
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards Immersive Cinematic Video for Immersive

Displays

Nicholas Wells

Department of Computer Science

Memorial University of Newfoundland

St. John’s, Canada

nwwells@mun.ca

Mathew Hamilton

Department of Computer Science

Memorial University of Newfoundland

St. John’s, Canada

mhamilton@mun.ca

Abstract— Rendering cinematic quality computer generated

imagery (CGI) is too expensive for real-time. We show how offline

pre-rendering can enable real-time rendering of a static scene at

cinematic quality. We use OTOY Octane to pre-render static

scenes offline into a light field image, using a custom Open Shading

Language (OSL) camera shader. We show how to perform

reconstruction of an arbitrary view of the static scene from the

light field in real-time using NVIDIA’s Optix API, using RTX

hardware accelerated ray tracing. Within the created real time ray

tracer, we use NVIDIA’s CUDA API to accelerate ray

reconstruction. The result is an ability to render real-time views of

a static scene at cinematic quality. By pre-rendering a sequence of

light field images we can extend to video. This can be further

extended to view video on immersive displays, including virtual

reality and holographic displays. Future work would include

compressed light field video, to support longer, streaming video.

(Abstract)

Keywords—immersive video, VR/AR, light field visualization

(key words)

I. INTRODUCTION

In video designed for conventional 2D displays, a single
camera view is required for each frame. For interactive video,
this rendering must be performed in real-time. However, where
video is non-interactive and designed for passive consumption,
these frames can be pre-rendered using offline rendering
techniques, resulting in higher quality images at the cost of a
one-time upfront rendering time.

Immersive displays such as virtual reality (VR), augmented
reality (AR) headsets and standalone 3D displays offer the
promise of enhanced video for both interactive and passive
consumption viewing. With immersive displays, the observer's
viewing position is not fixed, opening up another dimension to
video viewing. Immersive displays present the possibility for a
passive consumption video experience where the viewer’s
vantage point shifts with view head and body movement.

The benefits of light field consumption can also be gained
within more common 2D display interfaces as consumers can
define the view of a scene they want to focus upon. This can
include refocusing the camera onto interesting parts of a scene

to decipher a deeper meaning or to retrieve better scale within
the scene. Within the 2D display common interaction mechanics
already exist within other real time rendering solutions and as
such interaction can come naturally into video.

This presents a new challenge. To provide even passive
video on immersive displays requires not just a single camera
view, but multiple simultaneous views whose position varies
dynamically with the viewers’ head position. Providing video in
this context now presents a greater challenge, as multiple
viewpoints must be captured per video frame. These multiple
viewpoints can further vary, depending on the movements of the
viewer. Depending on the specifics of the immersive display,
this can range from 2 viewpoints (left and right eye in Head
Mounted Displays) to millions of viewpoints (3D light field
displays). This poses a question of how to create and represent
all the possible views of a scene that could be taken of a scene
by a viewer.

This first begins with how we capture even a single frame of
an immersive video with all the possible viewpoints captured.
The idea of capturing all views from within a scene can also be
formulated to be capturing all the rays of light within a scene.
By using this definition we can use the concept of a light field to
retrieve a single frame of all possible views or all possible light
rays. A light field is the idea that from within an area in a 3D
space we can calculate all the possible light rays (or colors for
simplicity) which will pass through the area. We can think of the
area within the 3D space as a window in which when looking
through it, we can see everything outside even when moving our
eyes while looking at the window. The concept of a light field is
the same as it captures all the views from outside it.

Modern cinema-quality graphic rendering techniques have
great computational cost which require large computational
times outside the ability to render within real time. By creating
a light field we can generate a movie within the same offline
methods which provide extreme quality while the single images
generated now contain multiple camera angles within them.

 As one of the primary contributions of this paper, we show
how from this pre-rendered, high-quality light field image many
views can be dynamically generated in real-time, to

accommodate the requirements of immersive displays. The
other main contribution is showing how to render light fields
using OSL cameras in Otoy’s Octane.

II. RELATED WORK

The introduction of light fields and simple methods to render
a single view are concepts discussed in many papers. Levoy and
Hanrahan [1] introduced use of light fields and generation of
novel views from light field image representation. They discuss
the implementation of a single light field frame within their
paper and do not mention the requirements or methods needed
to view a light field video in real time. Their methods are also
not designed for a pure ray-traced implementation and instead
describe a mixed approach including projective rendering
techniques.

 Another paper discusses an approach to real time light field
rendering display [2] This paper discusses an approach to
simulation of light field simulators without the explanation of
how to generate high quality light fields. The created simulator
from this approach is also based upon a hybrid rasterization ray-
tracing approach, which results in less rendering ray control than
a pure ray-traced approach.

 Another paper discusses the rendering of complex realistic
images into a VR scene [3]. The method used within the paper
describes an approach to rendering realistic images within VR
from multiple viewpoints. The approach though does not
capture view dependent complex lighting effects other than
simple effects which can be added with post-processing effects
at rendering time.

 The Octane rendering engine from OTOY provides a fast
and efficient approach to physically-based rendering. This
approach is explicitly described by the book Physically Based
Rendering: From theory To Implementation [4]. Octane as a
result provides cinematic quality rendering for conventional 2D
images. The program does not provide the ability to render light
field images as a default function, however.

III. BACKGROUND

Our project focuses on an area under-developed within
current papers. Our project uses ray tracing technology which
involves the ability to cast a ray (a line) from a starting point in
a space into a direction based on another point in space. We then
use the concept of light fields [1]. These are areas within a world
where we can represent all light (or colors) which can be seen
from the position of the area on screen. This is performed by
tracing a given number of all the possible rays which pass
through the area.

IV. GENERATING LIGHTFIELD IMAGES.

A. Creation of Light Fields

To be able to generate an immersive video, we need to start
much like any other video is created. We first need a scene so
our cameras have something to capture. To do so within
computer generated graphics requires a rendering program. We
chose to use a rendering engine designed for large cinematic
quality projects as this will allow our results to contain the
highest cinematic quality outputs. Otoy Octane rendering

engine, is designed exactly for the purposes above. Its rendering
times are much slower than real-time as a result.

Along with the quality of the rendering engine we also
needed the software to handle the technical requirements for
generating light fields. These requirements created problems
within other rendering engines we first began testing with. An
important issue is the size of generated images. For our project
to deliver a high quality light field for rendering, the size of even
a single frame of a light field video would surpass any standard
photo of the same output size. Since Otoy is designed with large
projects in mind the program itself will still generate images of
any size given until physical per system limits prevent
rendering.

Light field rendering contains an unnatural camera state
compared to other camera techniques in filming. The double
frustum [5] of light field cameras behaves differently to standard
single view cameras and is unnatural to think about within the
real world. We call this a light field camera. Otoy’s Octane
renderer has the ability for cameras to be generated with Open
Shading Language (OSL) scripted cameras known within
Octane as OSL cameras. The OSL camera offers us the ability
to generate custom cameras for different photographic needs.
Within our project an OSL camera shader is written to generate
a light field camera that contains a double frustum.

Fig 1: Double-Frustum Rendering [5].

B. Open Shading Language (OSL) Camera

 The written shader first begins by splitting the actual output
canvas into a grid of pixels. The width and height of this grid is
not the size of the output canvas but will pertain to a single
output view’s resolution when the light field is rendered, these
cells are known as hogels. Now within each hogel of this grid
are a number of pixels which represent all the possible rays of
the output pixel, starting from the hogel's location in the scene
and pointing towards the scene based on the field of view (FoV).

C. Saving a light field

The light field camera created by the OSL-camera shader

allows the light field to be saved as a single large PNG image

and when viewed raw a quick observation can be made about

the grid in which we can see the formation of hogels. This

format is also of benefit to rendering as each hogel will

represent the same output pixel as its grid location and the entire

image can be loaded onto hardware to increase performance.

To then generate an immersive video, we follow standard

methods for generating movies, we now look at the generated

light field not as a single image but instead as a single frame

within a movie. So now we need to generate every frame within

the scene, so we move the actors and light field camera into

their new positions based on the frame and render.

D. Testing and Results

Having generated a light field image, we needed to develop
a method to view the generated images. This began with
generating 2D images from the light field based on orthographic
projections of the light field (taking a single pixel from each
hogel all corresponding the same light ray angle). Once this
process was complete an output image would be saved and could
be viewed. By manual inspection we concluded that the results
were correct and moved onto a real-time renderer.

E. Scaling to Real-Time and Videos

 After initial testing had been completed we began to
formulate the design decision on how we would generate a final
viewer for our immersive videos. The idea of rendering on a
plane in a scene, then placing our immersive video onto the
plane became our method of choice. This method offered great
flexibility on our ability to test how an immersive video would
perform under different settings and specifications to both the
plane and camera viewing. This would include the ability to
move around the plane to view our light field from multiple
angles. As well, we can modify the size of the plane to represent
different display sizes and resolutions.

V. RENDERING LIGHTFIELD IN REALTIME

A. NVIDIA Optix 7.3 Ray Tracing Engine

To begin with a real-time render we needed to evaluate
current real time programing APIs and software. Since we were

not constrained by any program, we looked towards an API
which did not restrain the use of our program. We then decided
on the use of the NVIDIA Optix 7.3 Ray Tracing Engine (known
hereto as Optix) as this allowed us to create our real time
renderer in a very basic and efficient manner. This engine also
requires the use of NVIDIA CUDA API which enables our
program to interact with the graphics card directly.

Optix offered the ability to generate a ray tracing
environment in a fast and efficient method. Optix also gave low-
level control to the application developer allowing projects
developed on the engine to also be highly efficient. The ability
of memory control on both CPU and GPUs and their interactions
was included by the low-level design and is now the
responsibility of the user application through the use of the
CUDA API. Being able to control memory within our
application is essential for the large memory size of immersive
videos.

The resources available within Optix for how to develop within
the application was also of value as our program was created
using code available within the sample projects contained within
the installation of Optix. This enabled our renderer to begin with
some basic features already included and enabled focus onto
code which pertained to the rendering of immersive video and
not to basic rendering techniques already understood.).

B. Building the Renderer

The creation of our render now begins with the basics of how
Optix renders a scene. We begin this process by creating a basic
Optix program. This entailed the exploration and modification
of the sample code provided within the Optix API. This allowed
our project to already contain the basic features of a ray tracing
program. This included a method to define geometry within our
scene, create a camera and a system to render from that camera
in a window on the screen. The code also contained a system to
generate rays from each pixel location. From this basic code we
now needed to build our immersive video renderer. The first step
within this process was to build a single light field renderer. This
process begins with how our program accesses a light field.

Fig 2: Comparing a Scene and The Light field Camera Output Generated from it.

Since our implementation of a single light field is based upon
a large PNG file we need to load this into our program. This
required the use of the lodePNG library to be able to process the
compression of a PNG file. From this library we load the image
as a raw array of unsigned characters in which the values follow
a pattern of

 R(i) G(i), B(i) R(i+1) G(i+1), B(i+1) … ()

 where i represents a pixel location. These raw values are
stored onto the system memory (ram) and need to be moved onto
the graphics card video memory to enable the high speed look
up required for our light field. To do this we generate a 2D
CUDA texture on the graphics card and copy our light field from
the system memory onto the device using the CUDA memcpy()
function.

We now attempt to render a conventional 2D view of the
scene we have pre-rendered into a light field. This requires a
viewer camera position which images a plane representing the
light field image of our target scene.

 This begins with sending rays from our camera position into
the scene. The detection of a ray hitting onto the plane we
intended to use as our light field generates a hit in Optix. From
this hit we need to retrieve where on the plane the ray
intersected, the direction the ray was going, and the specifics of
the light field we have hit.

Based on the ray, we can reconstruct the light field from the
sampled rays contained in the light field image, using a
framework similar to that presented elsewhere [2].

VI. RESULTS

The objective of rendering immersive video requires our results

of all components of the project to behave according to their

function. We can then begin focusing on the results of

constructing light fields. After such we can examine the

performance of our real-time rendering of such scenes.

Our light field creation method contained parameters to

optimize the quality of a generated light field. This resulted in

the ability of a wide range of rendering times based on the

desired quality of a light field. During testing, generation of

light field images of sizes 8000 pixels by 8000 pixels could be

generated within 8 minutes under a direct lighting method with

low sampling. Although this result indicates we can generate

large light fields, time requirements would rise dramatically

when rendering complex cinematic scenes.

Our real-time rendering engine performance needs to be within

an interactive range. We use a frame rate measure to denounce

speed, denoted as frames per second (fps). Movies and other

such graphic entertainment average frame rates of 30-60 fps.

As such our results need to be well within these limits to be in

an interactive range.

We first then began testing with standard 2D images. When

displaying these standard 2D images averaged frame rates

ranged between 1200-1700 fps. A standard image of size 26754

X 26754 would have a rendered real time frame rate between

the range 1450 - 1650 fps.

Once rendering of standard 2D images produced the good

results we moved to testing rendering a view of a light field.

Through our testing light field images would run within the

same range of display as our simple 2D images. These results

are much higher than the stated frame rate of movies. By taking

an averaged frame rate within results we can subtract from the

standard movie speed requirements of 60 fps to receive how

many frames we have within our program to manage the time

requirements of turning our single frame renderer into a multi

frame.

The number of hogels used within a light field image had a high

impact on the quality of the image produced. During testing the

number of hogels directly represented the number of pixels a

Fig 3: Program displaying entire light field Image loaded (Not single view)

 16X16 Hogels 32X32 Hogels 64X64 Hogels 128X128 Hogels 256X256 Hogels

Fig 4: Increasing number of Hogels resulted in increased quality within a view during real time rendering.

view would have, as a result when using low hogel resolutions

our displayed results would be of low resolution, but when

using high number of hogels we would gain a high-resolution

image. This effect then had to be balanced by the number of

different views we would like to view our scene from to be able

to handle the physical limits on test machines

VII. CONCLUSION

Our project generates an approach to rendering light field
scenes in real time. We begin by creating light fields through the
Otoy Octane rendering engine using OSL cameras. From there
we tested the generated images to validate they were light field
images. From the results we began the next phase which entailed
the development of our real time rendering engine. We used
Optix and CUDA to generate a real time ray tracer that displays
any arbitrary view from the defined camera.

VIII. FUTURE WORK

The next step towards immersive video is expanding our
rendering engine to display multiple frames of a light field scene
over a time period. Once our rendering engine handles multiple
frames a compression of light fields will provide our program
with the ability to store enough light fields to generate entire
immersive movies in real time.

REFERENCES

[1] M. Levoy and P. Hanrahan, “Light field rendering,”

Proc. 23rd Annu. Conf. Comput. Graph. Interact. Tech.

- SIGGRAPH ’96, pp. 31–42, 1996, doi:

10.1145/237170.237199.

[2] M. Hamilton, C. Rumbolt, T. Butyn, D. Benoit, R.

Lockyer, and M. Troke, “P91: Light Field Display

Simulator for Experience and Quality Evaluation,” SID

Symp. Dig. Tech. Pap., vol. 49, no. 1, pp. 1523–1526,

2018.

[3] P. Lall, S. Borac, D. Richardson, M. Pharr, and M.

Ernst, “View-Region Optimized Image-Based Scene

Simplification,” Proc. ACM Comput. Graph. Interact.

Tech., vol. 1, no. 2, pp. 1–22, 2018, doi:

10.1145/3233311.

[4] M. Pharr, W. Jakob, and G. Humphreys, Physically

Based Rendering:From Theory To Implementation.

2018.

[5] T. L. Burnett, “Light-field Display Architecture and the

Challenge of Synthetic Light-field Radiance Image

Rendering,” SID Disp. Week, pp. 899–902, 2017.

