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Abstract—As software systems continuously grow in size and
complexity, performance and load related issues have become
more common than functional issues. Load testing is usually
performed before software releases to ensure that the software
system can still provide quality service under a certain load.
Therefore, one of the common challenges of load testing is to
design realistic workloads that can represent the actual workload
in the field. In particular, one of the most widely adopted and
intuitive approaches is to directly replay the field workloads
in the load testing environment. However, replaying a lengthy,
e.g., 48 hours, field workloads is rather resource- and time-
consuming, and sometimes even infeasible for large-scale software
systems that adopt a rapid release cycle. On the other hand,
replaying a short duration of the field workloads may still
result in unrealistic load testing. In this work, we propose
an automated approach to reduce the length of load testing
that is driven by replaying the field workloads. The intuition
of our approach is: if the measured performance associated
with a particular system behaviour is already stable, we can
skip subsequent testing of this system behaviour to reduce the
length of the field workloads. In particular, our approach first
clusters execution logs that are generated during the system
runtime to identify similar system behaviours during the field
workloads. Then, we use statistical methods to determine whether
the measured performance associated with a system behaviour
has been stable. We evaluate our approach on three open-source
projects (i.e., OpenMRS, TeaStore, and Apache James). The results
show that our approach can significantly reduce the length of
field workloads while the workloads-after-reduction produced by
our approach are representative of the original set of workloads.
More importantly, the load testing results obtained by replaying
the workloads after the reduction have high correlation and
similar trend with the original set of workloads. Practitioners can
leverage our approach to perform realistic field-replay based load
testing while saving the needed resources and time. Our approach
sheds light on future research that aims to reduce the cost of load
testing for large-scale software systems.

Index Terms—Load testing, workload reduction, workload
replay, software performance.
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I. INTRODUCTION

SOFTWARE performance is an essential measurement in
software quality [62]. Prior studies show that the failures of

large software systems are often due to performance and load-
related issues rather than functional bugs [25], [72]. Besides
the catastrophic field failures, performance and load-related
software issues may also increase the cost of operations of
the system and compromise the user experience. For example,
due to the extraordinarily high load of online grocery shopping
at the beginning of the pandemic in 2020 [26], some online
purchasing systems of supermarkets crashed or had extremely
slow responses [13], [64]. Both the financial and reputational
repercussions from these issues would be detrimental to the
success of software systems.

Load testing is one of the major activities for ensuring the
quality of services provided by the system under load [40].
However, due to the complex nature of software systems and
the ever-evolving user behaviours, load testing has become a
challenging task. In particular, practitioners often aim to design
load testing based on realistic workloads that can reflect the end
users’ behaviour while the software system is running in the
field environment. However, these workloads are continuously
evolving due to user base changes, feature changes (additions
and removals), and user preference changes over time [67].
Thus, it is challenging to maintain the load test cases to re-
flect realistic workloads in the field. One of the most intuitive
approaches to realistic load testing is to directly replay the
workloads from the field (i.e., behaviours of real end users) in
a load testing environment [22].

Despite the advantages of load testing that is driven by field-
relay, practitioners still face the dilemma between realistic load
tests and their costs. On the one hand, the longer the duration
of the replay, the more-representative the tested workloads.
For example, a load test can replay a full day (24 hours) of
the field workloads in order to reduce the bias caused by the
variation of workloads within a day (e.g., peak workloads at
a certain time of the day). However, the needed resources and
time for such a lengthy replay may become an obstacle for the
development of large-scale software systems, especially in a
fast-paced release cycle of the modern software development
process [6]. On the other hand, replaying a short duration of the
field workloads may not suffice the goal of realistic load testing,
as a short duration may not be representative of the actual field
workloads.
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In this paper, we present our approach that can reduce the
length of field-replay based load testing while preserving re-
alistic workloads. The intuition of our approach is that the
lengthy field workloads typically contain repetitions in system
behaviours. If we have obtained enough performance observa-
tions of the same system behaviour, we can skip the further
replaying of this system behaviour to reduce the length of the
field workloads. We first cluster the system behaviours, repre-
sented by the execution logs generated during system runtime,
in order to identify similar user behaviours. Afterwards, we con-
sider the stable software performance associated with similar
system behaviour as an indicator of having enough performance
observations. We apply the Kolmogorov–Smirnov test [63] to
determine whether adding additional testing time would have
a significant influence on the distribution of the measured per-
formance associated with each system behaviour. A statistically
insignificant result of the Kolmogorov–Smirnov test is used
as an indicator of stable performance. Since we only reduce
the workloads if there already exist similar workloads with
stable performance observations, the workloads-after-reduction
are still representative of both the system behaviours and their
associated performance.

We evaluate our approach on three open-source projects (i.e.,
TeaStore, OpenMRS, and Apache James) which are tested under
field-like varying workloads. In particular, our study aims to
answer three research questions (RQs):
RQ1: How effectively can our approach reduce tested
workloads?
The field workloads can be drastically reduced by using our
approach. Only 26%, 14% and 18% of the field workloads
in OpenMRS, TeaStore and Apache James, respectively, are
kept after reduction by our approach in the experiment. By
examining the results of our experiments, we find that while
the majority of the system behaviours achieve a stable perfor-
mance distribution throughout in a short duration, there exist
system behaviours that require a long testing time to achieve
the stability.
RQ2: How representative are the workloads-after-reduction
produced by our approach?
The workloads-after-reduction are representative of the original
set of workloads. When using the workloads-after-reduction to
build a performance model and use the model to predict the
system performance of the entire workloads, the predicted sys-
tem performance is similar to the original system performance
(with a median absolute relative error lower than 6.51%). The
performance model built from the workloads-after-reduction
has similar prediction results to the performance model built
from all the workloads with negligible effect sizes.
RQ3: How representative are the workloads-after-reduction
replayed in a different environment?
By replaying the workloads-after-reduction, the performance of
the systems in the replay environment has a high correlation
with the performance of the systems under the original set of
workloads. On the other hand, we encounter the challenge of
using scaling methods to transform workloads and their perfor-
mance data across different environments.

The evaluation results of our approach highlight the oppor-
tunities of automatically deriving and optimizing load tests of
large-scale systems based on the operational data from the end
users. Our results also illustrate the need for approaches that
scale performance data between the operational and testing
environment to better leverage the rich knowledge in the field
operational data.
Paper organization. The remainder of the paper is organized as
follows. Section II introduces the background of load testing.
Section III presents our approach to reduce the length of the
testing. Section IV introduces the subject systems we used and
how we collect the data. Section V presents the results of our
case study, organized along our three RQs. Section VII dis-
cusses prior research related to our work. Section VI discusses
the sensitivity analysis on the different configurations of our
approach. Section VIII discusses the threads to the validity of
our results. Finally, Section IX concludes the paper.

II. BACKGROUND

Load testing is the process of assessing a system’s behaviour
under a workload [40]. Typically, there are three phases in load
testing: 1) defining a workload, 2) running a load test, and
3) analyzing the results of a load test. Load testing is a compli-
cated and uncertain, but required process to ensure a system’s
quality under load [32], [45]. Prior studies propose techniques
to design a proper workload [17], [69], [76], determine test
length [6], [35], analyze test results [41], [48], [59], [67], and
detect performance issues [36], [73]. All these studies illustrate
the value and importance of load testing.

One of the common approaches to conducting a load test is
replaying historical field workloads. Although one may rely on
the workloads that are specified in existing benchmarks for load
testing, the benchmarks may not cover the unique workloads
of a specific system. In addition, there exist special real-world
cases where the field workload is completely different from
other workloads. For example, the throughput of an online
shopping system on Black Friday is much larger than the av-
erage daily workload1. To assess the system behaviour on the
next Black Friday, the simplest approach is to replay the exact
user behaviours from the last year’s Black Friday. However,
such replay-based load testing is extremely time consuming and
costly. For example, replaying the workloads from the previ-
ous year’s Black Friday may cost at least 24 hours and many
testing resources.

Prior research proposes automatic techniques to determine
the length of load testing [39] or when to stop load testing [6].
Prior approaches are typically based on the repetitiveness of
software logs [14], or the naive comparison of raw performance
counters [6], [55]. However, prior approaches that are based
on the repetitiveness of logs may not capture the performance
variation of the system (e.g., caused by the variation of exe-
cution experiment) when producing similar logs. On the other
hand, prior approaches that are based on comparison of raw

1https://www.triton.co.uk/black-friday-causes-seasonal-workload-spikes-
how-did-you-cope

https://www.triton.co.uk/black-friday-causes-seasonal-workload-spikes-how-did-you-cope
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Fig. 1. The overview of our approach.

performance counters may miss the difference of the system
performance under different workloads (e.g., under spike vs.
smooth workloads).

The above challenges in load testing motivate our study to
not only reduce the lengthy load testing but also capture the
representative system behaviours, i.e., covering diverse work-
loads while maintaining the accuracy of load testing results. The
next section details our approach.

III. APPROACH

In this section, we present our approach to reducing the
length of load testing. The overview of our approach is shown in
Fig. 1. Our approach consists of three steps: 1) characterizing
workloads, 2) grouping time periods with similar workloads,
and 3) workload stability analysis.

A. Characterizing Workloads

In order to reduce the workloads by extracting a represen-
tative subset of workloads, we first characterize workloads by
system runtime behaviours. In particular, we use the execution
logs that are generated during system runtime to represent the
system workloads.

1) Log Abstraction: Software execution logs are produced
during software system execution, which usually records impor-
tant system runtime behaviours. Generally, each line of execu-
tion logs contains valuable information, e.g., a log timestamp,
a user event, and a server response message. We refer to the
term user as any type of end user, such as IP address, email
address. Such information can be used to recover workloads
and then design proper load tests [27]. For example, prior work
has found that events in logs are useful sources for work-
load recovery [65], [67]. Therefore, in this step, we parse the
system execution logs to extract timestamps, user events and
system responses.

We first extract the log timestamp of each line of execution
logs. Second, we extract the user events. User events are typi-
cally a source of information to recover workloads. Table I is an
illustrative example of execution logs and their corresponding
log events. In our experiments, we use regular expressions to

TABLE I
OUR ILLUSTRATIVE RUNNING EXAMPLE OF EXECUTION LOGS AND THE

EXTRACTED LOG EVENTS

Timestamp Logs Log Events
00:02:00 update value a from 0 to 1 success update success
00:05:04 search value t= “jack” success search success
00:06:17 add new value s1= “hot” fail add fail
00:07:16 add new value s2= “cold” success add success
00:11:31 update value b from 5 to “O” fail update fail
00:59:57 update value c from 1 to 0 success update success

extract log events. However, in practice, one may adopt various
automated log abstraction techniques [77] for this step.

2) Generating Workload Signatures: Workload signatures
represent user behaviours in terms of their feature usage. Tra-
ditionally, one can represent a workload signature as the be-
haviour of one end user, or the behaviour of all aggregated users
in a short period of time, e.g., 120 seconds [17]. Since the per-
formance of a system is mainly dependent on the workloads of
aggregated users, in our study, we generate workload signatures
by aggregating the log events from all users during the short
period of time. A workload signature for each time period can
be represented by an n-dimensional vector (i.e., each element
value in the vector represents the number of appearances of a
unique log event during that time period).

Then, we specify the length of the time period. We find
that the setting of the time period should be long enough to
differentiate the workload signatures and create a representative
and reliable clustering result. On the other hand, a too-long time
period may contain a mixture of different types of workload
behaviors (i.e., behaviors that do not belong to the same cluster),
which can degrade the performance of our approach that lever-
ages clustering to reduce workloads. Intuitively, the workload
behaviors within a time period or a cluster should present a
similar pattern to allow effective clustering. In this paper, we
opt to use 10 minutes as the length of our time periods in order
to capture more diverse workloads. Comparing to prior research
[66] where 90 seconds to 150 seconds are chosen for the length
of time periods, the conservative choice of a 10 minutes time
period is due to: 1) the field workloads are often longer than an
in-house load testing, and 2) we want to provide a conservative
evaluation result of our approach to ease its adoption in practice.
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TABLE II
WORKLOAD SIGNATURES OF OUR RUNNING EXAMPLE

Log Events

Time Periods Update Update Search Add Add
Success Fail Success Success Fail

0 sec-600 sec 1 1 1 1 0
601 sec-1200 sec 1 2 1 2 3

1201 sec-1800 sec 2 1 2 1 1
1801 sec-2400 sec 4 4 4 4 4
2401 sec-3000 sec 4 4 5 5 5
3001 sec-3601 sec 3 3 3 3 4

By setting the length of time periods and generating a work-
load signature for each time period, the entire field workloads
are transformed into a time series, where each data point in the
time series is an n-dimensional space. Table II is an illustra-
tive example where each workload signature is a vector of 5
dimensions. The workload signature of the time period from
the beginning (0 sec) to the 600th second is < 1, 1, 1, 1, 0>.
The entire set of workloads are represented by a time series of
6 data points.

B. Grouping Time Periods With Similar Workloads

To study the performance stability of the workloads in dif-
ferent time periods, in this step, we apply a clustering algo-
rithm on the time periods based on their workload signatures.
Based on the clusters, we can group time periods with similar
workload signatures.

1) Distance Calculation: The first step of the clustering is
to calculate the distance between two time periods. We choose
to use the Pearson distance [29] to calculate the cluster distance
since the Pearson distance often produces a clustering that
is a close match to the manually assigned clusters [56]. The
equations (1) and (2) present the calculation of the Pearson
distance [28].

ρ=
n

∑n
i xi × yi −

∑n
i xi ×

∑n
i yi√

(n
∑n

i x
2
i − (

∑n
i xi)2)× (n

∑n
i y

2
i − (

∑n
i yi)

2)
(1)

distance=

{
1− ρ (ρ≥ 0)

|ρ| (ρ < 0)
(2)

xi and yi in Equation (1) are the ith elements in the two vectors
between which the distance is calculated. n is the length of
the vectors.

2) Hierarchical Clustering: We apply an agglomerative
hierarchical clustering to group workload signatures using a
distance metrics based on the Pearson distance. We choose
hierarchical clustering for the following reasons: 1) there is no
need to determine the number of cluster beforehand; and 2) the
hierarchical cluster result is intuitive and understandable.

Hierarchical clustering starts by defining each sample as
one cluster, so at the beginning we have a cluster set X =
{X1, X2, ..., Xn}, which n represents the number of sam-
ples. By using the distance calculation that we defined in
Section III-B1 (Equation (1) and (2)), we can obtain the distance
between two clusters, which is the linkage distance Δ(Xi, Xj).

TABLE III
PERFORMANCE VECTORS FOR THE TIME PERIODS IN OUR RUNNING

EXAMPLE (BASED ON TABLE II)

Time Periods (Cluster) CPU Utilization
t1 t2 t3 t4

0 sec-600 sec (X) 2% 1% 1% 1%
601 sec-1200 sec (Y) 33% 37% 41% 46%
1201 sec-1800 sec (X) 25% 20% 24% 34%
1801 sec-2400 sec (Z) 56% 47% 58% 23%
2401 sec-3000 sec (X) 23% 27% 2% 30%
3001 sec-3600 sec (Y) 34% 37% 43% 45%

Note: t1 to t4 indicate the recorded performance data during the 600-second
time period, i.e., one recorded performance data per 150 seconds.

Thus, we could start to build a binary merge tree [52] by merg-
ing the pair of clusters that are closest to each other. The merge
does not stop until the binary merge tree covers all samples and
merges to one single cluster at the top. Finally, the resulting
binary merge tree represents the hierarchical relationships be-
tween the clusters.

3) Dendrogram Cutting: The result of a hierarchical clus-
tering can be visualized using a dendrogram. Such a dendro-
gram must be cut at some height with a horizontal line. Each
workload signature will be assigned to a cluster after cutting
the dendrogram. To avoid human bias and make the cluster
results more reliable, we use the Calinski-Harabasz stopping
rule [16] to cut the dendrogram. The Calinski-Harabasz index
is a measure of the quality of a partition of a set of data. The
Calinski-Harabasz stopping rule can often cut the dendrogram
into the correct number of clusters [50]. Prior research also
reported that the Calinski-Harabasz stopping rule outperforms
other stop rules when clustering workload signatures [67].

Applying the clustering method to our running example, we
can obtain a clustering result for the workload signatures in
Table II. The time periods are divided into three clusters: X, Y,
and Z. The time periods 0 seconds - 600 seconds, 1201 seconds -
1800 seconds and 2401 seconds - 3000 seconds belong to
cluster X; the time periods 601 seconds - 1200 seconds and
3001 seconds - 3601 seconds are grouped into cluster Y. The
time period 1801 seconds - 2400 seconds forms cluster Z.

C. Workload Stability Analysis

In the final step, we analyze each group of workloads from
the last step to reduce the workloads with stable performance
distributions.

1) Generating the Performance Vector Set of Each Clus-
ter: After clustering the workloads, the next step is to analyze
the stability of the performance distributions of the workloads
in each cluster. Firstly, we sort and group the performance
data P in each time period tx according to the timestamp to
a vector Ptx = < px1, px2, ..., pxn >, where each data point
pxi is the ith recorded performance measurement in the time
period. Table III shows the vector of performance data for
each time period in our running example. After this step, we
can obtain a performance vector for each time period S =
< Pt1, Pt2, ..., Ptn > from t1 to tn. Then, based on the clus-
tering result, we merge the set of the time periods belonging



XIA et al.: REDUCING THE LENGTH OF FIELD-REPLAY BASED LOAD TESTING 1971

TABLE IV
THE WORKLOAD STABILITY ANALYSIS FOR THE WORKLOAD CLUSTERS IN

OUR RUNNING EXAMPLE (BASED ON TABLE III)

Cluster Time Period A Time Period B p-Value Stable?

X

0 sec-600 sec
0 sec-600 sec,

0.04 False
1201 sec-1800 sec

0 sec-600 sec,
0 sec-600 sec,

1201 sec-1800 sec
1201 sec-1800 sec, 0.99 True
2401 sec-3000 sec

Y 601 sec-1200 sec
601 sec-1200 sec,

0.99 True
3001 sec-3600 sec

Z 1801 sec-2400 sec N/A N/A False

to each cluster. The time periods belonging to cluster x can be
defined as Cx = {tx1, tx2, ..., txn}. The corresponding perfor-
mance vector is SCx = < Ptx1

, Ptx2
, ..., Ptxn

>.
2) Statistical Analysis of Performance Stability: To check

the stability of each cluster’s performance SCx, we start from
the first two time periods of each cluster. We form two per-
formance distributions from the set SCx, which is vector
V1 = < Ptxi

> and vector V2 = < Ptxi
, Ptx(i+1)

>, where i
starts from 1. After that, we apply the Kolmogorov–Smirnov
statistical test and employ a statistical threshold of 0.05 for
statistical test. The reason why we use Kolmogorov–Smirnov
statistical test [63] is that we would like to examine whether
the two distributions of the performance values are statistically
different. A p-value lower than 0.05 means that V1 and V2 have
different distributions in performance. In other words, Ptx(i+1)

brings extra information to Ptxi
. Therefore, the performance of

the corresponding cluster Cx is not stable. In contrast, if the
p-value of the Kolmogorov–Smirnov test between V1 and V2 is
larger than 0.05, the distributions of the vectors V1 and V2 do
not have a statistically significant difference. In other words, the
performance of the cluster is stable.

If the performance of the workloads of Cx are not yet stable,
we increase the value i and append another time period into the
vectors V1 and V2. As an example, if the p-value from compar-
ing V1 = < Ptx1

> and V2 = < Ptx1
, Ptx2

> is smaller than
0.05, we will further compare between V1 = < Ptx1

, Ptx2
>

and V2 = < Ptx1
, Ptx2

, Ptx3
>. We keep increasing the value i

until we observe a stable cluster of workloads, i.e., the p-value
bigger than 0.05, or until all the data in Ptx has been included in
the comparison. We only keep the time periods in V1 in the load
tests for cluster Cx, while the rest time periods in the cluster
will be excluded from the load tests.

We repeat the above process for every cluster. Finally, for all
the time periods that are kept in all the clusters for load testing,
we merge them together and sort them by their time stamps, to
make the final workloads for the load testing. For example, we
used the data from Table III to perform the workload stability
analysis, and the result is shown in Table IV. For cluster X,
the performance distribution is not stable in the first compar-
ison and it becomes stable in the second comparison. Cluster
Y achieves a stable performance in the first comparison. For
cluster Z, because it only has one time period, it does not have
a stable performance. As a result, the first two time periods
of cluster X, the first time period of cluster Y, and the only
time period of cluster Z are included in our load testing after
reduction. In our practice, we chose to monitor performance

TABLE V
OVERVIEW OF OUR SUBJECT SYSTEMS

Subjects Version SLOC (K) # Users # Lines of Logs (K)
Apache James 2.3.2.1 37.6 2000 458

OpenMRS 2.0.5 67.3 1000 3019
TeaStore 1.3.4 29.7 99 4502

every ten seconds. Since we mentioned that the length of the
time period is 600 seconds above (cf. Section III-A), the per-
formance vector in each time period has 60 elements.

As we describe above, we compare the performance vectors
in the time period set Cx, in which all the time periods share
the similar workload behaviors and are grouped into cluster x.
Without injecting performance bugs or adding new features,
we can ensure the stability of performance of the workload
behaviors in each cluster. In another word, after we confirm
the stability of a workload cluster, the performance of the
workloads belonging to this cluster are predictable, and the
measured performance at different time periods can converge
after a limited number of measurements.

IV. CASE STUDY SETUP

In this section, we present the setup of our case study.

A. Subject Systems

We choose three open-source systems including OpenMRS,
Apache James, and TeaStore as our subject systems. OpenMRS
is a web system designed to support customized medical health
care. Apache James is a Java-based mail system developed by
the Apache Foundation. TeaStore [70] is a basic web store for
tea and tea supplies, which is a microservice-based test and
reference application. All our subject systems have been studied
in prior research [17], [18], [30]. The overview of the three
subject systems is shown in Table V.

In our experiments, for a more precise evaluation, we should
clarify that we make sure that the database of our subject
systems runs in normal conditions without saturation, and we
assume that the database of the subjects only has a negligible
effect on the subject system’s performance.

B. Data Collection

In this subsection, we describe our approaches for collecting
system execution logs and performance data from the studied
systems. In this work, we focus on the CPU usage performance,
as the studied systems are CPU-intensive. In particular, we first
deployed the systems in our experimental environment and con-
ducted load tests to exercise the systems for an extended period
of time. All the subject systems we studied are deployed on the
Google Cloud Platform Compute Engine [1] with three separate
virtual machines. Afterwards, we collected system execution
logs and performance data during the system execution. For the
system performance (i.e., CPU usage), we use the tool Pidstat
[4] to monitor the process of the system every ten seconds.
Because we mainly focus on the performance of the host servers
in the experiment, we reduce the influence of the database
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(i.e., avoid rapid growth of the database size) by the design of
our workload. We detail our workload design for each of our
subject systems below. The details of our data can be found in
our replication package2.

OpenMRS: We setup our OpenMRS system with the Open-
MRS demo database version 2.2.1 [3] in our load tests. The
demo database contains various data for 5,000 patients. Open-
MRS contains four typical requests: addition, deletion, search,
and editing. We designed our load tests that are composed of
various searches of patients, concepts, and observations, as well
as addition, deletion, and edition of patient records. Because we
have both POST and DELETE test events at the ratio near 1:1
dynamically, the influence of the database size is not significant.

We deployed OpenMRS on two virtual machines, each with
4-core vCPU, 16GB RAM, and 24GB persistent disk. One
machine is deployed as the application server, and the other
machine is the MySQL server with the demo data. OpenMRS
provides RESTFul services. Therefore, we used the RESTFul
API of OpenMRS to simulate users sending requests to the
application server. In particular, we used JMeter to perform a
twenty-six hours duration of workloads to collect the system ex-
ecution logs. The execution log in OpenMRS is well structured,
so we do not need to use log parser tools in our paper.

Apache James: We used JMeter to create load tests to
exercise the Apache James server. We replicate the similar
workloads as a prior study [30]. In detail, we simulated 2,000
email users who send and receive different sizes of emails, with
or without small and large sizes of attachments. In addition, we
simulated the scenarios of users reading the email header or
loading the entire email. We also periodically delete the emails
to reduce the influence on the growth of the database size.

We deployed Apache James in a server machine with 8-core
vCPU, 32 GB memory on a 2 TB persistent disk. We run JMeter
on another machine with 4-core vCPU, 8GB memory and 24GB
persistent disk. Finally, we execute one-day-long workloads to
load test the Apache James server using JMeter. We obtain the
web request logs automatically generated by JMeter.

TeaStore: TeaStore has a few quintessential use cases, in-
cluding login system, browsing the store, browsing user’s pro-
file, browsing products, shopping products, and logging out
the system. Although we have POST test events like adding
products to the cart, it is not a long workload and we have
limited the number of users and categories of products to avoid
the rapid growth of the database size.

The experiments on TeaStore are performed with three sep-
arate virtual machines. These virtual machines have the same
hardware configurations, including 4-core vCPU, 8GB memory,
and 24GB persistent disks. We deployed the TeaStore web
application and database on the first and second machines,
respectively, while the third machine is used to run JMeter load
driver with varying workloads to simulate users accessing the
system with the above-mentioned use cases. Then, we obtained
the execution logs from the Tomcat server execution logs, which
are well-structured logs.

2https://zenodo.org/record/5593380#.YXMCq9mZNTY

TABLE VI
PETITT’S TEST RESULTS IN OUR SUBJECTS

Subjects p-Value Num of Change Points
OpenMRS � 0.001 5039
TeaStore � 0.001 4987

Apache James � 0.001 5029

Workload diversity. To have more realistic workloads and
avoid generating time-homogeneous workloads, we apply a
2-day-long real-world workload trend from WorldCup98 ac-
cess logs [9], which is widely used for workload designs in
prior work [11], [19]. We simulate the workload time series
in our workloads based on real-world workload features. We
calculate the frequency of each type of request and the number
of users every half hour. Then, to closely mirror actual user
behaviour, we sort the frequency of the request type and link
the WorldCup98 behaviour with the request type in our subjects.
For example, we link one GET image request in WorldCup98
to the GET person data request in OpenMRS. Finally, we set up
the number of threads and frequency of the workloads based on
the calculated features. The vastly different workloads between
different time periods can provide the maximum support for
simulating most customer activities. To have a more compre-
hensive view of the diversity in the workloads, we apply Pettitt’s
test [54] to verify if the workload is time-homogeneous. Pettitt’s
test is a statistical test used to detect any abrupt change point in
the time series in Prior works [31], [47]. Table VI presents the
statistical results on the workloads in subject systems. We use
the classical threshold of 0.05 for statistical tests to determine
the statistical significance. When p-value smaller than 0.05, we
can confirm that the change points exist in the time series of
the workloads. Therefore, there are moments in time when the
workload characteristics have significant changes, which proves
that the workloads are not time-homogeneous.

V. CASE STUDY RESULTS

In this section, we present the case study results by answering
our three research questions (RQs).

RQ1: How effectively can our approach reduce tested
workloads?

Motivation
In order to achieve realistic workloads in load testing, prac-

titioners often conduct load tests by simply replaying the field
workloads that are obtained from the real usage scenarios of
end users. However, as discussed in Section II, determining the
length of the field workloads is challenging. A set of workloads
with a too-small size may not contain representative workloads,
while a too-large set of workloads would cause the load testing
to be very expensive and may delay the release schedule of the
software system, especially in a fast-paced release cycle [40].
Therefore, in this RQ, we would like to examine how effective
our proposed approach is in reducing the length of the load tests.
Approach

We apply our approach (cf. Section III) to the three datasets
obtained from our experiments on the studied subject systems.

https://zenodo.org/record/5593380#.YXMCq9mZNTY
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TABLE VII
WORKLOAD REDUCTION RESULTS FOR OUR STUDIED SYSTEMS

Project
Time Length (Minutes) # Clusters

Before After # Total # Stable
Reduction Reduction Clusters Clusters

OpenMRS 2,880 470 23 21
TeaStore 2,880 370 21 11

Apache James 2,880 450 22 20

In particular, the datasets contain the logs and the performance
metrics (CPU usage) that are collected when the subject systems
are executed under random and varying workloads. We consider
these three datasets as the source of the system replay, i.e., the
input of our approach. After applying our approach, we generate
a new set of workloads, which reduces the length of the original
set of workloads. Therefore, we first measure the size of the
reduction, i.e., how much shorter (in minutes) the new set of
workloads is compared with the original set of workloads.

To further understand the effectiveness of our approach, we
calculate three numbers: the total number of clusters of work-
loads, the number of workloads that achieve stable results after
applying our approach, and the number of workloads that can-
not achieve stable results. The more workloads that can achieve
stable results, the more promising our approach is in practice.
Results
Our approach can effectively reduce the length of the
original load testing workloads. Table VII shows the results
of our approach for reducing the performance testing workloads
on our studied subject systems. By applying our approach, we
find that the length of the load testing of our studied subject
systems can be significantly reduced compared to the original
set of workloads. In particular, for TeaStore, the time length
of the workloads after being reduced by our approach is only
370 minutes, whereas the original set of load testing work-
loads requires two days (2880 minutes) of execution (i.e., the
reduction rate is 87%). When we compare the total number
of clusters of workloads with the number of workloads that
achieve stable results after applying our approach, we observe
that our approach can reduce the majority of the clusters of
workloads. For example, for Apache James, 91% of the clusters
of workloads can be further reduced by our approach. For those
clusters that cannot be reduced in our approach, we consider the
reason being the size of those clusters, i.e., there are only one or
two time periods in those clusters, which are difficult to reduce
further. For example, for TeaStore, all the clusters that cannot
be reduced only have one or two time periods.
When the system is under random and varying workloads,
simply reducing the length of load test workloads by
time can miss representative workloads. Fig. 2 presents the
convergent speed of each cluster when applying our approach
for reducing performance testing workloads on our studied
subject systems. Each line in the figure shows p-values of each
cluster of workloads during workload stability analysis (cf.
Section III-C), where dot above the red line (the threshold of
p-value at 0.05) indicates that performance of the cluster of
workloads is stable. From those figures, we observe that some of
the lines have quite low slopes, which means that the workloads

Fig. 2. The convergence speed of the workloads clusters. The red horizontal
lines indicate the threshold of p-value (0.05) for determining statistical
significance.

cannot achieve a stable performance distribution throughout.
Moreover, the distribution of lines with low slopes does not
concentrate on a part of the time periods. For example, for
OpenMRS, lines with low slopes exist around the 500th and
1600th minute in the figures. Such results also indicate that the
length of the load testing workloads cannot be simply reduced
by cutting down the time of the original set of workloads. If
we simply reduce the length of the original set of load testing
workloads by time, for example, only keeping a few hours at the
beginning, some important field workloads would be missing,
and it would be hard to achieve stable performance.



1974 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, AUGUST 2024

RQ2: How representative are the workloads-after-
Reduction produced by our approach?

Motivation
RQ1 shows that our approach can effectively reduce the field

workloads into much shorter versions. However, if a workloads-
after-reduction is not representative of the original set of work-
loads, the reduction from our approach is meaningless, since it
would lead to unrealistic load tests, i.e., the testing workloads
cannot represent the actual workloads from the end users in
the field. Thus, the goal of this RQ is to assess the representa-
tiveness of the workloads-after-reduction that are generated by
our approach.
Approach

In order to assess the representativeness of the workloads-
after-reduction, we examine whether we can use the workloads-
after-reduction to extrapolate the original set of workloads
before reduction. In particular, we build a performance model
using only the data from the workloads-after-reduction that are
generated by our approach, and use the model to predict the
performance of the system under the original set of workloads.
We call this model Mr in the rest of this section.

We apply the random forest learning method to build the
model [46]. Random forest is a learning method widely used for
classification and regression. The random forest model uses the
workload signature every ten seconds as independent variables
and performance metrics (i.e., the CPU usage data every ten
seconds) as its dependent variables. After training, we obtain a
random decision forest consisting of many individual decision
trees that operate as an ensemble. Given the workload signa-
tures in a ten-second period as the input, the composing deci-
sion trees make their individual predictions of the performance
metric and then cast a vote on the final predicted result.

Using a random forest model that takes the workload infor-
mation in a time period as input and predicts the associated
performance, we assume that our systems (more specifically,
how the systems react to the requests) are stateless. From one
point of view, we observed that the processing time of the
requests of the systems is very short, with the maximum pro-
cessing time below 400 ms and average processing time below
100 ms. From another point of view, we conducted experiments
to compare the performance of the system in two different
phases of execution under the same workload. We observed
that there is no significant difference in processing between the
two phases of execution (results are added in our replication
package). Therefore, we could not reject our assumption that the
performance behaviour of our studied systems is not negligibly
impacted by their states.

Measuring the performance model fit. We first evalu-
ate the quality of Mr using the model fit. If Mr has a poor
model fit, we cannot trust the data produced by this model,
i.e., the workloads-after-reduction by our approach do not
have the capability to model the performance of the software
system. In particular, we construct Mr by training on the
data that is in the workloads-after-reduction by our approach.
To evaluate the model fit of Mr, we first apply Mr on the
data that is in the original set of workloads but not in the

workloads-after-reduction, and then calculate the median ab-
solute relative error (MARE), which is used as a measurement
for the model fit. Smaller values of MARE indicate better
prediction accuracy.

Comparing the predicted and the actual system per-
formance. In addition, we compare the system performance
predicted by Mr with the actual observed system performance.
Similarly, we apply Mr on the data in the original set of
workloads but not in the workloads-after-reduction. If the
workloads-after-reduction are representative of the original set
of workloads, Mr should be able to predict the system per-
formance based on the workloads in the original set of work-
loads. We perform statistical analysis to examine the deviation
between the predicted and observed performance in terms of
CPU usage. Specifically, we calculate the Pearson correlation
[29] to measure the relationship between the predicted values
generated by Mr and the observed performance.

Comparing the prediction error with a baseline. To
further understand the representativeness of the performance
model that is built from the workloads-after-reduction (Mr), we
compare its prediction error with a baseline, i.e., a performance
model that is built using all the original set of workloads,
i.e., Mo. Our intuition is that if Mr is as good as Mo, we
can consider that the workloads-after-reduction have the same
capability of modeling system performance as the original set
of workloads. Therefore, the workloads-after-reduction can be
considered representative. To comprehend the difference be-
tween the two models (i.e., the model of baseline and Mr),
we use the Kolmogorov–Smirnov test [63] to determine if
there exists a statistically significant difference (i.e., p-value
<0.05) between the prediction performance of baseline and
Mr. We choose the Kolmogorov–Smirnov test because it does
not enforce any assumptions on the distributions of the data.
Reporting only the statistical significance may lead to erroneous
results (i.e. if the sample size is very large, p-value can be small
even if the difference is trivial). Thus, we further use Cohen’s
D [21] to quantify the effect size between the predictions of
the two models. Through the statistical analysis, we can have a
clear view of the differences between the error distributions of
the two models.

In particular, for Mr, we train this model using the
workloads-after-reduction, and apply the model on the data
of workloads that is removed by our approach, i.e., data in
the original set of workloads but not in the workloads-after-
reduction. However, for Mo, we cannot directly calculate the
prediction error since applying a model to its training data leads
to biased (overly optimized) results. To address this issue, we
apply the throw-one approach used in prior research [46]. For
each time period in the original set of workloads, we remove its
data from the training data to rebuild the model and apply the
rebuilt model to the time period. We repeat the process until all
time periods are used as test data once.
Results
The workloads after our approach’s reduction can effec-
tively represent the original set of workloads in terms of the
corresponding performance. Table VIII presents the median
relative error of the model built on workloads-after-reduction
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TABLE VIII
COMPARING THE ORIGINAL PERFORMANCE DATA AND THE

PERFORMANCE PREDICTED BY THE MODELS BUILT

FROM THE WORKLOADS-AFTER-REDUCTION

Project MARE Correlation
OpenMRS 11.45% 0.88
TeaStore 10.45% 0.92

Apache James 10.24% 0.63

TABLE IX
COMPARING THE PERFORMANCE PREDICTED BY THE MODELS THAT

ARE BUILT FROM THE WORKLOADS-AFTER-REDUCTION AND THE

ORIGINAL SET OF WORKLOADS (I.E., THE BASELINE)

Project p-Value Cohen’s D
OpenMRS � 0.001 0.38(small)
TeaStore � 0.001 0.12(negligible)

Apache James 0.42 0.02(negligible)

Fig. 3. Prediction performance of TeaStore. The shaded region represents
the predicted performance data while the un-shaded area shows the perfor-
mance data that are used to build the models (the workloads that are kept
after the reduction).

and the Pearson correlation between the original performance
data and the predicted values. We find that for all the subject
systems, after applying our approach, the model Mr built on
the data from the workloads-after-reduction are of high quality,
which achieves a median relative error of 11.45%, 10.45%,
and 10.24%, respectively, for system performance prediction.
Moreover, the relatively high Pearson correlations (0.88, 0.92,
and 0.63) between the predicted values generated by Mr and
the original performance data also show the representativeness
of the workloads-after-reduction generated by our approach.

The comparison results of the prediction error distributions
between the performance model built on the workloads-after-
reduction and the baseline model (i.e., model built using the
original set of workloads) are shown in Table IX. The predic-
tion errors of all three subject systems have either statistically
insignificant or negligible differences between the two models
(i.e., Mo and Mr), indicating that the workloads-after-reduction
generated by our approach has the same capability of modeling
system performance as the original set of workloads.

In addition, Fig. 3 presents the trends of both the original and
predicted performance data over time, in which we can clearly
see how representative the workloads-after-reduction are. In

particular, the shaded region represents the predicted perfor-
mance data. At the same time, the unshaded area shows the
performance data used to build models, which is also during the
period of the workloads-after-reduction. The graph shows that
the trends of the original performance data and the prediction
data are similar. For the purpose of comparing the prediction
effects, we present two lines representing two prediction meth-
ods, i.e., Mr and the baseline. Although the baseline method is
closer to the original data, the trend of predicted performance
between the baseline method and Mr is similar. Such results
also indicate the strong representativeness of the workloads-
after-reduction generated by our approach for the original set
of workloads. Due to space limitations, we only provide the ex-
ample of one system, i.e., TeaStore. The run charts of the other
two subject systems are included in our replication package.

RQ3: How representative are the workloads-after-
reduction replayed in a different environment?

Motivation
In the previous RQ, we find that, with our approach, we can

effectively use the workloads-after-reduction generated by our
approach to extrapolate the original varying workloads. Such
results could show that the workloads-after-reduction represent
the original varying workloads captured in the same field en-
vironment. However, in practice, end users’ original workloads
are typically extracted from the field environments. In contrast,
the load tests that replay the workloads are often conducted in
a testing environment. If the workloads-after-reduction by our
approach are sensitive to the runtime environment configura-
tion, it may not be suitable to replace the original performance
testing workloads in practice.

To simulate the change of runtime environment configura-
tions, it is necessary to test both the change of hardware con-
figurations and software configurations. As the load of servers
increases, developers tend to upgrade the hardware to a higher
configuration to improve the performance of the services. In
contrast, developers may downgrade the hardware to a lower
configuration if the default hardware configuration is too high
to utilize. Since the various JDKs made by different publishers
have been used in reality, the experiments on different JDKs
are important. In addition, updating the database version is also
a critical change in software. For example, since the security
and performance of MySQL 8.0 is better than 5.7, developers
would migrate MySQL to version 8.0 if necessary. As a result,
testing all these configurations is necessary to evaluate the
effectiveness of our approach.

Therefore, this RQ aims to examine whether the replaying
results using the workloads-after-reduction generated by our
approach in a different environment are still representative of
the original workloads from the original field environment.
Approach

To answer this research question, we redeploy our studied
subject systems in a new environment to be the replay en-
vironment. To minimize potential noise factors, we keep the
server configurations consistent (e.g., operating system version,
maven version), except for the variables that must be changed
(e.g., vCPU numbers and Java source). Additionally, we employ
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TABLE X
THE HARDWARE CONFIGURATIONS OF THE ORIGINAL AND

THE REPLAY ENVIRONMENTS

Project
Hardware Configuration

(Using Openjdk and MySQL 5.7)
Original Replay

OpenMRS 4vCPU, 16GB memory
8vCPU, 32GB memory
2vCPU, 8GB memory

0.5vCPU, 4GB memory

TeaStore 4vCPU, 16GB memory
8vCPU, 32GB memory
2vCPU, 4GB memory
1vCPU, 4GB memory

Apache James 8vCPU, 32GB memory
16vCPU, 64GB memory
4vCPU, 16GB memory
2vCPU, 4GB memory

TABLE XI
THE SOFTWARE CONFIGURATIONS OF THE ORIGINAL AND

THE REPLAY ENVIRONMENTS

Project
Software Configuration

(Using Original hardware configuration)
Original Replay

OpenMRS OpenJDK, MySQL 5.7
Oracle-JDK, MySQL 5.7
Zulu-JDK, MySQL 5.7
OpenJDK, MySQL 8.0

TeaStore OpenJDK, MySQL 5.7
Oracle-JDK, MySQL 5.7
Zulu-JDK, MySQL 5.7
OpenJDK, MySQL 8.0

Apache James OpenJDK, version 2.3
Oracle-JDK, version 2.3
Zulu-JDK, version 2.3
OpenJDK, version 2.2

workloads that are identical to the workload-after-reduction to
test the system. We test the higher or lower hardware configu-
ration with OpenJDK and MySQL 5.7. The details of the dif-
ferent hardware configurations between the replay environment
and the original environment are shown in Table X. For each
system, we consider upgrading and downgrading the hardware
configurations. For example, for the OpenMRS system, while
the original environment has 4vCPU and 16G memory, we
consider a replay environment with 8vCPU and 32G memory
as well as another replay environment with 2vCPU and 8G
memory. To understand the performance of the subject systems
when they reach their saturation, we also deploy the systems in
extremely basic replay environments, such as using 0.5vCPU
for OpenMRS and 1vCPU for TeaStore. Since the minimum
configuration of CPU is 2vCPU, we use the cpulimit [2] tool
to simulate the hardware environment under 2vCPU by lim-
iting the maximum usage of the CPUs. Moreover, we choose
Oracle-JDK and Zulu-JDK to test the different JDK publisher
conditions and MySQL 5.7 and 8.0 to simulate the database
update across different versions. In particular, because Apache
James 2.X directly stores data on disk (i.e., without a database),
we cannot change the database version of Apache James. As a
solution, we choose a different version (Apache James 2.2) for a
comparison. The details of the different software configurations
between the replay environment and the original environment
are shown in Table XI.

We generate load tests based on the workloads-after-
reduction and use JMeter load test driver to replay the
workloads-after-reduction. While testing, we collect the

performance metrics (e.g., CPU) for every ten seconds by
Pidstat [4]. When replaying the workloads-after-reduction
finished, we retrieve the execution logs from the web servers
(e.g., Tomcat), which are used to provide the web server
environment.

Similar to RQ2, we build performance models based on
the replay of the workloads-after-reduction in the replay en-
vironment. We name this performance model Mer. We use
Mer to predict the performance of the original workloads in
the original environment without reduction. By calculating the
deviance of the predicted values and the actual performance
at runtime, we can have a clear view of how our approach
performs when replaying the workloads-after-reduction in a
new environment. However, since differences exist between the
hardware configurations of the replay environment and the orig-
inal environment, we would not directly compare the predicted
performance metrics and the measured performance metrics. To
better compare the two performance data distributions gener-
ated under different environments, we leverage the following
scaling approaches:

• Max-Min scaling approach is a normalization method
bringing all values into [0, 1] as the ratio of the value in
the range between maximum and minimum. The formula
of the approach is Pxscaled =

Px−Min(P )
Max(P )−Min(P ) , which the

Px is the xth value in the P is the vector needed to scale.
• Median scaling approach is used in prior research [8] to

reduce the bias caused by different environment configu-
rations. The result of the scaling is the ratio between the
distance to the median and the value of the median absolute
deviation. In particular, the scaling follows the formula
Pxscaled =

Px−Median(P )
MAD(P ) , where the MAD is the median

absolute deviation of vectors.
• Scaling by modeling utilizes linear regression models to

model the relationship between each log event’s frequency
and the system performance. We hypothesize that the Rα

and Rβ are the same dependent variable (i.e., CPU utiliza-
tion) in two different datasets (i.e., the set of workloads in
the original environment and replay environment) while
the α and β is the independent metrics. Then, the coeffi-
cient kα, kβ and intercept hα, hβ from Rα = kα · α+ hα

and Rβ = kβ · β + hβ . Finally, the normalize metric will
be αNormalize =

kα·α+hα−hβ

kβ
. By transforming each in-

dependent metrics dimension, we can finally obtain values
of the dependent variable with the same dimension. This
approach is adopted from the work of Nguyen et al. [51].

• Robust scaling method is an advanced version of the
median scaling method. The median absolute deviation
is replaced by the inter-quartile range (i.e., IQR), which
is Pxscaled =

Px−Median(P )
IQR(P ) . IQR can be explained as

the differences between the 25th percentile and the 75th
percentile. The formula shows that the method receives
less influence from the outlier and may ignore more
information.

• Quantile scaling method uses the rank of the value in
each metric. Firstly, through ranking, we can obtain the
ranks of the values. Secondly, we can calculate the average
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value of the values that have the same rank in all vectors.
Finally, the original value will be replaced by the average
calculated. This method is widely used in cross-project
modeling in software engineering [75].

• Transfer learning is used to improve a learner for one
domain by transferring information from a related do-
main [71]. In this field, Krishna et al. [43] propose a
framework called BEETLE for finding the best source
of transfer learning. Several previous studies [49], [53]
extend the configuration space for transferring learning.
Also, Jamshidi et al. [38] focus on the performance of
the transfer learning method under different configuration
change scenarios, which are highly related to the scal-
ing problems we will discuss below. For the generaliz-
ability of our approach and ease of the experiment, we
adopt a convolutional neural network (i.e., CNN) widely
used in prior work [5] as the architecture for training
our deep learning model. Specifically, we use the log se-
quences in the workload signatures and the corresponding
performance data of the workload-after-reduction as the
features and the response variable, respectively, to train
the CNN model. To apply transfer learning, we fine-tune
the trained model using the replay data to obtain another
model. This model can be later used in this RQ to under-
stand the representativeness of the reduced workloads for
workload replay.

The implementation details of the scaling methods are in-
cluded in our replication package.

We scale the prediction data based on Mer by applying
the scaling approaches. Based on the scaled data, we measure
the median relative error of Mer, which is calculated as the
difference between the predicted performance and the measured
performance, normalized by the measured performance. For
example, by using the Max-Min scaling method, we scale both
two performance vectors (i.e., original performance, predicted
performance based on model Mer). Then, we can obtain the
scaled data of these two vectors from zero to one. Also, we
calculate the Pearson correlation of the original performance
and predicted performance value generated by model Mer to
further capture the relationship of the original set of workloads
and the replayed workloads after reduced by our approach in
the different environments.
Results
The performance data from the replayed workloads is
representative of the original set of workloads. Table XII
presents the median relative error of the performance mod-
els based on the re-playing the workloads-after-reduction in
the new load testing environment and the Pearson correlation
between predicted performance value and actual performance
during the original execution. Fig. 4 presents the trend of scaled
original performance data and predicted data over time for
OpenMRS. If we exclude the saturated condition of the system,
we can observe significant correlations, ranging from 0.34 to
0.92, between the predicted performance value generated by
model Mer and the measured performance data. The results
indicate that the replaying results using the workloads-after-
reduction generated by our approach from a different environ-
ment are still representative of the original workloads from the

TABLE XII
COMPARISON BETWEEN THE PERFORMANCE DATA FROM REPLAYING

THE WORKLOADS-AFTER-REDUCTION IN THE REPLAY ENVIRONMENT

AND THE ORIGINAL PERFORMANCE DATA. BOLD FONT INDICATES

THE BEST SCALING METHODS

Project Configuration Correlation
MARE After Scaling

Max-Min Median Model Robust Quantile TL∗

OpenMRS

8vCPU 0.91 92.99% 123.99% 33.23% 41.22% 19.94% 47.53%
2vCPU 0.87 467.57% 1315.11% 247.26% 49.24% 22.26% 764.36%

0.5vCPU 0.78 603.73% 128.65% 681.37% 63.57% 29.19% 481.71%
Oracle-JDK 0.91 43.08% 139.74% 16.19% 42.98% 20.49% 15.68%
Zulu-JDK 0.90 75.04% 274.11% 57.94% 42.94% 20.29% 434.58%

MySQL 8.0 0.91 57.21% 148.83% 12.50% 43.86% 20.64% 36.70%

Teastore

8vCPU 0.91 45.12% 130.31% 69.58% 48.52% 22.78% 87.17%
2vCPU 0.88 58.01% 139.97% 14.42% 100.16% 49.38% 36.40
1vCPU 0.61 56.22% 159.60% 23.54% 107.93% 49.17% 37.13%

Oracle-JDK 0.92 70.82% 201.17% 28.53% 124.86% 55.04% 65.61%
Zulu-JDK 0.71 54.89% 147.64% 26.27% 84.50% 40.91% 64.58%

MySQL 8.0 0.76 70.55% 164.92% 30.26% 64.06% 30.83% 69.62%

Apache James

16vCPU 0.45 63.26% 88.23% 74.80% 106.32% 44.07% 70.79%
4vcpu 0.52 152.95% 81.79% 14.90% 100.75% 41.87% 24.68%
2vcpu 0.29 190.25% 92.78% 54.08% 116.36% 50.22% 168.85%

Oracle-JDK 0.76 66.58% 90.62% 33.67% 71.94% 29.59% 13.86%
Zulu-JDK 0.89 40.58% 98.99% 36.43% 108.48% 46.80% 22.06%
Version2.2 0.97 98.23% 110.94% 20.86% 137.63% 60.42% 23.13%

∗ TL: Transfer Learning
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Fig. 4. Comparison of the original performance and the predicted perfor-
mance based on the replay data (after the Max-Min scaling) for TeaStore.

original field environment. However, we notice that when the
system reaches its performance bottleneck, the degradation of
the replay’s representativeness would be significant. Table XII
shows that when using the weakest configurations, the correla-
tion between the original and the replayed system performance
is much lower than when using other configurations. As the
subjects reach the bottleneck, the systems cannot respond to
requests in a common efficiency, which causes the latency of the
workloads to be higher than usual. Such results show that with
the saturation and slow response of the system, the behaviour
of the system under the workload will be different from its
behaviour under a normal workload. Our results suggest that
our proposed approach for testing length reduction and replay
is more appropriate for the scenarios when the system is tested
under normal workloads. Further, the results inspire us to be
careful of the side effects of changing configuration when hav-
ing a replay.
Future work on scaling the performance data from dif-
ferent environments is needed. Table XII shows how the
different scaling methods affect the quality of the performance
model in terms of the median absolute relative prediction error.
We find that, when re-playing the reduced workloads under a
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different environment, using all the selected scaling approaches,
the performance model still has a relatively high MARE, while
under the same environment, the maximum MARE is only
11.45% (cf. Table VIII).

Such results indicate the limitations of the current scaling
approaches for analyzing performance data from different en-
vironments. From the empirical results from Jamshidi et al.
[38], some non-linear correlation may exist during some con-
figuration changes. However, it is also encouraging to see that
the prediction errors become similar to others when scaling
methods are applied. Such results signify the importance of
advanced scaling methods for future performance engineer-
ing tasks that are conducted across different environments.
Although Iqbal et al. [42] have developed a debugging tool
for fixing misconfiguration on CPU latency, this tool may not
address all configuration changes across environments. Among
all the scaling methods we used, we also cannot find one that
has stable performance. Model scaling, Quantile scaling, and
transfer learning methods have a relatively better performance
on scaling in different software environments. For example,
for Oracle-JDK configuration in Apache James, the transfer
learning method can have a MARE as low as 13.86%.

As performance data generated in the field contains valuable
information about how the system behaves in production, many
field performance data are being analyzed by performance engi-
neers to understand the system performance, e.g., detecting per-
formance regressions [46]. However, in these cases, the testing
environment is often not completely identical to the production
one. If there is no optimal scaling approach to eliminate the
bias from different environment configurations, performance
data obtained in the field may be difficult to use properly and
reasonably. Therefore, our findings also advocate the need for
future research on better scaling the performance data from
different environments to reduce the bias caused by configu-
ration differences.
The challenge of Apache James The less-promising results
for the Apache James system might be due to its nature of
being a mail server application. In particular, we designed
multiple JMeter scripts to simulate the user operations on the
system, e.g., reading and receiving different sizes of mail. When
processing an email with a relatively large size, such workloads
are likely to influence system I/O more than CPU. As a result,
after we increase the cores of the CPU for testing, the usage of
the CPU tends to have no change because of the low load on the
CPU. Since the CPU variance of Apache James under different
workloads is low, the results in a trained model optimized in the
low variance CPU range perform poorly in unseen CPU usages
(e.g., when the number of CPU cores is doubled). This explains
the relatively poor performance of the model trained for Apache
James in a 16vCPU environment in RQ3.

VI. SENSITIVITY ANALYSIS

In this section, we perform a sensitivity analysis on three
parameters in our approach, including the distance measure-
ment, the time period size and the frequency of collecting
performance data.

TABLE XIII
THE CLUSTERING RESULTS USING DIFFERENT DISTANCE METRICS

Distance Metrics Project Cluster Number MARE

Euclidean
OpenMRS 2 51.52%
TeaStore 10 11.02%

Apache James 2 18.39%

Cosine
OpenMRS 3 42.03%
TeaStore 2 18.28%

Apache James 2 16.17%

Pearson
OpenMRS 23 11.45%
TeaStore 21 10.45%

Apache James 22 10.24%

A. Impact of the Distance Measurement in Workload
Clustering

In our study, we use Pearson distance to measure the differ-
ence between different workload signatures. To understand the
impact of choosing different distance measurements, we also
cluster our workload signatures using two other distance metrics
that are commonly used in data clustering, including Cosine
distance and Euclidean distance.

We find that using Cosine distance on all subjects can only
lead to two clusters of workloads. The low number of clusters
is caused by the bias from the Euclidean distance, where one
dimension (i.e., representing a log event) with large variances
in the data may dominate other dimensions. Similarly, using
Cosine distance also leads to a very small number of clusters.
In particular, the data from Apache James can only be clus-
tered into two groups using Euclidean distance. However, we
can obtain ten clusters for TeaStore using Euclidean distance
since we have a wider range of values (i.e., ten times larger
on range due to downstream request). This extensive range in
the data causes the Euclidean distances to be more dispersed
compared to other subjects, leading to a greater number of
identifiable clusters. This is because the relative difference in
the performance data may be small, and the Cosine distance
cannot distinguish the differences between workloads. The low
number of clusters would lead to difficulty in obtaining stable
performance data in the same cluster of workloads. In fact, we
observe that the prediction results from the Table XIII that using
Euclidean distance and Cosine distance obtain a worse MARE
while the number of clusters decreases since the cluster results
cannot contain all the features of the workloads.

B. Impact of the Time Period Size

In order to understand the impact of choosing different sizes
of time periods, we chose a relatively larger time period size,
i.e., 1200 seconds and a relatively smaller one, i.e., 90 seconds,
as comparisons with our original 600-second time period size.

With 1200 seconds as the size of the time periods, we obtain
similar stable clusters as our original results with a 600-second
time period size. For example, we produce 10 stable clusters
for OpenMRS using 1200-second time period sizes(compared to
the original 23 clusters). Based on the decreased cluster number,
the length of the workload-after-reduction decreases from 470
to 300 minutes. However, using the workload-after-reduction,
the MARE increases from 11.45% to 16.58%.
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When using a 90-second time period, we end up with nu-
merous clusters. Since the target of the stopping rule applied
is to search the highest value of the ratio between the disper-
sion between clusters (i.e., using assumed cluster numbers for
calculating the ratio) and the dispersion of the elements in the
clusters, the exaggerated differences between clusters would
dominate the correlation inside the clusters. The consequence
of the domination would tend to split lots of single sample
clusters. For example, the workload is split into 37 clusters
for OpenMRS. There are two reasons that we avoid generating
too many clusters. Firstly, the large number of clusters may
not be suitable for developers to analyze. Secondly, the shorter
time period would contain a small amount of performance data
in each time period, which may not be suitable for statistical
testing, such as the Kolmogorov–Smirnov statistical tests used
in our approach. Without enough sample size, the result of the
Kolmogorov–Smirnov statistical test is not reliable [44].

C. Impact of the Frequency of Collecting Performance Data

In our approach, we collect performance data every ten sec-
onds. However, we would like to study the impact of chang-
ing the frequency of collecting performance data to every
30 seconds.

With a 30-second sampling frequency, we can obtain a
shorter length of workload-after-reduction (i.e., 330 minutes)
for OpenMRS. Similar to our above discussion on the time
period sizes, the Kolmogorov–Smirnov statistical test is biased
with falsely reported significant results [44] due to the lower
number of samples from the 30 seconds sampling frequency.
The MARE of the prediction based on a shorter length of
workload-after-reduction increases to 13.21%, which confirms
that with a lower frequency at 30 seconds, our approach may
not perform as well as using a higher frequency of perfor-
mance data.

Therefore, based on our findings from both the time period
size and the frequency of collecting performance data, practi-
tioners who would like to adopt our approach should ensure that
the sample of performance data from each time period is large
enough to avoid bias from statistical analyses.

D. Impact of High Utilization of the Systems

In our RQ1 and RQ2, we control the workload of the systems
under normal operation of the system (i.e., without saturation)
to prevent errors or performance regressions from occurring un-
der high system stress. Thus, the performance of our method in
a saturation condition is unknown. To verify the validity of our
performance prediction model in this condition, we deployed
a 1vCPU, 4GB memory instance for simulation. We ran a
24-hour-long workload for testing in TeaStore and grouped the
workload into 10 stable clusters. Using our workload reduc-
tion approach, the workload is grouped into 8 stable clusters
and reduced to a 190-minute version. Using the workload-
after-reduction, we could get an 11.1% MARE and a corre-
lation of 0.94 between the prediction results and the origi-
nal performance. The promising result of the test shows the

compatibility of our approach to working under a high-pressure
system environment. However, the validation of the prediction
model working under a different environment may have a large
influence according to the result from Table XII.

VII. RELATED WORK

In this section, we present the prior research related to
our work.

A. Load Test Reduction

Several prior studies [6], [35], [57] share a similar goal to
our work. He et al. [35] applied a statistics-based approach to
investigate whether the distribution of a performance metric
varies after the execution of one part of testing. Hammam et al.
[6] focused on searching the stop point of the performance
testing. They used statistical methods to measure whether the
performance metrics are repetitive during the testing. Jain [37]
proposed to find the stop point of performance testing through
applying a 5% threshold of the variance in response time. Daly
et al. [24] apply the Q statistic to detect changing point in
testing for acknowledge the performance of the system. Busany
et al. [14] and Jiang et al. [39] presented approaches of how
to reduce the execution time of tests by tracking repetitive log
traces. Approaches are also proposed to dynamically adapt the
execution time of the load testing time [10], [61], [68]. Apte
et al. [7] arranged load testing by building a queueing model
to achieve a higher effectiveness. These prior studies either
consider the performance of the systems or their workloads
without building an association between the workloads and the
performance. In our paper, we consider both the workloads and
the performance of various workloads to reduce the length of
load testing.

There are several prior studies in load testing field that aim to
reducing the system resources during testing a given workload.
Shariff et al. [60] demonstrated how they optimize system re-
sources by running a browser-based load test with Selenium3.
In their approach, the simulated users could share the browser
instance, so that the total number of the browser instances de-
creased, which can improve the efficiency of load testing. Grano
et al. [33] focused on generating performance-sensitive func-
tional test suite with high coverage and low requirements on
system resources. These approaches mainly tackle the problem
about reducing the testing resources of load testing, while our
approach focuses on producing reduced workloads that are rep-
resentative of the original workloads in terms of performance
measurements.

B. User Workload Characterization

The prior research from Cohen et al. [20] emphasized the
demand for considering varieties in system workload recovery.
Specifically, they observed that it is inefficient to detect and
identify system issues only by using the general recording of

3https://www.selenium.dev

https://www.selenium.dev


1980 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, AUGUST 2024

raw system metrics and to tackle such problem. Cohen et al.
proposed an approach by clustering the system signature and
the results show that the efficiency of issue detection can be im-
proved by utilizing the clustering results. Later work followed
Cohen et al.’s approach and applied it to large-scale systems. For
example, Syer et al. [66] clustered the high viability users in a
large software system to obtain the system workloads by count-
ing the frequency of the log events associated with each user. In
addition, instead of focusing on execution logs of the system,
Shang et al. [59] utilized the physical performance metrics, like
CPU and memory usage. In particular, Shang et al. clustered the
performance metrics directly to capture the diversity and com-
plexity in system workloads of large-scale systems. Motivated
by prior work, our study also utilize clustering algorithms on
system workload signatures. However, our approach is different
as we do not distinguish users in execution logs so that we can
have a high-level view of the system performance.

To obtain a further understanding of the usage of system
resources, workload recovery is a necessary step in load test-
ing. Alireza et al. [34] implemented an I/O workloads replay
tool named hfplayer and it aims to infer I/O dependencies
and assist I/O performance evaluation. Neeraja et al. [74] pro-
posed to use the Profile Hidden Markov Models to analyze
system workloads. Based on the patterns in the traces, this
approach can classify workload patterns in a long sequence of
NFS trace. Axel et al. [15] proposed an automatic workload
characterization approach for I/O-intensive software in a virtual
environment. Bumjoon et al. [58] defined twenty I/O related
metrics to generate I/O workload signatures and clustered the
I/O workloads. Eli et al. [23] characterized Microsoft Azure’s
VMS workloads based on the VMs’ size and lifetime.

Prior research mainly analyze physical performance met-
rics to recover workloads. In comparison, in our work, we
consider the system performance metrics that are associated
with the detailed events from users that are extracted from
system execution logs. Our approach can complement exist-
ing approaches by combining user behaviours and the system
performance to improve the effectiveness of system workload
recovery. As a result, our approach is easier to be integrated into
Dev-Ops [12].

VIII. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
findings.
External Validity. The subject systems used in our case study
are three prevalent open-source systems (OpenMRS, Apache
James, and TeaStore). These systems all have a long devel-
opment history and have been studied in prior research [46],
[17]. However, our subject systems may not represent all the
software domains, and our approach and results may not be
directly applied to other systems. Future work may investigate
the applicability in different systems.
Internal Validity. In our study, we build a prediction model
to capture the relationship between the workloads and the
system performance. The source of the workloads is the

system’s execution logs. However, some runtime activities that
have an impact on the system performance may not be recorded
in the execution logs. Therefore, under such circumstances,
the prediction accuracy of the performance model would be
impaired. Furthermore, since we apply a random forest method
to learn our prediction model, the requests are assumed to
be stateless. We have added an experiment to analyze if the
performance distribution of each type has a difference. Through
the analysis, we can confirm that the state of request types we
used has negligible effect in our experiments. Although we can
confirm that the state of request types we used have negligible
effect in our experiments based on the conclusion shown in
Section V RQ2, it is still a threat for future work that applies
our approach in scenarios where requests are highly influenced
by their states. In those scenarios, the prediction model using
random forest may not be suitable.

Moreover, although we consider different workloads in our
study, the impact of the intensity influences our prediction re-
sult. We calculate the Pearson correlation between MARE and
intensity in each time period for our subject systems. We find
that OpenMRS, TeaStore and Apache James have a low correla-
tion, with values of only 0.12, -0.13, and -0.09, respectively. In
order to reduce the impact of the intensity of the workloads, we
will consider the intensity of the workloads in our future work.

In addition, we do not consider the sequence of the actions
during the workload signature generation, which may cause
different workloads to be sorted into the same cluster. The
design of the workload signatures is a direction of our future
research.
Construct Validity. We use a traditional performance monitor-
ing tool, pidstat, to collect the system runtime performance in-
stead of using a modern performance monitoring tool (e.g., ap-
plication performance monitoring tools). Applying those tools
may enhance the accuracy of the performance measurement.
However, such systems may introduce more overhead to the
monitored system. In our study, we only consider the CPU
usage aspect of the system performance. Although CPU usage
is the main performance metric that reflects the system’s per-
formance, other physical metrics (e.g., memory usage) are also
important. Nevertheless, our approach can also apply to other
performance metrics. Future work may extend our evaluation
by considering other performance metrics.

In this work, we assume that our approach is applied to
CPU-intensive systems and uses CPU usage as our focused
performance metric. Under such an assumption, we reduce the
interference of other performance-related resources, such as the
effect of databases on our experiments. For example, if the sys-
tem reaches the performance bottleneck of the database, the
saturation of the database may cause a long response time and
different response codes, which are highly different from the
performance behaviours in a normal situation. Moreover, a disk
or network problem may also affect the precision of the predic-
tion. The unstable conditions would cause the same workloads
to act in different performance behaviours, making it difficult
for our approach to obtain stable performance from different
workload periods belonging to the same clusters (i.e., impairing
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the effectiveness of workload reduction). Therefore, applying
our approach in a different scenario that violates our assumption
may lead to different results and conclusions. Nevertheless, the
main methods (e.g., clustering-based workload reduction) of
our approach can be conveniently applied to other performance
metrics (e.g., network usage) and other types of systems (e.g.,
memory-intensive systems). We leave such evaluation as the
future work.

IX. CONCLUSION

In this paper, we propose an automated approach to reducing
the length of the field workloads that are used to drive load
testing. By examining the stability of the system performance
that is associated with similar system behaviours, our approach
skips the execution of the workloads if the corresponding per-
formance achieves a stable distribution. By evaluating our ap-
proach on three open-source systems, we find that our approach
can significantly reduce the length of workloads for load testing
while preserving the workloads that are representative of the
entire original workloads. By replaying the workloads-after-
reduction in a different load testing environment, we observe
that the performance of the system has a high correlation to the
performance from the original execution. This paper provides
the following contributions:

• We propose an approach that can automatically reduce
the length of field-replay based load testing by skipping
similar workloads with stable performance.

• Our approach can be leveraged in the replay of field work-
loads in a testing environment while significantly reducing
the costs of such replay-based load tests.

• Our work sheds light on future work that leverages and op-
timizes the field workloads for cost-effective performance
testing.

• We highlight the challenges of applying existing scal-
ing methods to normalize the performance data produced
in different environments (e.g., field vs. testing environ-
ments) and call for future work to address such challenges.
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