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Abstract9

We study the problem of testing whether a function f : Rn → R is linear (i.e., both additive and homogeneous)10

in the distribution-free property testing model, where the distance between functions is measured with respect to11

an unknown probability distribution over Rn. We show that, given query access to f , sampling access to the12

unknown distribution as well as the standard Gaussian, and ε > 0, we can distinguish additive functions from13

functions that are ε-far from additive functions with O
(

1
ε

log 1
ε

)
queries, independent of n. Furthermore, under14

the assumption that f is a continuous function, the additivity tester can be extended to a distribution-free tester15

for linearity using the same number of queries. On the other hand, we show that if we are only allowed to get16

values of f on sampled points, then any distribution-free tester requires Ω(n) samples, even if the underlying17

distribution is the standard Gaussian.18
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1 Introduction25

Property testing of Boolean functions studies the problem where, given query access to a function26

f : {0, 1}n → {0, 1} and a parameter ε > 0, the goal is to distinguish with high probability the case27

that f satisfies some predetermined property P from the case that f is ε-far from satisfying P . That28

is, whether we need to change the values of f(x) for at least an ε-fraction of x ∈ {0, 1}n before f29

satisfies P . Since the seminal work by Blum, Luby and Rubinfeld [11], property testing has become30

a thriving field, and many properties of Boolean functions have been shown to be testable with a31

number of queries independent of n, including linear functions [11], low-degree polynomials [8, 26]32

and k-juntas [9, 10, 18]. For an introductory survey, we recommend [21].33

In contrast to Boolean functions, only a few properties of functions on a Euclidean space, that is,34

Rn, have been studied. For a measurable function f : Rn → R, ε > 0, and a property P , we say that35

f is ε-far from P if36

Pr
x∼N (0,I)

[f(x) 6= g(x)] > ε,37

for any measurable function g : Rn → R satisfying P , where N (0, I) is the standard Gaussian. We38

say that an algorithm is a tester for a property P if, given query access to a measurable function39
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22:2 Distribution-Free Testing of Linear Functions on Rn

f : Rn → R, sampling access to the standard Gaussian, and ε > 0, it accepts with probability40

at least 2/3 when f satisfies P , and rejects with probability at least 2/3 when f is ε-far from P .41

Testability of a variety of properties has been considered, including surface area of a set [29, 34], half42

spaces [31–33], linear separators [3], high-dimensional convexity [13], and linear k-junta [15].43

Although the standard Gaussian is natural, it rarely appears in practice. In fact, we typically have44

little, if any, information about the underlying distribution. This raises the question of whether we can45

test when the underlying distribution of the data is unknown. For a measurable function f : Rn → R,46

ε > 0, a distribution D over Rn, and a property P , we say that f is ε-far from P with respect to D if47

Pr
x∼D

[f(x) 6= g(x)] > ε,48

for any measurable function g : Rn → R satisfying P . We say that an algorithm is a distribution-free49

tester for a property P if, given query access to a measurable function f : Rn → R, sampling access50

to an unknown distribution D over Rn as well as the standard Gaussian, and ε > 0, it accepts with51

probability at least 2/3 when f satisfies P , and rejects with probability at least 2/3 when f is ε-far52

from P with respect to D. Distribution-free property testing is an attractive model because it makes53

minimal assumptions on the environment, and models the scenario most often occurring in practice.54

We say that a function f : Rn → R is additive if f(x) + f(y) = f(x+ y) for any x, y ∈ Rn. In55

this work, we consider distribution-free testing of additivity of functions f : Rn → R and show the56

following.57

I Theorem 1. There exists a one-sided error distribution-free tester for additivity of f : Rn → R58

with O
( 1
ε log 1

ε

)
queries.59

Previously no algorithm was known even when the underlying distributionD is the standard Gaussian.60

As there is a trivial lower bound of Ω
( 1
ε

)
, the query complexity of our tester is almost tight.61

We say that a function f : Rn → R is homogeneous if cf(x) = f(cx) for any x ∈ Rn and62

c ∈ R. A function that is both additive and homogeneous is said to be linear. Although additivity and63

linearity are equivalent for functions over finite groups, there are (pathological) functions f : Rn → R64

that are additive but not homogeneous. Hence, the testability of additivity does not immediately imply65

the testability of linearity. However, when the input function is guaranteed to be continuous, we can66

also test linearity.67

I Theorem 2. Suppose that the input function is guaranteed to be continuous. Then, there exists a68

one-sided error distribution-free tester for linearity with O
( 1
ε log 1

ε

)
queries.69

It is also natural to assume that we can get values of the input function only on sampled points.70

Specifically, we say that a (distribution-free) tester is sample-based if it accesses the input function71

f : Rn → R through points sampled from the distributions D and N (0, I). We show a strong lower72

bound for sample-based testers.73

I Theorem 3. Any sample-based tester for the linearity of functions f : Rn → R requires Ω(n)74

samples, even when D = N (0, I).75

This lower bound is tight; it is not difficult to see that O(n) samples suffices to test linearity. Indeed76

O(n) samples will, with high probability, contain n linearly independent vectors. The evaluations77

of f on these vectors uniquely determines the linear function. This theorem shows a sharp contrast78

between query-based and sample-based testers for properties of functions on a Euclidean space. We79

note that we can show the same lower bound for testing additivity with an almost identical proof.80
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1.1 Related Work81

The question of property testing first appeared (implicitly) in the work of Blum, Luby and Ru-82

binfeld [11]. Among the problems that they studied was linearity testing. Their algorithm, now83

famously known as the BLR test, has played a key role in the design of probabilistically checkable84

proofs [2, 5, 25] and this connection was some of the early motivation for the field of property testing.85

Since the original paper, the parameters of the BLR test have been extensively refined. Much of this86

work focused on reducing the amount of randomness, due to this being a key parameter in probabilist-87

ically checkable proofs, as well as analyzing the rejection probability (see [36] for a survey). Another88

line of works considered the testing linearity over more general domains. The works of [7, 11, 35]89

showed that the BLR test can be used to test the linearity of any function with f : G→ H for finite90

groups G and H with O(1/ε) queries. Following this, a body of work [1, 17, 19, 27] constructed91

testers for linearity of functions f : S → R, where S is a finite subset of rational numbers, and the92

distance is measured with respect to the uniform distribution over S. See [28] for a survey. These93

results were phrased in terms of approximate self-testing and correcting programs. In this setting94

the queries to f return a finite approximation of f(x). Although these results are arguably the most95

related to our work, our proof differs significantly from theirs and instead takes inspiration from the96

original BLR test.97

Distribution-free testing (for graph properties) was first defined by Goldreich et al. [22], though98

the first distribution-free testers for non-trivial properties appeared much later in the work of Halevy99

and Kushilevitz [23]. Subsequently, distribution-free testers have been considered for a variety100

of Boolean functions including low-degree polynomials, dictators, and monotone functions [23],101

k-juntas [6,12,23,30], conjunctions, decision lists, and linear threshold functions [20], monotone and102

non-monotone monomials [16], and monotone conjunctions [14, 20]. However, to our knowledge103

the only (partial) distribution-free tester for a class of functions on the Euclidean space is due to104

Harms [24] who gave an efficient tester for half spaces, that is, functions f : Rn → {0, 1} of the form105

f(x) = sgn(w>x− θ) for some w ∈ Rn and θ ∈ R, over any rotationally invariant distribution.106

1.2 Proof Technique107

The construction of our tester for additivity will be done in two steps. First, we construct a constant-108

query tester for additivity over the standard Gaussian distribution N (0, I). Our tester will accept109

linear functions with probability 1, and so the majority of the work is in showing that if the test110

accepts the given function f : Rn → R with high probability, then f is close to an additive function.111

To do so, we show that if f passes a series of tests then there exists a related function g : Rn → R,112

defined from f , which is additive. Furthermore, if f is linear then f = g. The definition of g will113

allow us to obtain query access to it with high probability, and so we can simply estimate the distance114

between f and g. At a high-level, this is somewhat similar to the BLR test, however operating over115

N (0, I) rather than the uniform distribution presents its own set of non-trivial challenges. We discuss116

these, as well as the definition of g at the start of Section 3.1.117

It is fairly straightforward to generalize this tester for additivity to a distribution-free tester. To do118

so, we run the additivity tester for the standard Gaussian, except that testing the distance between f119

and g will now be done using samples from the unknown D. This crucially relies on our ability to120

draw samples from the standard Gaussian.121

Any additive function f : Rn → R is linear over the rationals, meaning that f(qx) = qf(x)122

for every q ∈ Q. Therefore, in order to test linearity it remains to test whether this holds also for123

irrationals. Assuming that f is continuous we are able to modify our tester to show that this implies124

that the additive function g is continuous as well. We then leverage the fact that any continuous125

additive function is linear in order to obtain our linearity tester.126

ITCS 2020
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To prove Theorem 3, the lower bound on sample-based testers for linearity, we construct two127

distributions, one supported on linear functions, and the other supported on functions which are128

far from linear. Consider drawing a function f from one of these two distributions with equal129

probability. By Yao’s minimax principle it suffices to show that any deterministic algorithm which130

receives n samples from N (0, I), together with their evaluations on f , is unable to distinguish, with131

high probability, which of the two distribution f came from. To construct the distribution on linear132

functions, we sample w ∼ N (0, I) and return f(x) := w>x. Our distribution on functions which are133

far from linear is designed so that any function f from this distribution satisfies f(x+y) 6= f(x)+f(y)134

with probability 1 over x, y ∼ N (0, I). To do so, for every x ∈ Rn we sample εx from a one-135

dimensional Gaussian and return f(x) := w>x+ εx. It is not difficult to show that such functions136

are far from linear.137

1.3 Organization138

The remainder of the paper is organized as follows. In Section 2 we review several useful facts about139

probability distributions. In Section 3 we develop our distribution-free tester for additivity by first140

constructing a tester for additivity over the standard Gaussian in Section 3.1. We generalize this tester141

to the distribution-free setting in Section 3.2 and to a tester for linearity in Section 4. Finally, we end142

with our lower bound on the sampling model in Section 5.143

2 Preliminaries144

Let D and D′ be probability distributions on the same domain Ω. Then, the total variation distance145

between them, denoted by dTV(D,D′), is defined as146

dTV(D,D′) := 1
2

∫
Ω
|D(x)−D′(x)|dx.147

The Kullback-Leibler divergence (or KL-divergence) of D′ from D, denoted dKL(D‖D′), is defined148

as149

dKL(D‖D′) =
∫

Ω
D(x) log

(
D(x)
D′(x)

)
dx.150

We will use the KL-divergence to upper bound the total variation distance, using the following151

inequality.152

I Theorem 4 (Pinsker’s Inequality). Let D and D′ be probability distributions on the same153

domain Ω. Then,154

dTV(D,D′) ≤
√

1
2 dKL(D‖D′).155

The following allows us to bound the KL-divergence between two Gaussian distributions.156

I Lemma 5. Let D = N (µ1,Σ1) and D′ = N (µ2,Σ2) be multivariate Gaussian distributions157

with µ1, µ2 ∈ Rn and invertible Σ1,Σ2 ∈ Rn×n. Then,158

dKL(D‖D′) = 1
2

(
log
(

det Σ2

det Σ1

)
+ tr

(
(Σ2)−1Σ1

)
− n+ (µ2 − µ1)>Σ−1

2 (µ2 − µ1)
)
.159

We record a useful lemma about total variation distance of Gaussians with shared covariance160

matrices.161
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I Lemma 6. Consider two Gaussian distributions N (µ1,Σ),N (µ2,Σ) with shared invertible162

covariance matrices Σ ∈ Rn×n. Then dTV(N (µ1,Σ),N (µ2,Σ)) ≤ φ holds if ‖µ1 − µ2‖2 ≤163

2φ/
√
‖Σ−1‖2.164

Proof. Denote µ := µ1 − µ2. By Lemma 5, dTV(N (µ1,Σ),N (µ2,Σ)) =
√

1
4µ
>Σ−1µ. Now,165

because Σ is PSD, µ>Σ−1µ ≤ ‖µ‖22‖Σ−1‖2, where ‖ · ‖2 is the spectral matrix norm. Therefore, we166

have dTV(N (µ1,Σ),N (µ2,Σ)) ≤ 1
2‖µ‖2

√
‖Σ−1‖2 ≤ φ.167

J168

3 Testing Additivity169

In this section, we develop our distribution-free tester for additivity. For convenience, we first describe170

a simpler tester for additivity over the standard Gaussian distribution N (0, I) in Section 3.1. Then,171

in Section 3.2, we describe how to generalize this algorithm to test additivity over an unknown172

distribution.173

3.1 Tester for the Standard Gaussian174

Our goal in this section is to design a constant-query tester for the additivity of a measurable function175

f : Rn → R over the standard Gaussian.176

I Theorem 7. There exists a one-sided error O
( 1
ε log 1

ε

)
-query tester for additivity over the177

standard Gaussian.178

At a high-level, our tester consists of two steps. First, we test whether f satisfies additivity over a179

set of samples drawn from the distribution. If f passes this test, then we conclude that there must180

be an additive function g : Rn → R, which is a self-corrected version of f . Second, by testing the181

value of f on a correlated set of points, we are able to get query access to g with high probability, and182

therefore we can simply estimate the distance between f and g. Our tester relies on the fact that it has183

one-sided error: if f is additive then our test passes with probability 1. Otherwise, if f is non-additive184

and the second step passes with high probability, then f and g must be close.185

The first step is inspired by the BLR test. Indeed, the evaluation of the function g at a point186

p is defined as the (weighted) majority value of f(p − x) + f(x) over all x ∼ N (0, I) (where,187

f(p− x) + f(x) is weighted according to the probability of drawing x ∼ N (0, I)). However, there188

are some significant challenges in generalizing the BLR test to the standard Gaussian, the most189

obvious of which is that unlike the uniform distribution, every point in the support of the distribution190

does not have equal probability. In particular, p− x is not distributed as x ∼ N (0, I) for fixed p 6= 0.191

In order to overcome this, we exploit the fact that for additive functions f , we have f(x) = qf(x/q)192

for every rational q. This allows us to restrict attention to a small ball B(0, 1/r) of radius 1/r centered193

at the origin. Then, for p ∈ B(0, 1/r), p− x is approximately distributed as x for small enough 1/r.194

Thus, we get around the issue of unevenly weighted points by defining g within B(0, 1/r), and then195

extrapolating to define g over Rn.196

Concretely, we will define g as follows. First, let r be a sufficiently large integer (r = 50 suffices).197

For each point p ∈ Rn define198

kp :=
{

1 if ‖p‖2 ≤ 1/r,
dr · ‖p‖2e if ‖p‖2 > 1/r.

199

Now, define g : Rn → R as200

g(p) := kp · maj
N (0,I)

[
f

(
p

kp
− x
)

+ f (x)
]
,201

ITCS 2020
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Algorithm 1: Standard Gaussian Additivity Tester
Given :Query access to f : Rn → R, sampling access to the distribution N (0, I);

1 Reject if TESTADDITIVITY(f ) returns Reject;
2 for N1 := O(1/ε) times do
3 Sample p ∼ N (0, I);
4 Reject if f(p) 6= QUERY-g(p, f ) or if QUERY-g(p, f ) returns Reject.

5 Accept.

Algorithm 2: Subroutines

1 Procedure TESTADDITIVITY(f )
Given :Query access to f : Rn → R, sampling access to the distribution N (0, I);

2 for N2 := O(1) times do
3 Sample x, y, z ∼ N (0, I);
4 Reject if f(−x) 6= −f(x);
5 Reject if f(x− y) 6= f(x)− f(y);
6 Reject if f

(
x−y

2
)
6= f

(
x−z

2
)

+ f
(
z−y

2
)
;

7 Accept.

8 Procedure QUERY-g(p, f )
Given :p ∈ Rn, query access to f : Rn → R, sampling access to N (0, I);

9 N ′2 := O(log 1
ε );

10 Sample x1, . . . , xN ′
2
∼ N (0, I);

11 Reject if there exists i, j ∈ [N ′2] such that
f(p/kp − xi) + f(xi) 6= f(p/kp − xj) + f(xj);

12 return kp (f(p/kp − x1) + f(x1)).

where majN (0,I) is the weighted majority function where a value f(p/kp − x) + f(x) is weighted202

according to its probability mass under x ∼ N (0, I). Observe that either p ∈ B(0, 1/r), or g(p) first203

maps p to a point p/kp in B(0, 1/r). The value of g is the most likely value (according to N (0, I))204

of f(p/kp − x) + f(x). If f is close to additive, then taking this majority should allow us to correct205

for the errors in f .206

An equivalent definition of g which will be useful is the following. For p ∈ Rn let Pp be207

the Lebesgue measurable function such that
∫
A
Pp(x)dx gives the probability (over N (0, I)) that208

f(p/kp − x) + f(x) takes value in A. Then g is defined as g(p) := argmaxx Pp(x) if Pp(x) ≥ 1/2.209

Our algorithm is given in Algorithm 1, which uses subroutines given in Algorithm 2. The QUERY-210

g subroutine allows us to obtain query access to g with high probability, while the TESTADDITIVITY211

subroutine tests the conditions that we require in order to prove that g is additive.212

I Lemma 8. If TESTADDITIVITY(f ) accepts with probability at least 1/10, then g is a well-defined,213

additive function, and furthermore, Prx∼N (0,I)[g(p) 6= kp(f(p/kp − x) + f(x))] < 1/2.214

We first prove Theorem 7 assuming that Lemma 8 holds.215

Proof of Theorem 7. First, observe that if f is an additive function then Algorithm 1 always216

accepts. Indeed, it is immediate that TESTADDITIVITY(f ) always accepts. To see that f also passes217

the remaining tests, observe that by additivity, kp (f(p/kp − x) + f(x)) = kpf(p/kp) = f(p),218
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where the final inequality holds because kp ∈ Z and by homogeneity over the rationals f(qx) = qf(x)219

for every q ∈ Q.220

We now show that if f is ε-far from all additive functions then Algorithm 1 rejects with probability221

at least 2/3. If TESTADDITIVITY(f ) accepts with probability at most 1/10, we can reject f with222

probability at least 1 − 1/10 > 2/3. Hence, we assume that TESTADDITIVITY(f ) accepts with223

probability at least 1/10. Then by Lemma 8, the function g is additive and hence f is ε-far from g.224

Now, we want to bound the probability that Step 2 of Algorithm 1 passes.225

First, we bound the probability that QUERY-g(p, f ) fails to recover the value of g(p). That is,226

we bound the probability that f(p/kp − xi) + f(xi) = f(p/kp − xj) + f(xj) for all i, j ∈ [N ′2],227

but g(p) 6= kp (f(p/kp − xi) + f(xi)). By Lemma 8, the probability that we draw N ′2 points which228

satisfy this is at most 2−N ′
2 ≤ ε/2 by choosing the hidden constant in N ′2 to be large enough.229

Therefore, the probability that we correctly recover g(p) is at least 1− ε/2.230

Now that we have established that we can obtain query access to g with high probability, it231

remains to show that we can test whether f and g are close. Indeed, the probability that Step 2 of232

Algorithm 1 fails to reject is at most233 (
Pr

p∼N (0,I)
[f(p) = g(p) ∨ QUERY-g(p, f ) fails to correctly recover g(p)]

)N1

234

≤
(

1− Pr
p∼N (0,I)

[f(p) 6= g(p)] + Pr
p∼N (0,I)

[QUERY-g(p, f ) fails to correctly recover g(p)]
)N1

235

<
(

1− ε

2

)N1
<

1
10 ,236

237

by choosing the hidden constant in N1 to be large enough. Therefore, Algorithm 1 rejects with238

probability at least 1− 1/10 > 2/3. J239

It remains to prove Lemma 8 showing that if Algorithm 1 succeeds, then g is an additive function240

with high probability.241

3.1.1 Additivity of the Function g242

First, we record the basic, but useful observation that if the TESTADDITIVITY subroutine passes then243

each of its tests hold with high probability over N (0, I).244

I Lemma 9. If TESTADDITIVITY(f ) accepts with probability at least 1/10, then245

Pr
x,y∼N (0,I)

[f(x− y) = f(x)− f(y)] ≥ 99
100 , (1)246

Pr
x∼N (0,I)

[f(−x) = −f(x)] ≥ 99
100 , (2)247

Pr
x,y,z∼N (0,I)

[
f

(
x− y

2

)
= f

(
x− z

2

)
+ f

(
z − y

2

)]
≥ 99

100 . (3)248

249

Proof. Suppose for contradiction that at least one of (1), (2), and (3) does not hold. We here assume250

that (1) does not hold as other cases are similar.251

We accept only when all the sampled pairs (x, y) satisfy f(x+ y) = f(x) + f(y). By setting the252

hidden constant in N2 to be large enough, this happens with probability at most253 (
1− Pr

x,y∼N (0,I)
[f(x+ y) 6= f(x) + f(y)]

)N2

<

(
99
100

)N2

<
1
10 ,254

which is a contradiction. J255

ITCS 2020
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In order to argue that g is additive, we will first argue that g is additive on points within the tiny256

ball B(0, 1/r). To do so, we will crucially use the fact that p − x is distributed approximately as257

x ∼ N (0, I) if ‖p‖2 is small. By Lemma 6 we have a bound on the total variation distance between258

x and x+ p.259

B Claim 10. Let p ∈ Rn satisfying ‖p‖2 ≤ k/r for some k ∈ Z>0. Then dTV(N (0, I),N (p, I)) ≤260

k/100.261

Proof. By Lemma 6, for dTV(N (0, I),N (p, I)) ≤ k/100 it is enough to show that p satisfies262

‖0− p‖2 ≤ 2k/(100
√
‖I‖2). Because ‖p‖2 ≤ k/r ≤ 2k/100 = 2k/(100

√
‖I‖2). C263

After arguing that g is additive in B(0, 1/r), it will follow that g is additive elsewhere because g264

is defined by extrapolating the value of g within this ball. Therefore, we will focus on proving the265

additivity of g within B(0, 1/r).266

I Lemma 11. Suppose that (1) – (3) of Lemma 9 hold. For every p, q ∈ Rn with ‖p‖2, ‖q‖2, ‖p+267

q‖2 ≤ 1/r it holds that g(p+ q) = g(p) + g(q).268

The proof of this lemma will crucially rely on the following two lemmas, which say that the269

conclusions of Lemma 9 hold with high probability even when one of the points are fixed to a point270

B(0, 1/r). A consequence of this is that g is well-defined.271

I Lemma 12. Suppose that (1) – (3) of Lemma 9 hold, then g is well-defined, and for every p ∈ Rn272

with ‖p‖2 ≤ 1/r,273

Pr
x∼N (0,I)

[g(p) = f(p− x) + f(x)] ≥ 9
10 .274

Proof. Fix a point p ∈ Rn with ‖p‖2 ≤ 1/r. We will bound the following probability.275

A := Pr
x,y∼N (0,I)

[f(p− x) + f(x) = f(p− y) + f(y)].276

Observe that277

A = Pr
x,y∼N (0,I)

[f(x)− f(y) 6= f(p− y)− f(p− x)]278

≤ Pr
x,y∼N (0,I)

[f(x)− f(y) 6= f(x− y)] + Pr
x,y∼N (0,I)

[f(x− y) 6= f(p− y)− f(p− x)]279

<
1

100 + Pr
x,y∼N (0,I)

[f(x− y) 6= f(p− y)− f(p− x)] (By Lemma 9)280

281

It remains to bound the second term. Intuitively, because x− p, y − p ∼ N (−p, I) and p ≈ 0, the282

random variables p− x and p− y should be distributed similarly to x and y. Indeed,283

Pr
x,y∼N (0,I)

[f(x− y) 6= f(p− y)− f(p− x)]284

= Pr
x,y∼N (0,I)

[f(x− p+ p− y) 6= f(p− y)− f(p− x)]285

= Pr
x,y∼N (−p,I)

[f(x− y) 6= f(−y)− f(−x)]286

≤ Pr
x,y∼N (0,I)

[f(x− y) 6= f(−y)− f(−x)] + 2 dTV

(
N (0, I),N (−p, I)

)
287

≤ Pr
x,y∼N (0,I)

[f(x− y) 6= f(x)− f(y)] + 2
100 + 2 Pr

x∼N (0,I)
[f(−x) 6= f(x)] (Claim 10)288

≤ 3
100 + 2

100 = 5
100 . (By (1) and (2) in Lemma 9)289

290



N. Fleming and Y. Yoshida 22:9

Plugging this into our previous bound on A, we can conclude that291

A ≥ 1−
(

1
100 + 5

100

)
= 1− 6

100 >
9
10 .292

Next, we bound A above in terms of the probability that g(p) 6= f(p − x) + f(x). Define293

Pp : Rn → R+ to be the bounded Lebesgue-measurable function such that
∫
B
Pp(x)dx is the294

probability that f(p− x) + f(x) takes value in the (measurable) set B. By Hölder’s inequality with295

p = 1, q =∞ we have296

A =
∫
R
P 2
p (x)dx ≤ ‖Pp‖∞

∫
R
Pp(x)dx = ‖Pp‖∞,297

where the last equality follows because Pp is a density and
∫
R Pp(x)dx = 1 holds. Therefore,298

9
10 ≤ A ≤ ‖Pp‖∞.299

Because argmaxx Pp(x) ≥ 9/10 > 1/2, we have g(p) = argmaxx Pp(x) and hence Prx∼N (0,I)[g(p) =300

f(p− x) + f(x)] ≥ 9/10. J301

The following lemma is essentially condition (3) of Lemma 9 with two fixed points.302

I Lemma 13. Suppose that (1) – (3) of Lemma 9 hold then, for every p, q ∈ Rn with ‖p‖2, ‖q‖2, ‖p+303

q‖ ≤ 1/r,304

Pr
x,y,z∼N (0,I)

[
g(p+ q) 6= f

(
p− x− z

2

)
+ f

(
q − z − y

2

)
+ f

(x− y
2

)]
≤ 2

10 .305

Proof. Fix a pair of points p, q ∈ Rn with ‖p‖2, ‖q‖2 ≤ 1/r. We can bound the probability306

Pr
x,y,z∼N (0,I)

[
g(p+ q) 6= f

(
p− x− z

2

)
+ f

(
q − z − y

2

)
+ f

(x− y
2

)]
307

≤ Pr
x,y,z∼N (0,I)

[
g(p+ q) 6= f

(
p+ q − x− y

2

)
+ f

(x− y
2

)]
308

+ Pr
x,y,z∼N (0,I)

[
f
(
p+ q − x− y

2

)
6= f

(
p− x− z

2

)
+ f

(
q − z − y

2

)]
309

310

To bound the first term, observe that if x, y ∼ N (0, I), then the random variable (x− y)/2 is also311

distributed according to N (0, I). Furthermore, because ‖p+ q‖2 ≤ 1/r, we can apply Lemma 12312

and conclude that313

Pr
x,y,z∼N (0,I)

[
g(p+ q) 6= f

(
p+ q − x− y

2

)
+ f

(x− y
2

)]
≤ 1

10 .314

315

To bound the second term, observe that316

Pr
x,y,z∼N (0,I)

[
f
(
p+ q − x− y

2

)
6= f

(
p− x− z

2

)
+ f

(
q − z − y

2

)]
317

= Pr
x,y,z∼N (0,I)

[
f

(
(2q + y)− (x− 2p)

2

)
6= f

(
(2q + y)− z

2

)
+ f

(
z − (x− 2p)

2

)]
318

= Pr
x∼N (−2p,I)
y∼N (2q,I)
z∼N (0,1)

[
f
(y − x

2

)
6= f

(y − z
2

)
+ f

(z − x
2

)]
319

≤ Pr
x,y,z∼N (0,I)

[
f
(x− y

2

)
6= f

(x− z
2

)
+ f

(z − y
2

)]
+ dTV

(
N (0, I),N (−2p, I)

)
320

+ dTV

(
N (0, I),N (2q, I)

)
321

≤ 1
100 + 2

100 + 2
100 = 5

100 . (By Lemma 9 and Claim 10)322
323
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Combining both of these bounds, we have Prx,y,z∼D[g(p + q) 6= f(p − x−z
2 ) + f(q − z−y

2 ) +324

f(x−y2 )] ≤ 1/10 + 5/100 ≤ 2/10. J325

The additivity of g within B(0, 1/r) is an immediate consequence of these two lemmas.326

Proof of Lemma 11. Let p, q ∈ Rn be any pair of points satisfying ‖p‖2, ‖q‖2, ‖p+ q‖2 ≤ 1/r.327

Our aim is to show that g(p + q) = g(p) + g(q). By a union bound over Lemmas 12 and 13, the328

probability that x, y, z ∼ N (0, I) simultaneously satisfy329

1. g(p+ q) = f(p− x−z
2 ) + f(q − z−y

2 ) + f(x−y2 ),330

2. g(p) = f(p− x−z
2 ) + f(x−z2 ),331

3. g(q) = f(q − z−y
2 ) + f( z−y2 ),332

4. f(x−y2 ) = f(x−z2 )− f( z−y2 )333

is at least 1− (2/10 + 2 ·1/10 + 1/10) > 0. Here we are using the fact that ((x−y)/2) is distributed334

as N (0, I). Fixing such a triple (x, y, z), we conclude that335

g(p+ q) = f
(
p− x− z

2

)
+ f

(
q − z − y

2

)
+ f

(x− y
2

)
336

= g(p) + g(q) + f
(x− y

2

)
− f

(x− z
2

)
− f

(z − y
2

)
337

= g(p) + g(q).338
339

Therefore g is additive within B(0, 1/r). J340

Finally, we argue that g is additive everywhere. Intuitively this should be true because the values341

of g on points outside of B(0, 1/r) are defined by extrapolating the values of g on points within342

B(0, 1/r), where we know g is additive. For the proof, it will be useful to record the following fact.343

I Fact 14. Provided that (1) – (3) of Lemma 9 hold then, for every p ∈ Rn with ‖p‖2 ≤ 1/r and344

c ∈ Z>0, we have g(p) = cg(p/c).345

Proof. Observe that g(p) = g((c/c)p) = g (
∑c
i=1 p/c) =

∑c
i=1 g(p/c) = c · g(p/c), where the346

third equality follows by Lemma 11, noting that ‖kp/c‖2 ≤ 1/r for every k ∈ [c− 1] J347

Proof of Lemma 8. Fix a pair of points p, q ∈ Rn, we will argue that g(p + q) = g(p) + g(q).348

Recall that g(p) := kpg(p/kp), g(q) := kqg(q/kq), and g(p+ q) := kp+qg((p+ q)/kp+q). Then,349

g(p)+g(q) = kp·g
(
p

kp

)
+kq ·g

(
p

kq

)
= kpkqkp+q ·g

(
p

kpkqkp+q

)
+kpkqkp+q ·g

(
p

kpkqkp+q

)
,350

where the second equality follows by Fact 14, noting that kp, kq, kp+q ∈ Z>0 and so p/kp, q/kq ∈351

B(0, 1/r). Furthermore, because p/(kpkqkp+q), q/(kpkqkp+q), (p + q)/(kpkqkp+q) ∈ B(0, 1/r),352

we can apply Lemma 11 to obtain353

kpkqkp+q

(
g

(
p

kpkqkp+q

)
+ g

(
p

kpkqkp+q

))
= kpkqkp+q · g

(
p+ q

kpkqkp+q

)
354

= kp+q · g
(
p+ q

kp+q

)
355

= g(p+ q),356
357

where the second equality follows by Fact 14, noting that kpkq ∈ Z>0 and (p+ q)/kp+q ∈ B(0, 1/r).358

Finally, by Lemma 12, g is well-defined within B(0, 1/r). Because g is defined by extrapolating359

from its value within this ball, it is well-defined everywhere. J360

I Remark 15. This tester (and the same proof) will in fact work over any Gaussian N (0,Σ) for361

arbitrary covariance matrix Σ ∈ Rn×n by setting the value of r to be 50
√
‖Σ−1‖2.362
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Algorithm 3: Distribution-Free Additivity Tester
Given :query access to f : Rn → R, sampling access to an unknown distribution D, and

sampling access to N (0, I);
1 Reject if TESTADDITIVITY(f ) returns Reject;
2 for N3 := O(1/ε) times do
3 Sample p ∼ D;
4 Reject if f(p) 6= QUERY-g(p, f ) or if QUERY-g(p, f ) returns Reject.

5 Accept.

3.2 Distribution-Free Tester363

In this section, we prove Theorem 1 by adapting our tester for additivity over the standard Gaussian364

(Algorithm 1) to a distribution-free tester.365

Assuming that we are able to draw samples from the standard Gaussian (or in fact any Gaussian),366

the modification to Algorithm 1 is straight forward. Indeed, we will only have to modify Algorithm 1,367

the two subroutines will remain the same. Let D be our unknown distribution by which we will meas-368

ure the distance of f to an additive function. The high-level idea is to first run the TESTADDITIVITY369

subroutine over the standard Gaussian. If it passes, then we know that with high probability g is370

additive. We can obtain query access to g(p) (with high probability) as before by sampling points371

x ∼ N (0, I) and checking that the values of kp(f(p/kp − x) + f(x)) agree for all of the x that we372

sample. To test whether f and g are ε-far according to D it suffices to sample points p ∼ D and check373

whether f(p) and g(p) agree.374

Our algorithm is given in Algorithm 3. We stress that both subroutines TESTADDITIVITY and375

QUERY-g(pi) are being performed over N (0, I), i.e., they do not use D.376

Proof of Theorem 1. The proof is nearly identical to the proof of Theorem 7. Again, observe that377

if f is an additive function then Algorithm 3 always accepts.378

It remain to show that if f is ε-far from additive functions, then Algorithm 3 rejects with379

probability at least 2/3. If TESTADDITIVITY(f ) accepts with probability at most 1/10, we can reject380

f with probability at least 1− 1/10 > 2/3. Hence, we assume that TESTADDITIVITY(f ) accepts381

with probability at least 1/10. By Lemma 8, the function g is additive and hence f is ε-far from g.382

Note that the probability that QUERY-g(p, f ) fails to correctly recover g(p) is at most ε/2 by the same383

argument as before. It remains to bound the probability that Step 3 fails to reject, which is384 (
Pr

p∼N (0,I)
[f(p) = g(p) ∨ QUERY-g(p) fails to correctly recover g(p)]

)N3

<
(

1− ε

2

)N3
<

1
10385

386

by choosing the hidden constant in N3 to be large enough, by the same argument as before. Therefore,387

Algorithm 3 rejects with probability at least 1− 1/10 > 2/3. J388

4 Testing Linearity of Continuous Functions389

In this section, we prove Theorem 2 by adapting the tester from the previous section (Algorithm 3) to390

test whether f is linear, given that f is a continuous function.391

We would like to argue that if f is continuous and Algorithm 3 passes then g is in fact a392

linear function with high probability. However, in order to exploit continuity, we need f to satisfy393

f(−x) = −f(x) for every x ∈ Rn. First, we will show how to argue that g is linear assuming that394

f(−x) = −f(x). After that, we will handle the case when this property does not hold.395
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22:12 Distribution-Free Testing of Linear Functions on Rn

I Lemma 16. If f : Rn → R is a continuous function satisfying f(−x) = −f(x) and the396

assumptions of Lemma 8 hold, then the function g is linear.397

The proof will rely on the following claim which was originally proved by Darboux in 1875.398

B Claim 17. Any additive function f : Rn → R which is continuous at a point x0 ∈ Rn is a linear399

function.400

Proof. First, it is well-known that any additive function which is continuous at a point is continuous401

everywhere (see e.g., [4]). Next, we argue that the continuity of f implies that f(rx) = rf(x) for402

every r ∈ R and x ∈ Rn. Because f is additive, this homogeneity holds for every r ∈ Q, so it403

suffices to assume that r is irrational.404

Fix x ∈ Rn and irrational r. Then for any ζ > 0, we can always find r̃ ∈ Q such that |r̃ − r| < ζ405

and ‖r̃x − rx‖2 < ζ. Now, by the continuity of f , for any ξ > 0 there exists ζ > 0 such that406

whenever ‖r̃x− rx‖2 < ζ, we have |f(r̃x)− f(rx)| < ξ. Now, take a sequence {ξi}i with ξi → 0407

and consider the corresponding sequence {ζi}i with ζi → 0. Let {r̃i}i with ri ∈ Q be the sequence408

of approximations such that |r̃i − r| ≤ ζi and ‖r̃ix− rx‖2 ≤ ζi. Then,409

|f(rx)−rf(x)| ≤ |f(rx)−f(r̃ix)|+ |f(r̃ix)−rf(x)| ≤ ξi+ |r̃if(x)−rf(x)| ≤ ξi+ ζi|f(x)|.410

Because ζi, ξi → 0, |f(rx)− rf(x)| → 0 and so f(rx) = rf(x). C411

With this claim in hand, we are ready to prove Lemma 16.412

Proof of Lemma 16. Let f be a continuous function satisfying f(−x) = −f(x). By Lemma 8,413

the function g is additive. Conditioned on this event, we will show that the continuity of f implies414

that g is linear as well. To do so, we will argue that g is continuous at the origin and then appeal to415

Claim 17 to conclude that g is linear.416

Let B be a ball of mass 1/2 (with respect to N (0, I)) centred at the origin. Let {pi}i be any417

sequence of points with pi ∈ B, ‖pi‖2 ≤ 1/r and pi → 0. Now, let {xi}i be a sequence of points418

such that g(pi) = f(pi − xi) + f(xi) and xi ∈ B. Such a sequence exists because, by Lemma 8419

Prx∼N (0,I)[g(x) = f(pi − x) + f(x)] ≥ 1/2 and so for every pi there must exist such an xi in B.420

Let S be the ball centred at the origin with twice the radius of B. As S is compact and f421

is continuous, f is uniformly continuous on S. Thus for every ξ > 0, there exists ζ > 0 such422

that |f(pi − xi) − f(−xi)| = |f(pi − xi) + f(xi)| < ξ whenever ‖(pi − xi) + xi‖2 < ζ. Now,423

take a sequence {ξi}i with ξi → 0 and consider the corresponding sequence {ζi}i. As pi → 0,424

for every i, there exists j such that ‖(pj − xj) + xj‖2 < ζi which in particular implies that425

|g(pj)| = |f(pj − xj) + f(xj)| < ξi. Thus, g(pi) → 0, and g is continuous at the origin. By426

Claim 17, we can conclude that g is a linear function. J427

Now we consider the case when f(−x) 6= −f(x) for some x. Luckily, in this case we can force428

f to satisfy f(−x) = −f(x). To do so, we test whether f is ε/2-far from satisfying this property.429

If it is, then we reject f , otherwise, we can replace f with a function f ′ guaranteed to satisfy this430

property, by defining431

f ′(x) := f(x)− f(−x)
2 .432

433

We then continue to work over f ′ rather than f . Our modified algorithm is given in Algorithm 4,434

which uses Algorithm 5 as a subroutine.435

B Claim 18. If FORCENEGATIVITY(f,D) accepts with probability at least 1/10, then Prx∼D[f(x) =436

f ′(x)] ≥ 1− ε.437
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Algorithm 4: Distribution-Free Linearity Tester
Given :query access to a continuous f : Rn → R, sampling access to an unknown

distribution D, and sampling access to N (0, I);
1 Reject if FORCENEGATIVITY(f,D) returns Reject;
2 Let f ′ be the returned function;
3 Reject if TESTADDITIVITY(f ′) returns Reject;
4 for N4 := O(1/ε) times do
5 Sample p ∼ D;
6 Reject if f ′(p) 6= QUERY-g(f ′, p) or if QUERY-g(f ′, p) returns Reject.

7 Accept.

Algorithm 5: Force Negativity Subroutine

1 Procedure FORCENEGATIVITY(f,D)
Given :query-Access to f : Rn → R and sampling access to an unknown distribution D;

2 for N5 := O(1/ε) times do
3 Sample x ∼ D;
4 Reject if f(−x) 6= −f(x);

5 Return a function f ′ : Rn → R where f ′(x) := f(x)−f(−x)
2 ;

Proof. Suppose for contradiction that Prx∼D[f(x) = f ′(x)] ≤ 1 − ε. Observe that for a point438

x ∈ R, f ′(x) 6= f(x) iff f(−x) 6= −f(x). Therefore, by choosing the hidden constant in N5 to be439

large enough, the probability that all the sampled points x satisfy f(x) = −f(x) is at most440 (
Pr
x∼D

[f(−x) = f(x)]
)N5

< (1− ε)N5 ≤ 1
10 ,441

which is a contradiction. C442

Therefore if FORCENEGATIVITY(f,D) accepts with probability at least 1/10, f and f ′ are ε/2-close.443

Furthermore, because f is continuous and f ′ is the sum of continuous functions, f ′ is continuous as444

well, and so we can proceed with f ′ in place of f .445

Proof of Theorem 2. First, observe that if f is linear then f = f ′ and Algorithm 4 always accepts.446

Now, we show that if f is ε-far from linear functions, then Algorithm 4 rejects with probability at447

least 2/3. If either the TESTADDITIVITY subroutine or the FORCENEGATIVITY subroutine passes448

with probability at most 1/10, we can reject f with probability at least 1− 1/10 > 2/3. Hence, we449

assume both the subroutines pass with probability at least 1/10. Then by Lemma 18, f is ε/2-close450

to f ′, which means that f ′ is ε/2-far from linear. Also by Lemma 16, because f ′ is continuous451

and satisfies f ′(−x) = −f ′(x), the function g is linear, and so f ′ is ε/2-far from g. Therefore,452

Algorithm 4 rejects f with probability at least 1− 1/10 > 2/3. J453

5 Lower Bounds on Testing Linearity in the Sampling Model454

In this section, we prove Theorem 3, that is, we show without query access, any tester requires a455

linear number of samples in order to test linearity and additivity over the standard Gaussian. We456

note that we can obtain the same lower bound for testing additivity just by replacing linearity with457

additivity in the proof.458
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By Yao’s minimax principle it suffices to construct two distributions, Dyes over linear functions459

and Dno over functions which are (with probability 1) 1/3-far from linear such that any deterministic460

n-sample algorithm cannot distinguish between them with probability at least 2/3. Let δ ∈ R≥0 be461

some parameter to be set later; we will think of δ as tiny. Instances from these two distributions are462

generated as follows:463

Dyes: Sample w ∼ N (0, I) and return f(x) := 〈w, x〉.464

Dno: Sample w ∼ N (0, I) and for every x ∈ Rn sample εx ∼ N (0, δ). Return f(x) :=465

〈w, x〉+ εx.466

The functions in the support of Dyes are linear by definition. It remains to show that the instances in467

the support of Dno are far from linear.468

I Lemma 19. With probability 1 any f ∼ Dno is 1/3-far from linear.469

The proof of this lemma will hinge on the following claim.470

B Claim 20. Let f ∼ Dno, for x, y, z ∼ N (0, 1), Pr[f(x−y2 ) 6= f(x−z2 ) + f( z−y2 )] = 1.471

Proof. Observe that Pr
[
f
(
x−y

2
)

= f
(
x−z

2
)

+ f
(
z−y

2
)]

= Pr
[
ε(x−y)/2 = ε(x−z)/2 + ε(z−y)/2

]
,472

where the probability is over ε(x−y)/2, ε(x−z)/2, ε(z−y)/2 ∼ N (0, δ). Define the random variable473

z := ε(x−y)/2 − ε(x−z)/2 − ε(z−y)/2, and note that z is distributed according to N (0, 3δ). Then474

Pr
z∼N (0,3)

[
ε(x−y)/2 = ε(x−z)/2 + ε(z−y)/2

]
= Pr
z∼N (0,3)

[z = 0].475

By standard arguments, we have Prz∼N (0,3δ)[z = 0] = 0. J476

Proof of Lemma 19. Let f∗ be the closest linear function to f . For a point x ∈ Rn, say that477

f(x) is bad if f(x) 6= f(x∗). Construct the following matrix: the rows are labelled by every triple478

(x−y2 , x−z2 , z−y2 ) and there are three columns. The entries at row (x−y2 , x−z2 , z−y2 ) are f(x−y2 ),479

f(x−z2 ), and f( z−y2 ). Note that because x, y, z ∼ N (0, 1), the points x−y
2 , x−z2 , z−y2 are distributed480

according to N (0, 1).481

Henceforth, we will measure mass in terms of probability mass over N (0, 1). By Claim 20, the482

probability that each row contains a bad entry is 1. Therefore, there must be some column for which483

the probability mass of the bad entries is at least 1/3. This implies that a mass of at least 1/3 of f484

must be changed to obtain f∗. Because f∗ is the closest linear function to f , this implies that f is485

1/3-far from linear. J486

Having defined our distributions over linear and far-from-linear functions, it remains to argue that487

no algorithm receiving n samples can distinguish between them with high probability.488

Proof of Theorem 3. Let D be the distribution that with probability 1/2 draws f ∼ Dyes and489

otherwise draws f ∼ Dno. Let A be any deterministic algorithm which receives n samples490

x1, . . . , xn ∼ N (0, I). By Yao’s minimax principle, it suffices to show that A cannot correctly491

distinguish which distribution of the distributions Dyes or Dno a given sample f ∼ D comes from492

with probability at least 2/3. That is, we would like to show that493 ∣∣∣ Pr
f∼Dyes

x1,...,xn∼N (0,I)

[A(f(x1), . . . , f(xn)) = 1]− Pr
f∼Dno

x1,...,xn∼N (0,I)

[A(f(x1), . . . , f(xn)) = 1]
∣∣∣ (4)494

495

is o(1). Suppose for contradiction that an algorithm A exists that with probability at least 2/3496

distinguishes these distributions.497

Observe that the (4) can be bounded from above by the total variation distance between the498

distributions (fy(x1), . . . , fy(xn)) for fy ∼ Dyes, and (fn(x1), . . . , fn(xn)) for fn ∼ Dno, for499
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x1, . . . , xn ∼ N (0, I), as applying the algorithm A can only make the total variation distance500

smaller. By the definition of Dyes and Dno, this means bounding the total variation distance between501

(w>y x1, . . . , w
>
y xn) and (w>n x1 + εx1 , . . . , w

>
n xn + εxn

), where wy ∼ Dyes and wn ∼ Dno502

Now, let X ∈ Rn be the matrix whose rows are x1, . . . , xn. Because wy, wn ∼ N (0, I) and503

εxi
∼ N (0, δ), it follows that504

(w>x1, . . . , w
>xn) ∼ N (0, XX>),505

(w>n x1, . . . , w
>
n xn) + (εx1 , . . . , εxn

) ∼ N (0, XX> + δI).506
507

Therefore,508

(4) ≤ dTV(N (0, XX>),N (0, XX> + δI)).509

To bound this distance we will appeal to Pinkser’s inequality and Lemma 5. Thus, it will be useful to510

first record some facts about the covariance matrices of these distribution. First, we show that the511

rows of the matrix X are linearly independent with high probability.512

I Fact 21. Prx1,...,xn∼N (0,1)[span(x1, . . . , xn) = Rn] = 1.513

It follows that the covariance matrices of these two distributions are positive definite with high514

probability.515

B Claim 22. With probability 1 the matrices XX> and XX> + δI are positive definite.516

Proof. That XX> � 0 is immediate from Fact 21, which implies that rows of X are linearly517

independent with probability 1. Let λ1, . . . , λn be the eigenvalues of XX>. To prove that XX> +518

δI � 0 note that adding δI simply adds δ to each of the eigenvalues. Thus, the eigenvalues of519

XX> + δI are all positive. J520

With these facts in hand we turn to bounding the total variation distance between N (0, XX>) and521

N (0, XX> + δI). Denote by Σyes := XX> and Σno := XX> + δI . By Pinkser’s inequality522

(Theorem 4) and Lemma 5,523

dTV

(
N (0, XX>),N (0, XX> + δI)

)
≤

√
1
4

(
log
(

det Σyes

det Σno

)
+ tr

(
Σ−1

yesΣno
)
− n

)
.524

We will bound each of these terms separately.525

Bounding the Determinant.526

For simplicity of notation, we will bound the inverse of det(Σyes)/det(ΣNO) below. We have527

det Σno

det Σyes
= det(XX> + δI)

det(XX>)528

= det
(
XX>

(
XX>

)−1 + δ
(
XX>

)−1)
529

= det
(
I + δ

(
XX>

)−1)
.530

531

B Claim 23. If A is a diagonalizable matrix with eigenvalues λ1, . . . , λn then det(A + I) =532 ∏n
i=1(λi + 1).533

Applying this claim, we have det(I + δ(XX>)−1) = (δλ−1
1 + 1) . . . (δλ−1

n + 1), where534

λ1, . . . , λn are the eigenvalues of XX>. By Claim 22 the matrix XX> is positive definite and so535

λi > 0 for all i. Therefore, (δλ−1
i + 1) > 1 for all i, and we can conclude that det Σn/ det Σyes > 1.536

Thus we can upper bound det Σyes/ det Σno by 1.537
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Bounding the Trace.538

Next, we bound539

tr
(
Σ−1

yesΣno
)

= tr
((
XX>

)−1(XX> + δI)
)

540

= tr
(
I + δ

(
X>
)−1

X−1
)

541

≤ tr(I) + δ tr
((
X>
)−1

X−1
)

542

= n+ δ
∑
i,j

(X−1
i,j )2

543

≤ n+ δn2 · λmax(X−1)2
,544

545

where λmax is the largest eigenvalue of X−1. Noting that the eigenvalues of X−1 are the inverse of546

the eigenvalues of X , we have tr
(
Σ−1

yesΣno
)
≤ n + δn2/λmin(X)2. Setting δ := Cλmin(X)2

/n2
547

for some tiny C > 0 to be set later, we can conclude that tr
(
Σ−1

yesΣno
)
≤ n+ C.548

Completing the proof.549

Putting our previous bounds together we conclude that550

dTV

(
N (0, XX>),N (0, XX> + δI)

)
≤
√

1
4 (log(1) + n+ C − n) = 1

2C
1/2.551

By our previous argument we have552

(4) ≤ dTV

(
N (0, XX>),N (0, XX> + δI)

)
≤ 1

2C
1/2.553

SettingC < (2/3)2 contradicts our assumption of the existence of an algorithmAwhich distinguishes554

a sample drawn from Dyes from one drawn from Dno with probability at least 2/3, completing the555

proof. J556

Finally, observe that the same proof goes through for testing additivity as well. Indeed, Dyes is557

supported on additive functions, while Dno is supported on functions which are far from additive with558

probability 1.559

I Corollary 24. Any sampler for additivity of functions f : Rn → R requires Ω(n) samples when560

D = N (0, I).561

References562

1 Sigal Ar, Manuel Blum, Bruno Codenotti, and Peter Gemmell. Checking approximate computations563

over the reals. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC),564

pages 786–795, 1993. URL: https://doi.org/10.1145/167088.167288, doi:10.1145/565

167088.167288.566

2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and567

hardness of approximation problems. In Proceedings of the 33rd Annual Symposium on Foundations of568

Computer Science (FOCS), pages 14–23, 1992. URL: https://doi.org/10.1109/SFCS.1992.569

267823, doi:10.1109/SFCS.1992.267823.570

3 Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing. In Proceedings571

of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 21–30, 2012.572

URL: https://doi.org/10.1109/FOCS.2012.64, doi:10.1109/FOCS.2012.64.573

https://doi.org/10.1145/167088.167288
http://dx.doi.org/10.1145/167088.167288
http://dx.doi.org/10.1145/167088.167288
http://dx.doi.org/10.1145/167088.167288
https://doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1109/SFCS.1992.267823
http://dx.doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1109/FOCS.2012.64
http://dx.doi.org/10.1109/FOCS.2012.64


N. Fleming and Y. Yoshida 22:17

4 Robert Gardner Bartle and Donald R Sherbert. Introduction to real analysis. Hoboken, NJ: Wiley, 2011.574

5 Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps and non-approximability - towards575

tight results. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science576

(FOCS), pages 422–431, 1995. URL: https://doi.org/10.1109/SFCS.1995.492573, doi:577

10.1109/SFCS.1995.492573.578

6 Aleksandrs Belovs. Quantum algorithm for distribution-free junta testing. In Proceedings of the 14th579

International Computer Science Symposium in Russia (CSR), pages 50–59, 2019. URL: https://doi.580

org/10.1007/978-3-030-19955-5_5, doi:10.1007/978-3-030-19955-5\_5.581

7 Michael Ben Or, Don Coppersmith, Mike Luby, and Ronitt Rubinfeld. Non-abelian homomorphism582

testing, and distributions close to their self-convolutions. Random Structures & Algorithms, 32(1):49–70,583

January 2008.584

8 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David Zuckerman. Op-585

timal Testing of Reed-Muller Codes. In Proceedings of the 51st Annual IEEE Symposium on Foundations586

of Computer Science (FOCS), pages 488–497, 2010.587

9 Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st Annual ACM Symposium on Theory588

of Computing (STOC), pages 151–158, 2009.589

10 Eric Blais, Amit Weinstein, and Yuichi Yoshida. Partially symmetric functions are efficiently isomorphism590

testable. SIAM Journal on Computing, 44(2):411–432, 2015.591

11 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numerical592

problems. Journal of Computer and System Sciences, 47(3):549–595, 1993. URL: https://doi.593

org/10.1016/0022-0000(93)90044-W, doi:10.1016/0022-0000(93)90044-W.594

12 Nader H. Bshouty. Almost optimal distribution-free junta testing. In Proceedings of the 34th Computa-595

tional Complexity Conference (CCC), pages 2:1–2:13, 2019. URL: https://doi.org/10.4230/596

LIPIcs.CCC.2019.2, doi:10.4230/LIPIcs.CCC.2019.2.597

13 Xi Chen, Adam Freilich, Rocco A. Servedio, and Timothy Sun. Sample-based high-dimensional convexity598

testing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques599

(APPROX/RANDOM), pages 37:1–37:20, 2017. URL: https://doi.org/10.4230/LIPIcs.600

APPROX-RANDOM.2017.37, doi:10.4230/LIPIcs.APPROX-RANDOM.2017.37.601

14 Xi Chen and Jinyu Xie. Tight bounds for the distribution-free testing of monotone conjunctions. In602

Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 54–603

71, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch5, doi:10.1137/1.604

9781611974331.ch5.605

15 Anindya De, Elchanan Mossel, and Joe Neeman. Is your function low-dimensional? arXiv e-prints, page606

arXiv:1806.10057, 2018. arXiv:1806.10057.607

16 Elya Dolev and Dana Ron. Distribution-free testing for monomials with a sublinear number of quer-608

ies. Theory of Computing, 7(1):155–176, 2011. URL: https://doi.org/10.4086/toc.2011.609

v007a011, doi:10.4086/toc.2011.v007a011.610

17 Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Checking approximate computations of polynomials611

and functional equations. SIAM Journal on Computing, 31(2):550–576, 2001. URL: https://doi.612

org/10.1137/S0097539798337613, doi:10.1137/S0097539798337613.613

18 Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Testing juntas. Journal of614

Computer and System Sciences, 68(4):753–787, 2004.615

19 Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-616

testing/correcting for polynomials and for approximate functions. In Proceedings of the 23rd Annual617

ACM Symposium on Theory of Computing (STOC), pages 32–42, 1991. URL: https://doi.org/618

10.1145/103418.103429, doi:10.1145/103418.103429.619

20 Dana Glasner and Rocco A. Servedio. Distribution-free testing lower bounds for basic boolean620

functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and621

Techniques (APPROX/RANDOM), pages 494–508, 2007. URL: https://doi.org/10.1007/622

978-3-540-74208-1_36, doi:10.1007/978-3-540-74208-1\_36.623

ITCS 2020

https://doi.org/10.1109/SFCS.1995.492573
http://dx.doi.org/10.1109/SFCS.1995.492573
http://dx.doi.org/10.1109/SFCS.1995.492573
http://dx.doi.org/10.1109/SFCS.1995.492573
https://doi.org/10.1007/978-3-030-19955-5_5
https://doi.org/10.1007/978-3-030-19955-5_5
https://doi.org/10.1007/978-3-030-19955-5_5
http://dx.doi.org/10.1007/978-3-030-19955-5_5
https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.4230/LIPIcs.CCC.2019.2
https://doi.org/10.4230/LIPIcs.CCC.2019.2
https://doi.org/10.4230/LIPIcs.CCC.2019.2
http://dx.doi.org/10.4230/LIPIcs.CCC.2019.2
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.37
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.37
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.37
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.37
https://doi.org/10.1137/1.9781611974331.ch5
http://dx.doi.org/10.1137/1.9781611974331.ch5
http://dx.doi.org/10.1137/1.9781611974331.ch5
http://dx.doi.org/10.1137/1.9781611974331.ch5
http://arxiv.org/abs/1806.10057
https://doi.org/10.4086/toc.2011.v007a011
https://doi.org/10.4086/toc.2011.v007a011
https://doi.org/10.4086/toc.2011.v007a011
http://dx.doi.org/10.4086/toc.2011.v007a011
https://doi.org/10.1137/S0097539798337613
https://doi.org/10.1137/S0097539798337613
https://doi.org/10.1137/S0097539798337613
http://dx.doi.org/10.1137/S0097539798337613
https://doi.org/10.1145/103418.103429
https://doi.org/10.1145/103418.103429
https://doi.org/10.1145/103418.103429
http://dx.doi.org/10.1145/103418.103429
https://doi.org/10.1007/978-3-540-74208-1_36
https://doi.org/10.1007/978-3-540-74208-1_36
https://doi.org/10.1007/978-3-540-74208-1_36
http://dx.doi.org/10.1007/978-3-540-74208-1_36


22:18 Distribution-Free Testing of Linear Functions on Rn

21 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. URL: http:624

//www.cambridge.org/us/catalogue/catalogue.asp?isbn=9781107194052, doi:625

10.1017/9781108135252.626

22 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and627

approximation. Journal of the ACM, 45(4):653–750, 1998. URL: https://doi.org/10.1145/628

285055.285060, doi:10.1145/285055.285060.629

23 Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM Journal on Comput-630

ing, 37(4):1107–1138, 2007. URL: https://doi.org/10.1137/050645804, doi:10.1137/631

050645804.632

24 Nathaniel Harms. Testing halfspaces over rotation-invariant distributions. In Proceedings of the 30th633

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 694–713, 2019. URL: https:634

//doi.org/10.1137/1.9781611975482.44, doi:10.1137/1.9781611975482.44.635

25 Johan Håstad. Clique is hard to approximate within n1−ε. In Proceedings of the 37th Annual Symposium636

on Foundations of Computer Science (FOCS), pages 627–636, 1996. URL: https://doi.org/10.637

1109/SFCS.1996.548522, doi:10.1109/SFCS.1996.548522.638

26 Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM Journal on Computing,639

36(3):779–802, 2006. URL: https://doi.org/10.1137/S0097539704445615, doi:10.640

1137/S0097539704445615.641

27 Marcos A. Kiwi, Frédéric Magniez, and Miklos Santha. Approximate testing with relative error. In642

Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC), pages 51–60, 1999.643

URL: https://doi.org/10.1145/301250.301269, doi:10.1145/301250.301269.644

28 Marcos A. Kiwi, Frédéric Magniez, and Miklos Santha. Exact and approximate testing/correcting of algeb-645

raic functions: A survey. In Theoretical Aspects of Computer Science, Advanced Lectures (First Summer646

School on Theoretical Aspects of Computer Science, Tehran, Iran, July 2000), pages 30–83, 2000. URL:647

https://doi.org/10.1007/3-540-45878-6_2, doi:10.1007/3-540-45878-6\_2.648

29 Pravesh Kothari, Amir Nayyeri, Ryan O’Donnell, and Chenggang Wu. Testing surface area. In Pro-649

ceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1204–650

1214, 2014. URL: https://doi.org/10.1137/1.9781611973402.89, doi:10.1137/1.651

9781611973402.89.652

30 Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. Distribution-free junta653

testing. ACM Transactions on Algorithms, 15(1):1:1–1:23, 2019. URL: https://doi.org/10.654

1145/3264434, doi:10.1145/3264434.655

31 Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A Servedio. Testing halfspaces. SIAM656

Journal on Computing, 39(5):2004–2047, 2010.657

32 Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing (subclasses of)658

halfspaces. In Property Testing - Current Research and Surveys, pages 334–340. 2010. URL: https:659

//doi.org/10.1007/978-3-642-16367-8_27, doi:10.1007/978-3-642-16367-8\660

_27.661

33 Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A Servedio. Testing±1-weight half-662

space. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques663

(APPROX/RANDOM), pages 646–657. 2009.664

34 Joe Neeman. Testing surface area with arbitrary accuracy. In Proceedings of the 46th Annual ACM665

Symposium on Theory of Computing (STOC), pages 393–397, 2014. URL: https://doi.org/10.666

1145/2591796.2591807, doi:10.1145/2591796.2591807.667

35 Kenta Oono and Yuichi Yoshida. Testing properties of functions on finite groups. Random Structures &668

Algorithms, 49(3):579–598, 2016.669

36 Sofya Raskhodnikova and Ronitt Rubinfeld. Linearity and group homomorphism testing/testing hadamard670

codes. Encyclopedia of Algorithms, pages 1–6, 2014.671

http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9781107194052
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9781107194052
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9781107194052
http://dx.doi.org/10.1017/9781108135252
http://dx.doi.org/10.1017/9781108135252
http://dx.doi.org/10.1017/9781108135252
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/285055.285060
http://dx.doi.org/10.1145/285055.285060
https://doi.org/10.1137/050645804
http://dx.doi.org/10.1137/050645804
http://dx.doi.org/10.1137/050645804
http://dx.doi.org/10.1137/050645804
https://doi.org/10.1137/1.9781611975482.44
https://doi.org/10.1137/1.9781611975482.44
https://doi.org/10.1137/1.9781611975482.44
http://dx.doi.org/10.1137/1.9781611975482.44
https://doi.org/10.1109/SFCS.1996.548522
https://doi.org/10.1109/SFCS.1996.548522
https://doi.org/10.1109/SFCS.1996.548522
http://dx.doi.org/10.1109/SFCS.1996.548522
https://doi.org/10.1137/S0097539704445615
http://dx.doi.org/10.1137/S0097539704445615
http://dx.doi.org/10.1137/S0097539704445615
http://dx.doi.org/10.1137/S0097539704445615
https://doi.org/10.1145/301250.301269
http://dx.doi.org/10.1145/301250.301269
https://doi.org/10.1007/3-540-45878-6_2
http://dx.doi.org/10.1007/3-540-45878-6_2
https://doi.org/10.1137/1.9781611973402.89
http://dx.doi.org/10.1137/1.9781611973402.89
http://dx.doi.org/10.1137/1.9781611973402.89
http://dx.doi.org/10.1137/1.9781611973402.89
https://doi.org/10.1145/3264434
https://doi.org/10.1145/3264434
https://doi.org/10.1145/3264434
http://dx.doi.org/10.1145/3264434
https://doi.org/10.1007/978-3-642-16367-8_27
https://doi.org/10.1007/978-3-642-16367-8_27
https://doi.org/10.1007/978-3-642-16367-8_27
http://dx.doi.org/10.1007/978-3-642-16367-8_27
http://dx.doi.org/10.1007/978-3-642-16367-8_27
http://dx.doi.org/10.1007/978-3-642-16367-8_27
https://doi.org/10.1145/2591796.2591807
https://doi.org/10.1145/2591796.2591807
https://doi.org/10.1145/2591796.2591807
http://dx.doi.org/10.1145/2591796.2591807

	Introduction
	Related Work
	Proof Technique
	Organization

	Preliminaries
	Testing Additivity
	Tester for the Standard Gaussian
	Additivity of the Function g

	Distribution-Free Tester

	Testing Linearity of Continuous Functions
	Lower Bounds on Testing Linearity in the Sampling Model

