a strategy
of size s. The strategy is then modified in the following way: replace the memory of a node v Mv = {C1 =
0, . . . , Cmv

= 0} by Mv,f = {C1(f) = 0, . . . , Cmv
(f) = 0} which is a valid strategy by Lemma 7.4. What this

transformation amounts to is that instead of querying C, now the Prover will query the formula C(f) which represents
a correct strategy for the Prover for formula F (f).

Using this result, we are able to prove that the ΣC-Res(C) proof system is closed under decision tree reductions.
This part is important if we want to be able to make sense of the class .

Lemma 7.6. Let F =
∧m

i=1 Fi and G =
∧l

j=1 Gj be unsatisfiable Πd+2-formulae on n variables and suppose that
we have a proof of F of size s. If there is a decision tree reduction (f, g) from FFG to FFF of polylog(n)-depth, then
G admits a Σd+2-Res(Cd) proof of size s2polylog(n).
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Proof. Consider the proof of F as a strategy for the Prover. Our strategy for G amounts to the following: Consider the
strategy for F (f) described in the previous result. Then, at any leaf corresponding to the weakening of an axiom Fi(f)
for i ∈ [m], the Prover queries variables down the decision tree gi. Once this is over, they consider the label of the path
j associated to the path in gi that the Prover went down to. By the correctness of the reduction, the current memory of
the Prover is such that the set of satisfying assignment for said memory contains the set of satisfying assignments for
the axiom Gj of G. Taking the formula being the co

7.2 The ITERd problem and the PLSd subclass
Definition 7.7. For an integer k ≥ 1, and a product set r = [r1]× · · · × [rk] we set the following notation when k is
odd:

MAX(r) := max
i1∈[r1]

min
i2∈[r2]

· · · max
id∈[rk]

,

MIN(r) := min
i1∈[r1]

max
i2∈[r2]

· · · min
id∈[rk]

,

and if k is even we only change the last min or max to its opposite.

As for the ITER2 problem, the an instance of ITERd problem for k ≥ 3 is an obfuscated instance of ITER. The main
idea of ITERd is to render the successor function S computable only trough the help of a Σd.5 oracle by an alternation
of max and min. Indeed, what ITERd amounts to is to give a function S : [n]k → [n] and construct and ITER instance
by setting S̃(u) = MIN([n]k−1){S(u, i)} for a node u. This closely resembles the approach used in [KT21] for the
definition of the RWPHP2 problem in TFΣ2 from the classical retraction pigeonhole principle in TFNP. What we
prove in the rest of this section is a generalization of the classical result Resdt = PLSdt by showing that if we define
PLSd to be the class of problems efficiently reducible to ITERd then PLSdtd+2 = Σd+1 − Res(Cd)

dt for all k ≥ 1. We
start by giving a formal definition of ITERd.

Definition 7.8. An instance of ITERd,m,t with t = (t1, . . . , td−1) is given by a successor function S : [m] × [t1] ×
· · · × [td−1] → [m] that describes a graph on m vertices via the S̃ function the same way we have done so far. An
output is given by a quadruple (u, i, v, j) with u, v ∈ [m] and i∗1, j

∗
1 ∈ [t1] such that

i∗1 = argmin
i1∈[t1]

{max
i2∈[t2]

· · · min
id−1∈[td−1]

S(u, i)}

j∗1 = argmin
j1∈[t1]

{ max
j2∈[t2]

· · · min
jd−1∈[td−1]

S(v, j)}

when k is even and the last min is replaced by a max when k is odd, and S̃(u) = v, and

− u = v = 1 (1 is not a source);
− v < u (u admits a backward pointer);
− u < v and S̃(u) = S̃(v) = v (v is a proper sink).

The problem ITERd corresponds to the case where all functions are equal to the identity function. The class PLSd is
defined as the syntactic class of problems that admit an efficient decision tree reduction to ITERd.

One way to see the indices i∗1 and j∗1 in the solution is as certificates of computation for u and v. Once again, this
follows closely the approach in [KT21] where a solution of to a RWPHP2 instance is not only a solution to the usual
underlying RWPHP instance but also a certificate of computation for the functions involved. One reason this problem
is hard is that for the solutions where u < v, the verifier must be able to assert whether S̃(u) = v and S̃(v) = v or, in
other words, it must be able to assert that the certificates of computation i and j indeed witness a correct computation
for their respective input nodes.

Proposition 7.9. ITERd ∈ TFΣd for d ≥ 1.

Proof. Let us assume k is even, the odd case being handled in the same way up to changing a min into a max. Consider
an output o = (u, i∗1, v, j

∗
1 ) and an instance S. First, let us understand what the assertion S̃(u) = v logically means.
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In fact, this statement can be written as the conjunction of the assertions S̃(u) ≥ v and S̃(u) ≤ v. Both statement may
be rewritten as

S̃(u) ≥ v ≡ ∀i1∃i2 · · · ∀id−1S(u, i) ≥ v

S̃(u) ≤ v ≡ ∃i1∀i2 · · · ∃id−1S(u, i) ≤ v

In particular the latter formula is true by taking i1 to be the argument of the minimum. Thus, for the output o, the
verifier Vo(S, i

′, i, j′, j) for i′ = (i1, . . . , i
′
d−1), j

′ = (j′1, . . . , j
′
k−1) and i = (i2, . . . , id−1), j = (j2, . . . , jd−1)

follows this procedure:

1. checks that S(u, i′) ≥ v and S(u, i∗1, i) ≤ v, and outputs 0 otherwise;
2. outputs 1 if u < v or u = v = 1;
3. checks that S(v, j′) ≥ v and S(v, j∗1 , j) ≤ v, and outputs 1 if it case and 0 otherwise.

From the paragraph above, we then see that the sentence

∀(i′1, i2, j′1, j2)∃(i′2, i3, j′2, j3) · · · ∃(i′k−2, id−1, j
′
k−2, jd−1)∀(i′d−1, j

′
d−1)Vo(S, i

′, i, j′, j)

is true if and only if S admits o as an output.

7.3 RES(Cd) Characterizes PLSd+2

Now we are ready to state a general characterization theorem.

Theorem 7.10. For any FFF ∈ TFΣd+2 and d, there is a complexity-c PLSdtd+2-formulation of FFF iff there is a
complexity Θ(c) Σd+2-Res(Cd) proof of F .

Proof. Proposition 7.14 and Lemma 7.6 gives the inclusion PLSdtd+2 ⊆ Σd+1-Res(Cd)
dt. Proposition 7.11 gives us

the converse Σd+2-Res(Cd)
dt ⊆ PLSdtd+2.

We start by proving PLSdtd+2

Proposition 7.11. Let F be an unsatisfiabe Π(k+1).5 formula on n variables. Suppose F admits a Σd+2-Res(Cd)-
refutation of size s and width w, then there are functions m, t1, . . . , td, td+1 : N → N such that m · t1 · · · · td+1 = s
such that FFF admits a (ITERd+2,m,t)-formulation of size s and depth w.

Before going about the proof of this result, let us talk a little bit about Πd.5 and Σd.5 formulae via the following
lemma.

Lemma 7.12. Let F ∈ Σd.5 on n variables and let us write

F =
∨

i1∈[r1]

∧
i2∈[r2]

· · · ⃝
id∈[rk]

ci

with the notation i = (i1, . . . , id). Let us write r = [r1] × · · · × [rk] and let ci be the corresponding C0-subformula.
Then for α ∈ {0, 1}n, we have that the evaluation of F at α is equal to

F (α) = MAX(r){ci(α)}.

With the same notation, if F ∈ Πd.5, then we have

F (α) = MIN(r){ci(α)}.

Proof. For k = 0, 1, this is clear. This is realized by induction for k ≥ 2, since, writing F =
∨

i1∈[r1]

∧
i2∈[r2]

Fi1,i2

with Fi1,i2 ∈ Σd−2 for each (i1, i2) ∈ [r1] × [r2]. Then F (α) = maxi1∈[r1] mini2∈[r2]{Fi1,i2(α)}. Since Fi1,i2 ∈
Σd−2, we get that Fi1,i2(α) = M([r3]× · · · × [rk]){ci1,...,id(α)}. Thus

F (α) = max
i1∈[r1]

min
i2∈[r2]

{MAX([r3]× · · · × [rk]){ci1,...,id(α)}} = MAX([r1]× · · · × [rk]){ci(α)}.

The proof of the second assertion is practically the same.
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We are now ready to prove the proposition.

Proof. Let Π = (π1, . . . , πm) be a proof of size s. We start by reverting the order of the proof such that π1 = ⊥.
Also, if πu = A∨B was derived from πv = A∨ C̄ and πw = B ∨C by an application of the cut rule with C ∈ Πd.5,
let us assume that we have that u < v < w up to reordering the proof. Also, let us replace πu = A ∨ B with
πu = A ∨ B ∨ C. Up to padding the subformulae with ⊤ or ⊥ depending on the main connectives, we may assume
that each πu appearing in the proof is of the form

πu =
∨

i1∈[t1]

∧
i2∈[t2]

· · · ⃝
id+1∈[td+1]

cu,i

with the notation i = (i1, . . . , id+1) and cu,i ∈ C0. For any assignment α ∈ {0, 1}n, let us define the following
successor function Sα.

1. Sα(u, i) = u if πu is an axiom;
2. Sα(u, i) = cu,i(α) · u+ (1− cu,i(α)) · v if πu was derived from πv by the weakening rule;
3. Sα(u, i) = cu,i(α) · u+ (1− cu,i(α)) ·w if πu = A ∨B ∨C was derived from πv = A ∨C and πw = B ∨ C̄

with C ∈ Πd.5 and cu,i is a C0-subformula of A or B;
4. Sα(u, i) = cu,i(α) · v + (1− cu,i(α)) ·w if πu = A ∨B ∨C was derived from πv = A ∨ C̄ and πw = B ∨C

with C ∈ Πd.5 and cu,i is a C0-subformula of C;

where the multiplications are symbolic. The output function go for any o = (u, i, v, j) is given by the constant function
returning v. The size of the reduction is indeed the size of the proof and since each computation amounts to evaluating
a term or clause of width w at most the depth is also the width of the proof.
We now need to prove that the reduction is correct. Consider the following claim.
Claim 7.13. The function S̃α has the following properties:

1. S̃α(u) ≥ u;
2. if u ∈ [m] is such that πu is not an axiom, then S̃α(u) = u if and only if πu(α) = 1 (where here we go back to

πu = A ∨B rather than πu = A ∨B ∨ C);
3. for u ∈ [m], if S̃α(u) = v with v ̸= u, then πv(α) = 0

Assuming the claim to be right, we see that it concludes the proof. Indeed, the claim implies that the only proper
sinks in the graph described by S̃ are falsified axioms. Then the output function go simply outputs the sink, i.e. a
falsified axiom.

We now only need to prove the claim.

Proof of Claim 7.13. Observe this about S̃α(u).

1. if πu is an axiom, then S̃α(u) = u;
2. if πu was derived from πv using the weakening rule, then

S̃α(u) = MIN(k + 1, i){cu,i(α) · u+ (1− tu,i(α)) · v}
= MIN(k + 1, i){cu,i(α)(u− v) + v}
= MAX(k + 1, i){cu,i(α)}(u− v) + v

= πu(α) · u+ (1− πu(α)) · v

with MIN changing to MAX because the quantity u−v is negative and the last equality is given by Lemma 7.12.
3. if πu = A∨B ∨C was derived from πv = A∨ C̄ and πw = B ∨C, writing tA∨B = [t1 − 1]× [t2]× · · · [td+1]

and tC = [t2]× · · · × [td+1]

S̃α(u) = min[MIN(tA∨B){cu,i(α) · u+ (1− cu,i(α)) · w},MAX(tC){cu,t1,i(α) · v + (1− cu,t1,i(α)) · w]
= min[MAX(tA∨B){cu,i(α)} · (u− w) + w},MIN(tC){cu,t1,i(α)} · (v − w) + w]

= min[(A ∨B)(α) · u+ (1− (A ∨B)(α)) · w,C(α) · v + (1− C(α)) · w]
= (A ∨B)(α) · u+ (1− (A ∨B)(α))(C(α) · v + (1− C(α)) · w)
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with MIN switching to MAX (resp. MAX switching to MIN) because (u − w) (resp. (v − w)) are negative
quantities and the third equality is given by Lemma 7.12.

The three properties follow from these equalities.

As stated above Σd+2-Res(Cd)
dt is closed under efficient decision tree reductions. In our situation to prove our

theorem it is sufficient to prove the following.

Proposition 7.14. ITERd+2 admits a Σd+2-Res(Cd) proof of size O(nk+6).

Before moving to the proof, let us have a word about the encoding of the formula. For each node u ∈ [n] and vector
of indices i ∈ [n]k+1, as in the case of ITER2, we have log(n) many variable Su,i,α for each α = 0, . . . , log(n) − 1.
The idea is to encode the value of S(u, i) as the conjunction of these variables or their negation. For example, if v has
binary expansion v =

∑log(n)−1
α=0 bα2

α, then the formula [[Su,i = v]] :=
∧log(n)−1

α=0 Sbα
u,i,α with the notation that x1 = x

and x0 = x̄ for any variable x. Also, as in the case of ITER2, we write [[Su,i ̸= j]] for the negation of [[Su,i = j]] where
the negation has been propagated, i.e. the conjunction becomes a disjunction and all literals are negated.
We now describe some formulae that will come in handy in the proof below. Some of them depends on the parity of k
so we may need to give two different definitions. To ease the notation, we simply state that all variables take value in
[n] if not stated explicitly otherwise. We also adopt the symbolic notation i′ = (i′1, . . . , i

′
k+1), and i′′ = (i′′2 , . . . , i

′′
k+1)

and analogously by replacing i with j. The formulae are:

1. For two node u and v, and index i∗1, [[i∗1 ̸= argmin∨S̃u ̸= v]] is the formula given by∨
i′1

∧
i′2

· · ·
∧
i′k+1

∧
v≤v′

[[Su,i′ ̸= v′]]

 ∨

∨
i′′2

∧
i′′3

· · ·
∨
i′′d+1

∨
v<v′′

[[Su,i∗1 ,i
′′ = v′′]]

 if k is odd;

∨
i′1

∧
i′2

· · ·
∨
i′d+1

∨
v′<v

[[Su,i′ = v′]]

 ∨

∨
i′′2

∧
i′′3

· · ·
∧
i′′d+1

∧
v′′≥v

[[Su,i∗1 ,i
′′ ̸= v′′]]

 if k is even.

It encodes the fact that S̃(u) is not v by arguing that either i∗1 is not a certificate of computation for u (left hand
side of the disjunction) or that the minimum is greater than v (right hand side of the disjunction). These are
Σ(k+1).5-formulae that will be used for the axioms of ITERd+2.

2. For a two nodes u and v and an index i1, [[Su,i1 ≤ v]], with the convention that i = (i1, . . . , id+1) is the formula
given by ∧

i2

∨
i3

· · ·
∧
id+1

∧
v<v′

[[Su,i ̸= v′]] if k is odd;

∧
i2

∨
i3

· · ·
∨
id+1

∨
v′≤v

[[Su,i = v′]] if k is even.

It encodes the fact that maxi2 mini3 · · · ◦id+1
S(u, i) is less or equal to v. These are Πd.5-formulae that will be

used as cuts in the proof (or queries in strategy for the Prover) .

We are now finally ready to describe the Σd+2-Res(Cd)-refutation of the ITERd+2-formula.

Proof. First, let us describe the axioms of the formula:

1. 1 is a source: [[i∗ ̸= argmin∨S̃1 ̸= 1]] for each i∗1;
2. No backwards pointer: [[i∗ ̸= argmin∨S̃u ̸= v]] for each pair of nodes v < u and index i∗1;
3. No proper sinks: For each pair of nodes u, v ∈ [n] with u < v and indices i∗1, j

∗
1

[[i∗1 ̸= argmin∨S̃u ̸= v]] ∨ [[j∗1 ̸= argmin∨S̃v ̸= v]]
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Instead of giving an explicit refutation, we give a strategy for the Prover fo the formula formed from the axioms above.
The Delayer claims they have (the binary encoding of) a function S : [n]k+1 → [n] violating none of the axioms
above. This is indeed impossible by the totality of the problem and the goal of the Prover is then to query formulae
about the behavior of the function until they notice that its behavior being incompatible with one of the axioms. The
idea of the strategy is as follows The Prover navigates on the graph described by the function S̃. Starting at the node 1,
they reach a goal if and only if they have confirmation from the Delayer that they witness a solution. In other words,
when they have confirmation that:

− 1 points to itself;
− u points to a lesser node;
− S̃(u) = v and S̃(v) = v with u < v.

To achieve this, the Prover, starting at node u = 1, tries to guess S̃(u). They are not able to ask this directly to the
Delayer since this would require the Prover to query a formula of higher alternating depth. Finding the value of S̃(u)
is done through the auction procedure described below. Once they get the value S̃(u) = v, if v < u or if u = v = 1,
the Prover stops since it witnesses a violation of the formula. Otherwise, if u < v, the Prover keeps in memory the
fact - here we mean the set of equalities implying said fact - that S̃(u) = v, forgets about anything else and moves on
with searching for the value of S̃(v) via the auction procedure. Then if they find that S̃(v) ≤ v, they as they witness
a solution in this case as well. Otherwise, if S̃(v) = w with v < w they forget that S̃(u) = v and goes on with
parcouring the rest of the graph until they witnesses a solution.

In order to set out the strategy, we first need to describe the so called auction procedure. Given the node u ∈ [n], the
goal of the procedure is to determine the value v such that S̃(u) = v is the only value compatible with the answers
given by the Delayer. The procedure happens in rounds, starting with round v = n − 1 down to round v = 1. The
Prover queries the formula [[Su,i1 ≤ v]] starting from i1 = 1 up to i1 = n and reacts the following way to answers of
the Delayer:

1. At round v = n−1: The memory of the Prover is either empty - that is in the case u = 1 - or contains equalities
implying S̃(t) = u for t < u. We ignore this part of the memory as it does not affect what the Prover does in
the procedure.

(a) as soon as the Delayer answers 1 for some i∗1 ∈ [n], the Delayer forgets all the previous equalities of the
form [[Su,1 ≤ n− 1]] = 0, . . . , [[Su,i∗1−1 ≤ n− 1]] = 0, keeps [[Su,i∗1

≤ n− 1]] = 1 and moves on to round
v = n− 2;

(b) if the Delayer has answered 0 for all i1, then the Prover knows that S̃(u) = n. They then stop the procedure
keeping their memory as is.

2. At round 1 ≤ v < n − 1: The memory of the Prover is only comprised of [[Su,i∗∗1
≤ v + 1]] = 1 for some i∗∗1 .

With this memory configuration the Prover knows that S̃(u) ≤ v + 1. At this stage, the Prover now wants to
ensure whether S̃(u) = v + 1 or S̃(u) ≤ v and goes about this way to distinguish between the two cases by
querying the formulae described above.

(a) if at some point the Delayer answers [[Su,i∗1
≤ v]] = 1, then the Prover forgets the equalities [[Su,1 ≤ v]] =

0, . . . , [[Su,i1−1 ≤ v]] = 0 as well as [[Su,i∗∗1
≤ v + 1]] = 1, only keeping [[Su,i∗1

≤ v]] = 1 and moves on
to round v − 1 if v > 1 or stops if v = 1 since this implies S̃(u) = 1;

(b) if the Delayer has answered 0 for all i1, then the Prover memory of the prover should contain the equalities
[[Su,i∗∗1

≤ v + 1]] = 1 for some i∗∗1 and [[Su,i1 ≤ v]] = 0 for each i1. This clearly encodes the fact that
S̃(u) = v and the Prover stops the auction procedure keeping its memory as is.

We are now ready to describe the strategy in details. Starting with u = 1, it goes as follows. The Prover, via the
auction procedure described above, finds the node v such that S̃(u) = v and then proceeds by:

− if u = v = 1, the Prover keeps their memory as is and stops;
− if v < u, the Prover forgets everything in their memory but the equalities corresponding to S̃(u) = v and stops;
− if v = u ̸= 1, then the Prover, prior to computing S̃(u), already had equalities corresponding to the fact that

S̃(t) = u for some t < u. They then stop;
− if u < v, then if the Prover had in memory equalities corresponding to S̃(t) = u for some t < u - which would

be the case when u ̸= 1 - they forget those equalities and repeat the process replacing u by v.
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The phase is certain to terminate since u increments by 1 after every step and by the time u = n, either the Delayer
answers with S̃(n) = n or S̃(n) < n. Before moving on to the description of the certificate phase, let us count the
number of states the Prover can be in. Note that for any pair od nodes u < v, the knowledge [[S̃(u) = v]] corresponds
to any of the following sets of equalities {[[Su,i∗1

≤ v + 1]] = 1} ∪ {[[Su, i1 ≤ v]] = 0}i1∈[n] for any i∗1 ∈ [n]. This
represents n possibilities for each such pair of nodes.

− During the auction procedure to compute S̃(1):

− {[[S1,1 ≤ n − 1]] = 0, . . . , [[S1,i1−1 ≤ n − 1]] = 0, [[S1,i1 ≤ n − 1]] = b} for some i1 = 0, . . . , n and
b ∈ {0, 1} which amounts to 2(n+ 1) many possible states;

− {[[S1,i∗1
≤ v + 1]] = 1, [[S1,1 ≤ v]] = 0, . . . , [[S1,i1−1 ≤ v]] = 0, [[S1,i1 ≤ v]] = b} for some v ∈ [n − 1],

i∗1 ∈ [n], i1 = 0, . . . n and b ∈ {0, 1} which amounts to 2n(n2 − 1) many possible states;
− {[[S1,i∗1

≤ 1]] = 1} for some i∗1 ∈ [n] which amounts n possible states.

− with the knowledge [[S̃(u) = v]], during the auction procedure to compute S̃(v):

− {[[S1,1 ≤ n − 1]] = 0, . . . , [[S1,i1−1 ≤ n − 1]] = 0, [[S1,i1 ≤ n − 1]] = b} for some i1 = 0, . . . , n.
This amounts to 2n(n+ 1) (accounting for the knowledge) possible states for any pair, hence 2n3(n+ 1)
possible states accounting for all possible pairs.

− {[[S1,i∗1
≤ w + 1]] = 1, [[S1,1 ≤ w]] = 0, . . . , [[S1,i1−1 ≤ w]] = 0, [[S1,i1 ≤ w]] = b} for some w ∈ [n− 1],

i∗1 ∈ [n], i1 = 0, . . . n and b ∈ {0, 1} which amounts to 2n(n2 − 1) many possible states for any pair
accounting for the knowledge, hence 2n3(n2 − 1) many possible states accounting for all possible pairs.

− {[[Sv,i∗1
≤ 1]]} for some i∗1 ∈ [n] which amounts to n2 possible states for any pair accounting for the

knowledge, hence n4 many possible states accounting for all possible pairs.

So we see that the strategy has O(n5) many possible states for the sink phase. Since each memory state contains at
most 2(n + 1) equalities of the form [[Su,i1 ≤ v]] = b for some nodes u, v, index i1 and bit b, and the size of such
formulae is O(nk), we get that the size of the strategy is O(nk+6).
We now only need to prove that the strategy is valid, i.e. when the Prover stops, at least one axiom of the formula is
incompatible with their memory. Let us then consider the different cases:

− u = v = 1: then the memory of the Prover contains [[S1,i∗1
≤ 1]] = 1 for some i∗1. This is incompatible with the

axiom [[i∗1 ̸= argmin∨S̃1 ̸= 1]];
− v < u: there are two possibilities for the memory of the Prover

− if v = 1: then the memory contains an equality [[Su,i∗1
≤ 1]] = 1 for some i∗1 which contradicts the axiom

[[i∗1 ̸= argmin∨S̃(u) ̸= 1]];
− if v ̸= 1: then the memory contains [[Su,i1 ≤ v − 1]] = 0 for all i1 and [[Su,i∗1

≤ v]] = 1 for some i∗1. This
contradicts the axiom [[i∗1 ̸= argmin∨S̃u ̸= v]];

− S̃(u) = S̃(v) = v ̸= 1 : there are also two possibilities for such a case for the memory of the Prover.

− if v ̸= n: then the memory contains the equalities [[Su,i∗1
≤ v]] = 1 and [[Sv,j∗1

≤ v]] for some i∗1, j
∗
1 along

with all the equalities [[Su,i1 ≤ v − 1]] = 0 and [[Sv,j1 ≤ v − 1]] = 0 for all i1, j1. This contradicts the
axiom

[[i∗1 ̸= argmin∨S̃(u) ̸= v]] ∨ [[j∗1 ̸= argmin∨S̃(v) ̸= v]].

− if v = n : then the memory contains the equalities [[Su,i1 ≤ n − 1]] = 0 and [[Sv,j1 ≤ n − 1]] = 0 for all
i1, j1. This contradicts the axioms

[[i∗1 ̸= argmin∨S̃u ̸= n]] ∨ [[j∗1 ̸= argmin∨S̃n ̸= n]]

for all possible values of i∗1 and j∗1 . Indeed for any node u, if S̃(u) = n then i∗1 will always be an argument
of the minimum whatever its value.

We can then conclude that we have valid strategy for the Prover of size O(nk+6).
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