
An Empirical Study of the Impact of Hyperparameter Tuning and

Model Optimization on the Performance Properties of Deep Neural

Networks

LIZHI LIAO, Concordia University, Canada
HENG LI, Polytechnique Montréal, Canada

WEIYI SHANG, Concordia University, Canada
LEI MA, University of Alberta, Canada

Deep neural network (DNN) models typically have many hyperparameters that can be conigured to achieve optimal
performance on a particular dataset. Practitioners usually tune the hyperparameters of their DNN models by training a
number of trial models with diferent conigurations of the hyperparameters, to ind the optimal hyperparameter coniguration
that maximizes the training accuracy or minimizes the training loss. As such hyperparameter tuning usually focuses on the
model accuracy or the loss function, it is not clear and remains under-explored that how the process impacts other performance
properties of DNN models, such as inference latency and model size. On the other hand, standard DNN models are often large
in size and computing-intensive, prohibiting them from being directly deployed in resource-bounded environments such
as mobile devices and Internet of Things (IoT) devices. To tackle this problem, various model optimization techniques (e.g.,
pruning or quantization) are proposed to make DNN models smaller and less computing-intensive so that they are better
suited for resource-bounded environments. However, it is neither clear how the model optimization techniques impact other
performance properties of DNN models such as inference latency and battery consumption, nor how the model optimization
techniques impact the efect of hyperparameter tuning (i.e., the compounding efect). Therefore, in this paper, we perform a
comprehensive study on four representative and widely-adopted DNN models, i.e., CNN image classiication, Resnet-50, CNN
text classiication, and LSTM sentiment classiication, to investigate how diferent DNN model hyperparameters afect the
standard DNN models, as well as how the hyperparameter tuning combined with model optimization afect the optimized
DNN models, in terms of various performance properties (e.g., inference latency or battery consumption). Our empirical
results indicate that tuning speciic hyperparameters has heterogeneous impact on the performance of DNN models across
diferent models and diferent performance properties. In particular, although the top tuned DNN models usually have very
similar accuracy, they may have signiicantly diferent performance in terms of other aspects (e.g., inference latency). We also
observe that model optimization has a confounding efect on the impact of hyperparameters on DNN model performance.
For example, two sets of hyperparameters may result in standard models with similar performance but their performance
may become signiicantly diferent after they are optimized and deployed on the mobile device. Our indings highlight that
practitioners can beneit from paying attention to a variety of performance properties and the confounding efect of model
optimization when tuning and optimizing their DNN models.

CCS Concepts: · Software and its engineering→ Software performance; · General and reference→ Performance.

Authors’ addresses: Lizhi Liao, Concordia University, Montréal, Québec, Canada, l_lizhi@encs.concordia.ca; Heng Li, Polytechnique Montréal,
Montréal, Québec, Canada, heng.li@polymtl.ca; Weiyi Shang, Concordia University, Montréal, Québec, Canada, shang@encs.concordia.ca;
Lei Ma, University of Alberta, Edmonton, Alberta, Canada, ma.lei@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2022/1-ART $15.00
https://doi.org/10.1145/3506695

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3506695

2 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

Additional Key Words and Phrases: deep neural network, hyperparameter tuning, DNN model optimization, DNN model

performance

1 INTRODUCTION

In recent years, deep neural network (DNN) has achieved extraordinary performance1 over traditional machine
learning models in solving many complex problems in various application domains, especially in natural language
processing [85], computer vision [51], and gaming [63]. Previous studies show that the efectiveness of intelligent
systems often depends on the performance of the DNN model within it. For instance, in autonomous driving, the
DNN models are often used to predict the future trajectories to help the autonomous vehicle make reasonable
navigation decisions [60]. If the DNN model cannot make predictions in an eicient manner on time, such
results may lead to catastrophic ield failures. Both the inancial and reputational impact of these issues would be
detrimental to the success of intelligent systems.
In order to ensure the quality of services provided by the DNN model within the intelligent system, existing

solutions mainly focus on two perspectives, which are often applied in combination. The irst one is called
hyperparameter tuning, which is to search for an optimal combination of model hyperparameters during the
training stage of the DNN model. To be speciic, DNN models are similar to traditional software systems since
they are also highly conigurable through providing a set of coniguration options for hyperparameters (e.g., loss
function or learning rate), and diferent combinations of hyperparameters may lead to diferent DNN performance.
Therefore, developers often launch a large number of training jobs to systematically explore the best DNN model
that is able to meet speciic performance requirements (e.g., fast prediction or low energy consumption). The
other method, i.e., DNN model optimization, is often performed during the deployment of the DNN-based system.
For instance, compared with cloud environments, mobile devices usually have limited computational power,
storage, and energy capacity, making it unable to directly deploy a large and complex DNN model on it. Thus,
the main focus of the second technique is to compress and optimize existing DNN models to a more compact and
smaller model while trying to maintain the performance of the model. As standard DNN models may contain
several redundant parameters that can be eliminated, it is possible to prune DNN models by removing such
redundancies and shrink the model size while maintaining a similar level of accuracy.

Despite the advantages of the DNN hyperparameter tuning and model optimization methods, practitioners still
face numerous challenges when applying these techniques into practice. On one hand, there can be over 12 types
of commonly-used hyperparameters in practice [71], each of which contains a wide range of values, resulting in a
vast number of combinations of hyperparameters even just for a few types of hyperparameters. For experienced
DNN developers, one could determine what types of hyperparameters to tune and their corresponding range of
values based on their expertise and experience, while for developers who are unavailable from such knowledge, it
is less likely that they will obtain an optimal model coniguration since they usually utilize intuition to guide their
decisions or they have to choose more hyperparameters and values to tune, making the entire DNN development
process expensive and time-consuming. On the other hand, existing optimization techniques mainly focus on
shrinking the size of a standard DNN model while keeping its testing accuracy. However, they ignore many
other important performance properties, such as inference latency and energy consumption. Changes in such
properties may result in many severe problems, making it essential to evaluate them before deployment. For
example, suppose two standard DNN models Ma and Mb are obtained after hyperparameter tuning, among
whichMa has slightly better performance thanMb , i.e., higher inference accuracy and lower inference latency.
Then, they are optimized separately and two optimized DNN models OMa and OMb are generated, but this

1When referring to the general performance of the DNN models, we use the singular form of performance, and when referring to one or
multiple speciic aspects of the performance (e.g., inference accuracy or inference latency) of the DNN models, we use performance property
or performance properties.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 3

time, a diferent result may appear, i.e., OMb with similar inference accuracy but much lower inference latency
than OMa . In this case, if we simply chooseMa and only apply DNN model optimization on it as it has slightly
better performance in terms of the standard model, it may lead entire DNN based systems to sufer from the
poor efectiveness of inference. Using such models in the real world scenarios, e.g., in auto-driving vehicles
or DNN-based authentication systems, would cause severe ield issues and even accidents. All these entail the
evaluation of various model performance properties besides model size and accuracy.
Due to the high similarity between DNN models and software systems in terms of high conigurability, we

regard DNN models as software systems and adopt software engineering analysis techniques to study how tuning
diferent hyperparameters and applying optimization methods afect the performance properties of DNN models
in terms of various aspects. We focus on studying several commonly-used hyperparameters in practice and
divide them into three diferent dimensions, including architecture-related hyperparameters, layer-level model
training decisions, and optimizer hyperparameters. In terms of model optimization techniques, we apply pruning,
quantization, and encoding, as a three-step process, since in previous work [22, 37, 83], these techniques are
proven to be quite efective and are often utilized as a combination of optimization techniques. In our efort
to provide a more comprehensive study on the efects of tuning diferent hyperparameters on the standard
DNN models for servers/clouds and the optimized DNN models for mobile devices, we try to cover diferent
representative perspectives of the DNN model performance properties, including inference accuracy, inference
latency, model size, number of loating-point operations, and battery consumption.
In our study, we use four representative and widely-used DNN models as subject models covering diferent

types of neural networks (i.e., CNN (Convolutional Neural Networks) and RNN (Recurrent Neural Networks))
and various task domains, e.g., image classiication, text classiication, and LSTM sentiment classiication. For
each DNN model, we irst train it by tuning all studied hyperparameters, then ix each hyperparameter in one
dimension at a time, and compare the resulting models with the ones from tuning all the hyperparameters.
This is to understand the overall impact of the single hyperparameter. Afterward, we update the list of the best
10 DNN models (based on accuracy) after each hyperparameter tuning and optimize them (the best 10 DNN
models) using various techniques, including applying pruning, quantization, and encoding, as a three-step process.
Finally, we evaluate all the optimized DNN models for diferent properties, from which we analyze performance
property changes between the standard model and the optimized model and the overall impact of the single
hyperparameter on the performance of optimized DNN models. In particular, to understand the impact of tuning
diferent hyperparameters on the performance of the standard DNN models deployed on servers and optimized
DNN models deployed on mobile devices, our study aims to answer the following two research questions (RQs):
RQ1: What is the impact of tuning diferent hyperparameters on the performance of DNN models?

From our experimental results, we observe that hyperparameter tuning has a signiicant inluence on the diferent
performance properties of the studied DNNmodels. By examining the impact of tuning diferent hyperparameters
on the DNN model performance in terms of diferent properties, we ind that tuning speciic hyperparameters
can cause diferent impacts on the performance of DNN models across models and performance properties. Our
indings suggest that practitioners can improve their choice of the tuned models by considering other performance
properties while not sacriicing the accuracy of the chosen model.
RQ2: What is the combined impact of hyperparameter tuning and model optimization on the performance of

optimized DNN models?

By applying multiple model optimization techniques on the standard DNN models, we can observe that model
optimization may bring obvious diferences between the standard DNN models and the optimized ones in
terms of various performance properties. Besides, model optimization has a confounding efect on the impact of
hyperparameters tuning on the model performance. Our indings imply the importance of considering the impact
of subsequent model optimization when building and tuning DNN models in the cloud/server environments.

ACM Trans. Softw. Eng. Methodol.

4 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

The empirical study results of our work highlight the impact of various hyperparameters tuning on the
performance of both standard and optimized DNN models, and have the following key implications:

• As current hyperparameter tuning tools (e.g., Keras Tuner [66] or Hyperopt [12]) are mainly based on
tuning for one objective (e.g., accuracy or loss), practitioners need to take other speciic performance
properties into account when conducting hyperparameter tuning and do not always choose the top-1 DNN
model from hyperparameter tuning as the inal decision.

• The performance characteristics of standard DNN models for servers/clouds may be diferent from that
of the corresponding optimized DNN models for mobile platforms, thus practitioners need to be careful
not to simply transfer the hyperparameter conigurations or the understanding of the impact of such
hyperparameter settings from one platform to another platform (e.g., tuning hyperparameters on the server
and transferring them to mobiles). Instead, one needs to consider performing hyperparameter tuning on
the target devices for deployment.

• There exist interactions among multiple hyperparameters (especially the hyperparameters within the
same dimension). These diferent hyperparameters often inluence each other and their impact varies
across diferent DNN models and performance properties. Thus, for practitioners, speciic considerations
about what hyperparameters to tune are required in the context of speciic DNN models and performance
requirements.

Our indings also provide insights for practitioners who are interested in DNN hyperparameter tuning and model
optimizing in order to achieve speciic performance requirements.
Paper organization. Section 2 discusses the background and related work of our study. Section 3 outlines the
setup of our case study on four subject DNNmodels. Section 4 discusses the results by answering our two research
questions. Sections 5 discusses the implications based on the results. Section 6 presents the threats to the validity
of our indings. Finally, Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we irst introduce the background of our study, including the performance of DNN models,
hyperparameter tuning, and representative DNN model optimization techniques. Then, we discuss previous work
relevant to this paper along two directions, i.e., DNN performance and DNN optimization.

2.1 Background

2.1.1 Performance of DNN models. A DNN model is essentially a collection of mathematical functions that are
structured by deep learning frameworks (e.g., TensorFlow or PyTorch) as tensor-oriented computation graphs.
Such DNN graphs have many important quality attributes (i.e., non-functional properties) that can be used as
measurements for the algorithm, structure, and complexity of a DNN model. Although a DNN model can be
evaluated from a variety of perspectives, many performance properties may have a strong correlation with one or
few of other ones, for instance, the energy consumption of a DNN often has a linear relationship with the model
eiciency that is deined as the number of inference it can make per second. Therefore, in our study, we consider
multiple representative properties, i.e., inference accuracy and latency, model size, number of loating-point
operations (FLOPs), and battery consumption, as DNN model performance indicators.

2.1.2 DNN hyperparameter tuning. A typical DNN model often has two categories of parameters. The irst type
is trainable parameters, which can only be learned by the training process, for instance, the weights of a neural
network are trainable parameters. The second type is hyperparameters, e.g., the number of units in a dense layer
and the learning rate, which need to be set before launching the training process [46]. Similar to the traditional
software system, a DNN model is often highly conigurable by providing numerous coniguration options
for hyperparameters, and even for small DNN models, tuning these hyperparameters can be computationally

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 5

expensive. Nevertheless, hyperparameter tuning is very important as an optimal combination of hyperparameters
may lead to signiicant improvement in the performance of a DNN model [86]. Therefore, in order to search
for the optimal model coniguration meeting speciic development requirements, practitioners often leverage
open-source libraries (e.g., Hyperopt or Keras Tuner) and apply a variety of hyperparameter search algorithms
(e.g., bayesian optimization or random search) to automatically perform large numbers of trials to train DNN
models with a diversity of hyperparameter conigurations.
In particular, depending on the mechanisms, the existing hyperparameter optimization tools can be divided

into two types: 1) fully automatic optimization tools and 2) semi-automatic optimization tools. There are multiple
prevalent fully automatic optimization libraries to cater to the demand for DNN hyperparameter tuning. For
example, AutoKeras [45], Auto-WEKA [49, 82], Auto-sklearn [32], and Google Cloud AutoML [15] are the
implementations for automated machine learning (AutoML) which automate the tasks covering the complete
pipeline from the raw dataset to the deployable DNN models. They also provide functions to automatically search
for architecture and hyperparameters of DNN models without the need for any expert knowledge about the
DNN models and techniques. Whereas for the second type (i.e., semi-automatic optimization tools), for example,
Keras Tuner [66], Hyperopt [12], and HpBandSter [30], developers need irst to construct the DNN model to be
tuned and then conigure the search scope of the hyperparameters, then the tools can automate the process of
selecting the right set of hyperparameters from the search scope for the DNN model. Comparing to the irst type
(i.e., fully automatic optimization tools), the second type requires more efort in deining the DNN model and
the hyperparameter search scope, however, it is more lexible and has better capability to handle various tasks
and inputs, while the irst type mainly focuses on processing text [15] and image [29] related tasks. In this work,
we opt to use Keras Tuner as the hyperparameter optimization tool to pick the optimal set of hyperparameter
combinations for DNN models since it provides full lexibility and convenient APIs to deine the hyperparameter
search space. Besides, it is easy to leverage the included algorithms to ind the best hyperparameter values. Keras
Tuner comes with built-in Bayesian Optimization, Hyperband, and Random Search algorithms, and also allows
researchers and practitioners to experiment with their own search algorithms.

2.1.3 DNN optimization. Over the past few years, deep learning has achieved great success in numerous appli-
cation areas, e.g., natural language processing (NLP) or computer vision (CV). However, existing DNN models
are often computationally expensive in many aspects, e.g., computational requirement and model size, which
hindering the deployment on resource-constrained devices (e.g., mobile devices or IoT devices). Therefore, many
studies have recently been conducted in optimizing DNN models without signiicantly decreasing the model
performance (e.g., accuracy) [21]. In this paper, we briely review the three most commonly adopted DNN model
optimization techniques in practice [6, 22, 37, 83, 89] and they are separately pruning, quantization, and encoding.
Pruning. Pruning in deep neural networks has been taken as an idea from synaptic pruning that happens in the
human brain. Synaptic pruning is a natural process that occurs between early childhood and adulthood, and
during such process, axon and dendrite gradually decay and eventually die of resulting in synapse elimination.
Inspired by such a common biological phenomenon, a DNN model can also be pruned in a similar way. In deep
learning, DNN model pruning can be performed at diferent granularities to get a neural network with a smaller
size. The irst type is weight pruning which removes redundant connections between two neurons present
in the DNN architecture and it often involves cutting out unimportant weights which are usually deined as
weights with small absolute values. While the second type is performed at the neuron level, i.e., neuron pruning,
where an entire neuron or several neurons with all the related weights in the neural network are deleted. In
practice, DNN model pruning often requires to re-train or ine-tune the neural network to regain the accuracy,
since the model was actually trained for the original connections and the model accuracy is probably to drop
after removing some neurons or weights. We would like to point out that dropout [76] seems to be partially
similar to pruning since they both omit some neurons and their connections in the DNN models. However,

ACM Trans. Softw. Eng. Methodol.

6 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

dropout and pruning have diferent purposes and mechanisms. Dropout is a regularization technique used to
prevent overitting during the training phase. During dropout, neurons are randomly selected and ignored, and
those ignored neurons are temporarily removed on the forward pass, and their weights are not updated on the
backward pass. For pruning, it can also serve as a mechanism to avoid overitting since it also removes a part of
the network, thereby reducing the complexity of the model and limiting the risk of overitting. However, its main
purpose is to optimize the model in order to provide the model with more eiciency (i.e., faster inference and
smaller model size), and it can be conducted at both the model training phase and optimization phase. During
pruning, unimportant neurons or weights (i.e., providing little predictive power for the problem) determined by
the algorithm are permanently removed and only the important neurons and weights remain. Therefore, in our
work, we only consider the pruning in our DNN model optimization pipeline. Speciically, we opt to leverage the
pruning approach implemented in the TensorFlow Model Optimization Toolkit [4] which performs ine-grained
magnitude-based weight level pruning to optimize the standard DNN models to generate optimally-sized models.
Quantization. Neural network model quantization is based on a fundamental idea of replacing high precision
loating point format (e.g., 64-bit or 32-bit loating point) with low precision loating or even ixed point format
(e.g., 16-bit loating point or 8-bit ixed point integer) to reduce the number of bits required for storing the weights
of neural networks and consequently compress the standard DNN model. For example, if a DNN model with a
32-bit loating point format is converted to the 8-bit ixed point integer format, the new DNN model can save
up to 75% of the number of bits for storing one weight comparing to the standard model. At present, there are
mainly two forms of quantization, the irst kind involves bundling weights together by clustering them and thus
using fewer distinct loat values to represent more weights, and the second quantization technique is converting
high precision loating point weights to low precision loating or ixed point representation by rounding them of.
In addition, such quantization techniques can be performed both during the time of training a DNN model and
on an already-trained high precision loating point DNN model.

In this study, we opt to use the post-training INT8 quantization which is the most commonly adopted quanti-
zation strategy in practice [24, 78, 88]. In particular, the standard DNN model is trained in 32-bit loating point
format, while during inferencing, the most critically intensive parts are computed with 8 bits instead of loating
points. Besides, we directly utilize the TensorFlow oicial optimization libraries, i.e., the TensorFlow Model
Optimization Toolkit [4], which by default provides the implementation for various quantization methods.
Encoding. A trained DNN model is basically a ile including the layers and weights in the DNN, which are
often exported or saved in a binary ile format that can potentially be compressed. As an inseparable part of
ile compression techniques, encoding plays a vital role in exploring the data ile content to ind redundancy
and patterns that allow for abbreviating the content in a way to take up less space yet maintain the ability to
reconstruct a full version of the standard when needed [92]. In general, encoding techniques are divided into two
main categories. One is ixed-length encoding, e.g., ASCII, where each character is stored in the same amount of
space, and such methods are convenient because the boundaries between characters are easily determined and
the pattern used for each character is completely ixed. Another type is variable-length encoding, e.g., Hufman
encoding, where some characters may only require fewer bits while other characters may require more bits.
One major beneit of such an approach is that it requires less space overall, since it considers the occurrence
probability for each symbol and represents more common symbols with fewer bits instead of full ixed-length
bits.
As a typical example of variable-length encoding, Hufman encoding has been widely adopted in practice

for DNN model compression as it has several advantages [37]. First, it is a lossless data compression approach
that can prevent losing any important information when compressing a DNN model. Second, it uses an optimal
preix-free coding and can take advantage of skewed or biased distributions of the DNN model’s efective weights
to further compress a DNN model by representing more common weights with fewer bits. Based on these beneits,

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 7

Hufman encoding is adopted after pruning and quantization in the experiments of our work to provide further
compression of the DNN models.

2.2 Related work

2.2.1 Studies on performance of DNN. Several studies were conducted to gain a deep understanding and assure
the performance of deep learning models in terms of diferent aspects. To comprehend the performance of DNN
models, Li et al. [53] conducted a detailed quantitative characteristic study on the power behavior and energy
eiciency of various prevalent convolutional neural network (CNN) models during training and predicting time,
which includes ine-grained analysis comparing diferent neural network layer types under both CPU and GPU
platforms. Canziani et al. [19] performed a comprehensive study on analyzing the relationships among multiple
important properties in practical DNN applications, including accuracy, memory footprint, parameters, operations
count, inference time, and power consumption, providing insights into designing an eicient DNN model. Pei et
al. [68] irst proposed the concept of neuron coverage and also generated thousands of counterexamples which
can help practitioners build robust DNN models. Prior research illustrates the importance of comprehending and
ensuring the DNN performance in practice. In comparison, this paper focuses on studying how tuning diferent
hyperparameters impact various aspects of performance in DNN models. Our work can be adopted in practice in
tandem with the prior research on the topic of comprehending DNN performance .

2.2.2 Studies on the impact of hyperparameter tuning. Given the importance of DNN performance, tuning
hyperparameters is commonly-adopted in practice to ensure performance when constructing a DNN model.
Wong et al. [86] performed a case study on comparing the performance of machine learning models with
and without tuning hyperparameters and their result shows the efectiveness of tuning hyperparameters for
the assurance of model performance. In order to assess the inluence of hyperparameters, prior work [31, 42]
proposes analysis techniques that identify the hyperparameters that contribute most to the model performance
improvement after tuning. Based on that, Hutter et al. [43] propose a more general approach, which can quantify
the relative importance of both single hyperparameters and the interactions between hyperparameters by using
random forest model predictions within a functional ANOVA framework [34]. However, these works mainly
focus on the limited performance properties (e.g., inference accuracy) and device (e.g., server), while we study a
variety of performance properties (e.g., inference accuracy, inference latency, model size, FLOPs, and battery
consumption) and conduct experiments on two diferent platforms (e.g., server and mobile devices). Our main
focus is to generalize the implications and rules of thumb to diferent DNN models and help to prioritize which
hyperparameter choices in order to facilitate a better general understanding of hyperparameter efects and better
decision-making for future experiments. In addition, neural architecture search (NAS) that aims to automatically
design a DNN architecture to achieve optimal performance on a certain task has attracted a lot of attention in the
past few years. There are several prior studies [10, 17, 56, 72, 81] on studying NAS and DNN model performance,
however, compared to NAS that automatically design the whole model, our study focuses on the approach
that gives developers more freedom to design the DNN structures and only automate the process of tuning the
hyperparameters to acquire an optimal model. Such a way is more lexible and has the better capability to handle
various tasks and inputs (e.g., graph data) in diferent usage scenarios and contexts, while NAS mainly focuses
on computer vision and NLP related tasks [62, 70]. Thus, we would leave NAS as our direction for future work.
Besides, traditional brute-force grid search for hyperparameters is expensive as it often results in numerous
combinations even for a small number of hyperparameters[11]. Thus, to make the whole process afordable,
several eicient alternative hyperparameter search algorithms, e.g. random or Bayesian hyperparameter search
techniques, were proposed in prior work [11, 13, 75].

ACM Trans. Softw. Eng. Methodol.

8 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

2.2.3 Studies on optimization of DNN. Due to the complexity of the deep learning models and the required
resources, in recent years, extensive research has been conducted in order to investigate and design optimization
techniques to accelerate DNN model deployment and execution on mobile devices. Han et al. [37], Tung et
al. [83], and Choi et al. [22] conducted experiments combining pruning, quantization, and Hufman encoding
into a three-stage pipeline that signiicantly reduces the size of DNN models with minimal loss of accuracy.
Li et al. [54], Pavlo et al. [64], Ayinde and Zurada [8], and He et al. [40] proposed an acceleration approach to
efectively prune ilters with low weight magnitudes and unimportant parameters in deep and/or wide CNN
models, and thus improve the resource eiciency (i.e., reduce DNN computation cost (FLOPs)), making it possible
to deploy and execute the complex DNN models on embedded sensors or mobile devices where computational
and power resources may be limited. In addition to the model size and energy eiciency, Kim et al. [47] also
proposed a CNN compression scheme in order to obtain signiicant reduction in wall-clock time used when
executing DNN models on several mobile devices. Diferent from prior work, we conduct a comprehensive study
on multiple performance aspects of DNN models with a combination of multiple optimization techniques (i.e.,
pruning, quantization, and encoding) and hyperparameter tuning applied and compare their performance with
the standard DNN models. Therefore, our empirical studies and indings in this paper complement existing work
in order to help practitioners gain better understanding of how the state-of-the-art model optimization techniques
and tuning diferent hyperparameters afect diferent DNN model performance properties.

3 EMPIRICAL STUDY SETUP

To study the impact of tuning diferent hyperparameters on the performance of standard DNN models and
optimized DNN models for mobile devices, we perform case studies on four prevalent DNN models in use as well
as three large and classical datasets2. In this section, we irst present the design of our empirical study. Then the
subject models and the datasets used for each model are described. Afterwards, we introduce the hyperparameters
and their ranges selected in our study to tune the subject models, and the properties of the DNN models that we
focus on in our work. Finally, we present the hardware and platforms on which our experiments are performed.

3.1 Study design

Figure 1 shows the overview of our empirical study, which contains three main phases: 1) development phases, 2)
deployment phase, and 3) monitoring phase. In the development phase, we select 4 widely-used DNN models
covering both CNN and RNN architectures, i.e., CNN image classiication, Resnet-50, CNN text classiication, and
LSTM sentiment classiication, from the oicial TensorFlow website [2], as our empirical study subjects. We use 3
publicly available datasets (i.e., MNIST, CIFAR-10, and IMDB reviews) for the training and testing of the subject
DNN models. We also utilize Keras Tuner to automatically train the DNN models using 100 combinations of
hyperparameters from a large hyperparameter search space for each of the four types of model. In the deployment
phase, since our work focuses on studying the impact of tuning diferent hyperparameters on the performance of
DNN models deployed across various hardware platforms, we have selected two popular platforms to deploy and
evaluate the DNN model’s performance, including the Linux server and the Android mobile device. In addition to
deploying all 100 trained DNN models on the server platform, we also have selected the best 10 DNN models
(based on the training accuracy) and applied various optimization techniques (i.e., pruning, quantization, and
encoding) to make them suitable for deployment on the mobile platform. After the deployment of these DNN
models on the various platforms (i.e., server and mobile), in the monitoring phase, we measure the performance
properties of each DNN model, including inference accuracy, inference latency, model size on the disk, and
loating point operations (FLOPs). For the mobile platform, we also measure battery consumption which is
critical for mobile applications. It is worth noting that these three phases are repeated every time we tune the

2Our experimental setup, scripts and, results are shared online https://github.com/senseconcordia/TOSEM2021Data as a replication package

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 9

Development phase Deployment phase Monitoring phase

CNN image
classfication

Resnet-50

CNN text
classification

LSTM sentiment
classification

MNIST

CIFAR-10

IMDB
reviews

Trained 100 DNN
models

Keras Tuner

Model training

Optimized DNN
models

Platforms

Server

Mobile

Model optimization

Pruning Quantization Encoding

Select Best 10 models

Inference accuracy

Inference latency

Model size

FLOPs

Battery consumption

Varying hyperparamers to tune

Datasets

Select Best 10 models

Hyperparameter
tuning

Fig. 1. An overview of our empirical study

varying hyperparameters in order to study the impact of hyperparameter tuning and model optimization on the
performance properties of DNN models.

3.2 Subject models and datasets

In our experiments, we choose four representative and widely-used DNN models as our subject models, namely
CNN image classiication, Resnet-50, CNN text classiication, and LSTM sentiment classiication. All of them are from
the oicial TensorFlow website [2]. These subject models cover diferent types of neural networks, including CNN
(Convolutional Neural Networks), RNN (Recurrent Neural Networks) and various domains, including computer
vision and natural language processing. The details of each subject DNN model and corresponding datasets are
shown in Table 1.

We use three classical datasets in the deep learning domain to perform our experiments: MNIST [52], CIFAR-
10 [50], and IMDB reviews [61]. For the text classiication tasks (i.e., CNN text classiication and LSTM sentiment

classiication), the IMDB reviews dataset is adopted. IMDB reviews is a large movie review dataset for binary
sentiment classiication, including a set of 25,000 highly polar movie reviews for training, and 25,000 for testing.
For the image classiication tasks (i.e., CNN image classiication and Resnet-50), we apply two diferent datasets
including CIFAR-10 and MNIST in our experiments. MNIST has 70,000 28 × 28 gray-scale images including 60,000
training and 10,000 testing samples of handwritten digits and its output labels are the 10 numbers from 0 to 9.
CIFAR-10 consists of 60,000 32 × 32 colour images in 10 classes, with 6,000 images per class. There are 50,000
training images and 10,000 testing images. It is worth noting that since Resnet-50 has a more complex structure
comparing to CNN image classiication (i.e., 50 layers in the Resnet-50 model, while only 6 layers in the CNN
image classiication model), so Resnet-50 is likely to perform better on more sophisticated images (i.e., classifying
10 classes of real-world objects in CIFAR-10) than CNN image classiication. While for CNN image classiication

with a less complicated and more compact structure, the relatively straightforward classiication workload (i.e.,
identifying the handwritten number from 0 to 9 in MNIST) would be more appropriate. In addition, due to the
limitation of model energy consumption and mobile device’s battery capacity, for LSTM sentiment classiication,
we use all the 25,000 training samples for training, while only apply the irst 1,000 testing samples for inference.

3.3 Hyperparameters of DNN models

Hyperparameters are variables that we need to set before applying a machine learning algorithm to a dataset.
In general, there are no magic numbers that can work for all cases and the optimal values often depend on the
speciic task and dataset [1]. To understand the impact of hyperparameter tuning on the performance of the DNN

ACM Trans. Softw. Eng. Methodol.

10 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

Table 1. Overview of our subject DNN models and datasets

Model Dataset # Training samples # Testing samples
CNN image classiication MNIST 60,000 10,000

Resnet-50 CIFAR-10 50,000 10,000
CNN text classiication IMDB reviews 25,000 25,000

LSTM sentiment classiication IMDB reviews 25,000 1,000

models and optimized DNN models, we structure our experiments along with some commonly-used hyperpa-
rameters in practice into three dimensions, including architecture-related hyperparameters, layer-level model
training decisions, and optimizer hyperparameters. The description and search space of each hyperparameter
used in our subject DNN models are shown in Table 2. It is worth noting that for the embedding dimensions
hyperparameter which deines the size of the vector space of which each word will be embedded, we only consider
this hyperparameter in text classiication tasks (i.e., CNN text classiication and LSTM sentiment classiication).
Although one could regard the dimension of the input layer of the image classiication tasks (i.e., CNN image

classiication and Resnet-50) as an embedding layer, altering the input size of the images is not considered in our
study as the size of the images are ixed. Hence, we consider the embedding dimensions for image classiication
tasks as not applicable (i.e., marked as n/a). Regarding the kernel size and the pooling method hyperparameters,
since we do not have any kernels and pooling layers in the LSTM sentiment classiication model, the kernel size
and pooling method hyperparameters would not be applicable (i.e., marked as n/a) in this case.

We opt to use a popular hyperparameter tuning toolkit called Keras Tuner [66] to automatically search for the
optimal DNN hyperparameter combinations from the large hyperparameter search space covering over 11 types
of hyperparameters, each of which contains a wide range of values. In order to adopt Keras Tuner to conduct
hyperparameter tuning, we irst need to design the DNN model architecture for hyperparameter tuning and
deine the hyperparameter search space. Then, a hyperparameter search algorithm (e.g., Bayesian optimization
or random search) needs to be selected to instantiate the hyperparameter tuner, and meanwhile, an objective
of whether to minimize model loss or maximize the model accuracy needs to be speciied to optimize the DNN
model. Afterwards, Keras Tuner will automatically search for the optimal hyperparameters and train the DNN
models. Finally, after hyperparameter tuning is inished, a set of DNN models with various hyperparameter
conigurations and diferent performance properties (e.g., inference accuracy or model size) will be generated.

Search in such a large space (with the magnitude of 1010 resulting from coniguring 11 types of hyperparameters
with multiple values) is challenging. Compared to naive grid search, random search is more eicient and
allows trials in a larger hyperparameter search space. Compared to Bayesian Optimization and Hyperband
algorithms, random search has less complex technicalities and can achieve comparable performance. In particular,
as proven in prior research [11], random search is able to ind better models by efectively searching through a
larger coniguration space with the same computational budget. For example, if the close-to-optimal region of
hyperparameters occupies at only 5% of the grid surface, then the probability that all of them miss the desired
interval of 5% is (1 − 0.05)n , where n is the number of trials. So the probability that at least one of them succeeds
in hitting the interval is 1− (1− 0.05)n , which means that random search with 100 trials will ind that region with
a 99% probability. Thus, we apply the random search algorithm that is implemented in Keras Tuner to randomly
sample 100 trials of hyperparameter combinations. It should be noted that, during DNN model hyperparameter
tuning, we irst determine a conditional scope of the hyperparameter values to make sure that there are no invalid
hyperparameter values for each individual parameter. If there are invalid combinations of hyperparameters when
building the model, the generated model could be either invalid or introduce a very poor performance (e.g., low
accuracy). In such cases, our approach will continue to try other combinations until reaching the desired number

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 11

of valid combinations of hyperparameters. Besides, we only choose the best 10 DNN models from the resulting
100 models for comparison and perform further optimization as these models achieve the best performance on
the objective metrics (e.g., accuracy or loss) and are more likely to be selected as the inal model than the rest of
the models (cf. Section 4).

3.4 DNN model performance properties

In order to investigate the efects of tuning diferent hyperparameters on the standard DNN models for server
or cloud platforms and the optimized DNN models for mobile devices, we focus on the evaluation of the DNN
models on diferent representative perspectives, including inference accuracy, inference latency, model size,
number of loating-point operations, and battery consumption. In the following, we briely introduce each of
them and describe how we measure them in our study.

Inference accuracy. The inference accuracy is a critical perspective of DNN model performance as it directly
determines the quality of predictions of the DNNmodel and those predictions further afect the scientiic evidence
for making decisions. The higher the inference accuracy that one DNN model can achieve, the more promising
that model can be in practice. The DNN model inference accuracy can be measured by the number of correctly
predicted data samples divided by the total number of data samples in the testing dataset. It is worth noting that
in our experiments, the datasets are balanced to avoid any biases in the inference accuracy and relect the real
forecasting power of the DNN model.

Inference latency. The inference latency directly determines the eiciency of the DNN models, which can be
a major concern in some applications. For example, in autonomous driving, the DNN models (e.g., LSTM) are
commonly used to predict the future trajectories to help the autonomous vehicle make appropriate navigation
decisions [60]. If the DNN model cannot make predictions in a fast and eicient manner, such results may lead to
unimaginable serious consequences. When measuring the inference latency of a DNNmodel, in order to eliminate
the impact of environment noises, instead of recording the prediction latency for each individual testing sample
once, we measure the inference latency of the entire testing dataset for 30 times and take the median value.

Model size. The size of a DNN model is an important factor when deploying the DNN model in production
since in many cases the production resources are quite limited due to the production cost and environments. In
particular, for mobile devices in which resources are rather constrained, the model size becomes a major concern
and DNN models even need to be compressed before being deployed into the production environment. Thus, we
measure the actual size of a DNN model occupied on the disk in megabytes.

Floating point operations (FLOPs). FLOPs is commonly-used to measure the DNN model complexity and
eiciency [8, 54, 64] and it can also help practitioners gain better understanding about the energy aspect of DNN
models [35, 47, 87]. FLOPs is easy to compute and can be done statically, which is independent of the underlying
hardware and software conigurations. Therefore, we measure this property by simply calculating how many
computations a DNN model does.

Battery consumption. Energy and power are important when executing DNN models in mobile devices
with the limited battery capacity [79]. In our study, in addition to the FLOPs, we further measure the battery
consumption of the DNN models. Speciically, we implement a simple Android application that launches the
DNN models to perform inference and then utilize the Android dumpsys batterystats tool to extract the battery
usage (in milliampere-hour, mAh) of the Android application while the DNN models are performing inference.
Before each run of our application, we irst reset the battery statistics, then record the battery consumption after
the execution completes.

ACM Trans. Softw. Eng. Methodol.

12 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

Ta
bl
e
2.

D
et
ai
ls
of

th
e
h
yp

er
pa

ra
m
et
er
s
u
se
d
in

ou
r
ca
se

st
u
d
y

H
yp

er
pa
ra
m
et
er

H
yp

er
pa
ra
m
et
er

se
ar
ch

sp
ac
e

D
es
cr
ip
ti
on

C
N
N
im

ag
e

cl
as
si
i
ca
ti
on

R
es
n
et
-5
0

C
N
N
te
xt

cl
as
si
i
ca
ti
on

LS
T
M

se
n
ti
m
en
t

cl
as
si
i
ca
ti
on

A
rc
h
it
e
ct
u
re
-r
e
la
te
d
h
y
p
e
rp

a
ra
m
e
te
rs

N
u
m
be
r
of

i
lt
er
s/
u
n
it
s

6,
12
(d
ef
au
lt
),
24
,4
8,

96
,1
92

16
,3
2,
64
,1
28
(d
ef
au
lt
),

25
6,
51
2,
10
24

8,
16
,3
2,

64
,1
28
(d
ef
au
lt
),
25
6

16
,3
2,
64
(d
ef
au
lt
),1
28
,

25
6

It
is
th
e
m
ai
n
m
ea
su
re

of
D
N
N

m
od

el
âĂ

Ź
s
le
ar
n
in
g
ca
pa
ci
ty
.

K
er
n
el
si
ze

3,
5,
7,
9
(d
ef
au
lt
3
fo
r
C
N
N
im

ag
e
cl
as
si
i
ca
ti
on

an
d
7
fo
r
ot
h
er

m
od

el
s)

n
/a

T
h
is
de
te
rm

in
es

th
e
re
ce
pt
iv
e
i
el
d
of

a
C
on

vo
lu
ti
on

al
N
eu
ra
lN

et
w
or
k.

E
m
be
dd

in
g

di
m
en
si
on

n
/a

8,
16
,3
2,

64
,1
28
(d
ef
au
lt
),
25
6

16
,3
2,
64
,1
28
(d
ef
au
lt
),

25
6

T
h
is
de
i
n
es

th
e
si
ze

of
th
e
ve
ct
or

sp
ac
e
in

w
h
ic
h
ea
ch

w
or
d
w
il
lb

e
em

be
dd

ed
.

L
a
y
e
r-
le
v
e
l
m
o
d
e
l
tr
a
in
in
g
d
e
ci
si
o
n
s

D
ro
po

u
t
ra
ti
o

[0
.0
,0
.9
]
(d
ef
au
lt
0.
5)

T
hi
s
hy

pe
rp
ar
am

et
er

is
th
e
fr
ac
ti
on

of
th
e
in
pu

t
u
n
it
s
to

dr
op

,w
h
ic
h
h
el
ps

pr
ev
en
t
ov
er
i
tt
in
g.

A
ct
iv
at
io
n

fu
n
ct
io
n

ta
n
h
,r
el
u
,s
ig
m
oi
d
(d
ef
au
lt
ta
n
h
fo
r
LS

T
M

se
n
ti
m
en
t
cl
as
si
i
ca
ti
on

an
d
re
lu

fo
r
ot
h
er

m
od

el
s)

It
is
m
at
h
em

at
ic
al
eq
u
at
io
n
th
at

de
te
rm

in
e
th
e
ou

tp
u
t
of

ea
ch

n
eu
ro
n

in
n
eu
ra
ln

et
w
or
k.

P
oo

li
n
g
m
et
h
od

m
ax
(d
ef
au
lt
),
av
g

m
ax
,a
vg
,g
lo
ba
lm

ax
,

gl
ob
al
av
g(
de
fa
u
lt
)

gl
ob
al
m
ax
(d
ef
au
lt
),

gl
ob
al
av
g

n
/a

T
h
is
is
re
qu

ir
ed

to
do

w
n
sa
m
pl
e
th
e

de
te
ct
io
n
of

fe
at
u
re
s
in

fe
at
u
re

m
ap
s.

O
p
ti
m
iz
e
r
h
y
p
e
rp

a
ra
m
e
te
rs

Lo
ss

fu
n
ct
io
n

ca
te
go

ri
ca
lc
ro
ss
en
tr
op

y
(d
ef
au
lt
),
po

is
so
n
,

ku
llb

ac
k
le
ib
le
r
di
ve
rg
en
ce

bi
n
ar
y
cr
os
se
n
tr
op

y
(d
ef
au
lt
),
po

is
so
n
,

ku
llb

ac
k
le
ib
le
r
di
ve
rg
en
ce

T
h
is
is
to

co
m
pu

te
th
e
qu

an
ti
ty

th
at

a
m
od

el
sh
ou

ld
se
ek

to
m
in
im

iz
e
du

ri
n
g

tr
ai
n
in
g.

O
pt
im

iz
er

SG
D
,R

M
Sp

ro
p,
A
da
m

(d
ef
au
lt
),
A
da
de
lt
a,
A
da
gr
ad
,A

da
m
ax
,N

ad
am

,F
tr
l

It
u
pd

at
es

th
e
w
ei
gh

t
pa
ra
m
et
er
s
to

m
in
im

iz
e
th
e
lo
ss

fu
n
ct
io
n
.

Le
ar
n
in
g
ra
te

[1
e-
4,
1e
-1
]
(d
ef
au
lt
1e
-2

fo
r
R
es
n
et
-5
0
an
d1
e-
3
fo
r
ot
h
er

m
od

el
s)

It
de
te
rm

in
es

th
e
st
ep

si
ze

of
ad
ju
st
in
g
th
e
w
ei
gh

ts
w
it
h
re
sp
ec
t
to

th
e
lo
ss

gr
ad
ie
n
t.

B
at
ch

si
ze

1,
2,
4,
8,
16
,3
2,
64
,

12
8
(d
ef
au
lt
),
25
6,
51
2

16
,3
2
(d
ef
au
lt
),
64
,1
28
,2
56
,5
12

T
h
is
is
th
e
si
ze

of
sa
m
pl
es

to
pr
oc
es
s

be
fo
re

in
te
rn
al
m
od

el
pa
ra
m
et
er
s
ar
e

u
pd

at
ed
.

N
u
m
be
r
of

ep
oc
h
s

[1
,1
00
]
(d
ef
au
lt
4)

[1
,1
00
]
(d
ef
au
lt
25
)

[1
,1
00
]
(d
ef
au
lt
3)

[1
,1
00
]
(d
ef
au
lt
2)

It
de
i
n
es

th
e
n
um

be
r
of

ti
m
es

to
w
or
k

th
ro
u
gh

th
e
en
ti
re

tr
ai
n
in
g
da
ta
se
t.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 13

3.5 Hardware and platforms

Our work focuses on studying the impact of tuning diferent hyperparameters on the performance of DNN
models deployed across various hardware platforms. Thus, we irst use the popular hyperparameter tuning
toolkit called Keras Tuner [66] to automatically search for the optimal model hyperparameters and train the
models on the servers that have strong computing power. Speciically, we observe that the model building time
for training and tuning the studied hyperparameters once (e.g., tuning all hyperparameters) and generating 100
DNN models for CNN image classiication, Resnet-50, CNN text classiication, and LSTM sentiment classiication are
1,380 minutes, 1,614 minutes, 326 minutes, and 10,080 minutes respectively. We then deploy the trained DNN
models and further optimized models on multiple platforms including servers and mobile devices to evaluate the
various performance aspects of these DNN models for inference.

Server. Our experiments of tuning hyperparameters, optimizing DNN models, and inference on servers are
performed on a cluster consisting of two computing nodes, which both run the Scientiic Linux release 7.8
(Nitrogen) operating system with NVIDIA CUDA 10.2 and cuDNN 7.6 installed. Each computing node is equipped
with a 72-core 2.5 GHz Intel Xeon Gold 6248 CPU, 450 GB of RAM, and 8 NVIDIA Tesla V100 32G-GPU cards. The
subject models are built with the Keras [23] API using TensorFlow [5] (version 2.2.0) as the back-end platform.

Mobile. The experiments on the mobile devices are conducted on two Xiaomi Mi 9 Android phones. These
smartphones have the same software and hardware conigurations, which include one Snapdragon 855 Octa-core
Max 2.84 GHz processor, 8 GB RAM , 3300 mAh battery, and run the MIUI 12 operating system based on Android
10. In order to perform inference of DNN models on Android, we use the TensorFlow Optimization Toolkit to
convert the standard TensorFlow models to the TensorFlow Lite format before deploying the models on Android
devices and utilize the latest version (current is 2.3.0) of the TensorFlow Lite library in our Android application as
the back-end framework.

4 EMPIRICAL STUDY RESULTS

In this section, we present the empirical study results by answering two research questions (RQs).

4.1 RQ1: What is the impact of tuning diferent hyperparameters on the performance of DNN
models?

4.1.1 Motivation. In order to search for the optimal DNN models to meet speciic performance requirements in
deep learning development, practitioners often systematically explore diverse combinations of conigurations (i.e.,
hyperparameters) of the DNN models using automatic hyperparameter tuning tools (e.g., Keras Tuner). However,
diferent usage scenarios of the DNN-based systems may need to satisfy diferent performance requirements, for
example, in auto-driving vehicles, DNN models are required to make predictions in a fast and eicient manner,
while in DNN-based authentication systems, inference accuracy would be a major concern. Besides, determining
which hyperparameters to tune for speciic performance requirements is still challenging, since tuning a DNN
model with wrong types and ranges of hyperparameters may not achieve expected results, while putting too
many types of hyperparameters and/or a large range of values into tuning would make the whole deep learning
development process very expensive and may delay the entire release schedule of the software system, especially
in a fast-paced release cycle [33]. Therefore, in our irst RQ, we would like to study how the DNN models are
afected by tuning diferent hyperparameters in terms of diferent aspects of performance.

4.1.2 Approach. To answer this RQ, we irst apply hyperparameter tuning on our four subject DNN models,
then we deploy these DNN models on the server platform and measure diferent performance properties of each
DNN model when performing inference on the testing samples. Finally, we examine the performance diferences
between the models that tune each hyperparameter and the models that do not have this hyperparameter tuned,
to understand the overall impact of that single hyperparameter on diferent DNN performance properties. The

ACM Trans. Softw. Eng. Methodol.

14 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

details of the subject DNN models and their corresponding used datasets are summarized in Table 1 of Section 3.2.
Below, we describe each step of our evaluation approach for RQ1 in detail.

Tuning DNNmodel hyperparameters. For each DNN model, we perform hyperparameter tuning with sev-
eral commonly-used hyperparameters in practice which cover diferent dimensions, including architecture-related
hyperparameters, layer-level model training decisions, and optimizer hyperparameters (cf. Section 3.3). In partic-
ular, when experimenting with diferent combinations of hyperparameters, we resemble a more realistic situation
where developers tune the hyperparameters of DNN models: they usually choose a set of hyperparameters from
diferent dimensions to tune rather than tuning just one speciic hyperparameter. Thus, in our work, we adopt a
similar strategy of tuning DNN model hyperparameters to study the impact of tuning diferent hyperparameters
on the DNN model in terms of diferent performance properties. Speciically, we irst regard the performance
properties of the DNN models resulting from tuning all the hyperparameters as the baseline, and then compare
the focused performance properties of the tuned DNN models generated when ixing the hyperparameters in
one dimension or ixing a single hyperparameter with the baseline. To avoid the bias of subjectively choosing
the hyperparameter values when ixing a hyperparameter or a dimension of hyperparameters, we opt to use
the hyperparameter values adopted in the oicial examples [2], which are the hyperparameter values chosen
by the developers and experts of these models. If the oicial example does not provide a speciic value for the
hyperparameter, the default value in the DNN framework API code is used. In this case, our work would provide
insights for developers about how not tuning one speciic hyperparameter or one dimension of hyperparameters
impact the DNN modelâĂŹs diferent performance properties and help them understand the overall impact of
each dimension and each single hyperparameter, and hence, would provide guidance for their hyperparameter
tuning tasks and save them time and efort on these tasks. It is noteworthy that we respectively call the DNN
models resulting from tuning all the hyperparameters, from ixing each dimension of hyperparameters and
each hyperparameter at a time while tuning all other hyperparameters, as tuning-all, ix-one-dimension, and
ix-one-hyperparameter in the rest of this paper. Notably, when tuning the hyperparameters of each DNN model,
we apply the random search algorithm to randomly sample 100 trials of hyperparameter combinations and
measure the corresponding model performance (cf. Section 3.3).

Measuring DNN model performance. After each hyperparameter tuning (i.e., tuning-all, ix-one-dimension,
and ix-one-hyperparameter), we generate 100 DNN models with diferent combinations of hyperparameters.
Subsequently, we deploy these models on the server and measure the performance properties of each DNN model,
i.e., inference accuracy, inference latency, model size on the disk, and FLOPs. It is also worth noting that, to
minimize the noise from the system warm-up and cool-down periods, for each DNN model, we repeat the model
inference on the testing dataset 30 times and take the median value of all measured inference latency results as
the inal performance property of that model.
To gain an overall understanding of the impact of tuning diferent hyperparameters on the performance of a

DNN model, we calculate and compare the distribution of diferent performance properties of the DNN model
generated from tuning all studied hyperparameters. Due to the fact that diferent performance properties have
diferent scales, we do not directly compare the distribution of these performance properties. Instead, we leverage
the following approach to scale the performance properties3:

Pxscaled =
Px

Min(P)

where P is the performance property vector (i.e., measured after tuning all hyperparameters for each of the subject
DNN models and it has the size of 100) that needs to be scaled, Px is the x th value in the P vector, and Min(P) is
the minimum value of the P vector. It should be noted that we manually checked the measured performance

3Please note that this scaling approach only applies to the comparison between diferent DNN performance properties (i.e., Figure 2, Figure 3,
and Figure 6).

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 15

properties in our experiments, and all the values are above zero, thus, there is no problem of division by zero.
We choose this scaling approach as compared to other scaling approaches (e.g., min-max scaling [73]), it not
only preserves the range and the linear relationship in the original data, but also provides better readability for
visualization. For example, the inference accuracy of best-10 DNN models may be very similar, the min-max
scaling would group them together, leading to poor readability, whereas our scaling approach can provide a better
visualization for these small diferences in the performance properties. In addition to measuring the performance
distribution of all generated DNN models after tuning all hyperparameters (i.e., 100 models), we also select and
compare the diferent performance properties of the best 10 models (based on the training time accuracy), since
these models achieve the best performance on the objective metrics (e.g., accuracy or mean squared error) and
are more likely to be selected as the inal model than the rest of the models.

Comparing the performance properties of the ix-one-dimension and ix-one-hyperparameter mod-

elswith the tuning-allmodels. In order to further understand the impact of each dimension of hyperparameters
and each hyperparameter on the DNN model performance in terms of diferent properties, we set the generated
DNN models from tuning all the hyperparameters (i.e., the tuning-all models) as the baseline, and compare
the performance of the DNN models resulted from tuning all but one dimension of hyperparameters (i.e., the
ix-one-dimension models) and tuning all but one hyperparameter (i.e., the ix-one-hyperparameter models) with
the baseline. We select the best 10 models from the resulting models (i.e., 100 models) after each hyperparameter
tuning, since they often achieve similar performance on objective metrics (e.g., accuracy or loss) and are more
likely to be selected as the inal model than the rest of the models. Our intuition is that: if the ix-one-dimension or
ix-one-hyperparameter DNN models have signiicantly diferent performance on speciic properties compared to
the tuning-all models, then the ixed dimension or hyperparameter has a signiicant impact on the performance
properties. We irst calculate the best model relative diference from the two diferent DNN model groups. It is
calculated by the performance property of the best model from the group of DNN models that are obtained from
ix-one-dimension or ix-one-hyperparameter minus the best model’s performance property from the group that
contains the DNN models generated by tuning-all, normalized by the latter. Such a relative diference can be
interpreted as how not tuning one speciic hyperparameter or one speciic dimension of hyperparameters impacts
the resulting best model of the hyperparameter tuning process. For example, in terms of inference accuracy, if
this value is negative, it means if we choose not to tune this speciic hyperparameter or speciic dimension of
hyperparameters, the target performance property of the best model will not be as good as when we tune it/them.
While regarding other studied performance properties (i.e., inference latency, model size, FLOPs, and battery
consumption), if this value is negative, it means that not tuning the target hyperparameter or target dimension of
hyperparameters would achieve a better target performance than tuning it/them.

In order to examinewhether such performance diferences between the ix-one-dimension or ix-one-hyperparameter

models and the tuning-all DNN models are introduced by chance, and to understand the scale of these diferences,
we compare the two performance property distributions of the best-10 DNN models from each group using
statistical tests and efect sizes, similar to previous studies [20, 55]

• Statistical test. In order to evaluate the impact of tuning one hyperparameter or one dimension of
hyperparameters on DNNmodel performance, we use the Mann-Whitney U test [65] as it is non-parametric
and it does not assume a normal distribution of the compared data, to determine whether there exists a
statistically signiicant diference (i.e., p-value < 0.05) between the performance properties (e.g., inference
accuracy or inference latency) from models generated from ixing one hyperparameter or ixing one
dimension of hyperparameters and the ones when tuning all studied hyperparameters. In particular, each
comparison group consists of 10 values for the corresponding best 10 models, and for inference latency,
each value is the median from the 30 times of repetition.

ACM Trans. Softw. Eng. Methodol.

16 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

It is worth noting that, in practice, Bonferroni correction [16] is usually used together with the statistical
test (i.e., Mann-Whitney U test) to counteract the problem of multiple comparisons: while a given p-value
may be appropriate for each individual comparison, it is not for the set of all comparisons. In this correction
approach, the p-value threshold needs to be lowered to account for the number of comparisons being
performed and thus, to avoid spurious positives. However, our approach of studying the impact of tuning
diferent hyperparameters on the performance properties of DNN models only involves comparison of the
performance properties from two diferent groups once at a time, i.e., DNN models generated from ix-one-

dimension or ix-one-hyperparameter (e.g., ixing learning rate) and the ones built from tuning-all. Therefore,
our study does not apply multiple comparisons where several dependent or independent statistical tests
are being performed simultaneously and correspondingly, Bonferroni correction is not applicable in our
empirical case study.

• Efect size. Reporting only the statistical signiicance may lead to misleading results, i.e., if the sample
size is very large, the p-value can be very small even if the diference is trivial. Therefore, we apply Clif’s
Delta [25] to quantify the efect size of the diference between the speciic performance properties of the
models generated from ixing one hyperparameter or ixing one dimension of hyperparameters and the
ones when tuning all studied hyperparameters.

4.1.3 Results. Hyperparameter tuning has a signiicant inluence on the performance of the studied

DNN models. Figure 2 shows the distributions of the scaled performance properties (i.e., inference accuracy,
inference latency, model size, and FLOPs) of our subject DNN models (i.e., CNN image classiication, Resnet-50,
CNN text classiication, and LSTM sentiment classiication) after tuning all the studied hyperparameters. We ind
that the performance of generated DNN models is spread over a considerably wide range in terms of diferent
aspects, which demonstrates the signiicant impact of hyperparameter tuning on the DNN model performance.
In particular, as shown in Figure 2(b), tuning hyperparameters on the Resnet-50 model achieves the largest
diferences in the scaled performance property values between the irst and third quartiles in both model size and
FLOPs (i.e., a diference of 112.62 in model size and a diference of 279.78 in FLOPs); while for inference accuracy
and inference latency, CNN image classiication and LSTM sentiment classiication respectively reach the largest
diferences in the scaled performance property values between the irst and third quartile, with the diference
values as much as 2.56 (i.e., for the LSTM sentiment classiication model). Our work conirms prior work’s inding
that hyperparameter tuning has a signiicant impact on the accuracy property of the DNN models [86]. As the
tuned hyperparameters (e.g., architecture-related hyperparameters) directly control the structure and complexity
of the tuned DNN models, they also have signiicant impacts on the other properties (e.g., inference latency) of
the tuned DNN models.
The top DNN models resulted from tuning hyperparameters have very similar accuracy, while other

performance properties can difer signiicantly. For each of our four subject models, we present the scaled
performance properties distributions of the best 10 DNN models resulted from tuning all the studied hyperparam-
eters in terms of training time accuracy in Figure 3. The results show that, for all our subject models, while there
are only small variances in inference accuracy among these top DNN models, the other performance properties
(e.g., inference latency or model size) may spread over a comparatively wide range. Speciically, as shown in
Figure 5(c), the CNN text classiication model achieves a distribution of inference accuracy with a irst quartile
of 1.01 and a third quartile of 1.02, while it achieves a distribution of inference latency with a irst quartile of
1.06 and a signiicantly higher third quartile of 1.93. Such a inding can by explained by the reason that existing
DNN hyperparameter tuning tools (e.g., Keras Tuner) usually only support accuracy-oriented search objectives
(e.g., accuracy or loss). Thus, the highly ranked models (i.e., ranked by the search objective) from the tuning
results tend to provide similar accuracy. However, the subtle diference in accuracy may hide signiicantly larger
diferences in other performance properties. Therefore, based on this inding, we would suggest that although

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 17

Inference
accuracy

0

20

40

60

Inference
latency

0

20

40

60

Model size
0

20

40

60

FLOPs
0

20

40

60

(a) CNN image classiication

Inference
accuracy

0
250
500
750

1000
1250

Inference
latency

0
250
500
750

1000
1250

Model size
0

250
500
750

1000
1250

FLOPs
0

250
500
750

1000
1250

(b) Resnet-50

Inference
accuracy

0

10

20

30

40

Inference
latency

0

10

20

30

40

Model size
0

10

20

30

40

FLOPs
0

10

20

30

40

(c) CNN text classiication

Inference
accuracy

0
5

10
15
20
25

Inference
latency

0
5

10
15
20
25

Model size
0
5

10
15
20
25

FLOPs
0
5

10
15
20
25

(d) LSTM sentiment classiication

Fig. 2. (Scaled) performance properties distribution of standard 100 DNN models

Note: For each subject model, all the performance properties are normalized by the minimum value of the corresponding property in
order to visually compare the distributions among each other.

accuracy is a vital factor when constructing DNN models, practitioners should not always choose the DNN model
with the best accuracy, as other DNN models (with diferent hyperparameter conigurations) showing slightly
weaker accuracy may have signiicantly better improvements in terms of other performance properties (e.g.,
faster inference speed).
The impact of tuning diferent combinations of hyperparameters on diferent DNN model perfor-

mance properties. Table 3 shows the detailed results of comparing the performance distributions of our studied
DNN models obtained from two groups: the irst group contains the DNN models generated by tuning all hyper-
parameters and the second group of DNN models is obtained from ixing one hyperparameter or one dimension
of hyperparameters while tuning all other hyperparameters. For each model, we present the results on four
performance properties, i.e., inference accuracy, inference latency, model size, and FLOPs. The sub-columns "Best
model relative diference" show the relative diference of the best models from the two diferent groups and the
"p-value/Efect size" sub-columns show the statistical signiicance or the efect size of the diference between the
performance properties of all the DNN models from those two groups. It is noted that if there exists a statistically
signiicant diference (i.e., p-value < 0.05), we present the magnitude of the diference (i.e., efect size), otherwise
we show the p-value.
1) The same hyperparameter or same dimension of hyperparameters can cause diferent impact on

the performance of diferent DNN models. As shown in Table 3, we observe that even for the same perfor-
mance property of the diferent DNN models, the resulting model performance can be afected diferently by
tuning the same hyperparameters or the same dimension of hyperparameters. For example, in terms of inference
accuracy, there exist hyperparameters in all three dimensions that introduce the signiicant impact (i.e., large
efect size) for CNN image classiication, Resnet-50, and CNN text classiication. However, the inference accuracy
of the LSTM sentiment classiication model is only inluenced by the optimizer hyperparameters. Moreover, in
terms of inference latency, for CNN image classiication and Resnet-50, all three dimensions of hyperparameters

ACM Trans. Softw. Eng. Methodol.

18 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

Inference
accuracy

0
2
4
6
8

10

Inference
latency

0
2
4
6
8

10

Model size
0
2
4
6
8

10

FLOPs
0
2
4
6
8

10

(a) CNN image classiication

Inference
accuracy

0

20

40

60

Inference
latency

0

20

40

60

Model size
0

20

40

60

FLOPs
0

20

40

60

(b) Resnet-50

Inference
accuracy

0

10

20

30

40

Inference
latency

0

10

20

30

40

Model size
0

10

20

30

40

FLOPs
0

10

20

30

40

(c) CNN text classiication

Inference
accuracy

0
2
4
6
8

10

Inference
latency

0
2
4
6
8

10

Model size
0
2
4
6
8

10

FLOPs
0
2
4
6
8

10

(d) LSTM sentiment classiication

Fig. 3. (Scaled) performance properties distribution of standard best-10 DNN models

Note: For each subject model, all the performance properties are normalized by the minimum value of the corresponding property in
order to visually compare the distributions among each other.

lead to signiicant impact, while for CNN text classiication and LSTM sentiment classiication, only optimizer
and layer-level hyperparameter cause notable efect, respectively. Although the impact may not be signiicant
when ixing all hyperparameters in the target dimension, it does have a signiicant inluence when ixing speciic
hyperparameters in that dimension. The reason behind this inding would be that as diferent DNN models
have diferent structures, they may have diferent sensitivity to the same hyperparameters. For example, a more
complex model may be more sensitive to the dropout ratio which controls the overitting of the models, thus the
dropout ratio hyperparameter has a larger impact on the CNN image classiication (large efect size for inference
latency) and Resnet-50 (large efect size for inference accuracy and latency) models. Hence, such a inding would
imply that the impression of the impact of certain hyperparameters on DNN model performance learned from
one model may not be directly applicable to a diferent model.
2) The same hyperparameter or same dimension of hyperparameters may have diferent impact on

diferent performance properties of the same DNN model. For instance, as shown in Table 3, architecture-
related hyperparameters lead to remarkable impact on the inference accuracy, model size, and FLOPs of the CNN
text classiication model, yet not on the inference latency. For the Resnet-50 model, the hyperparameter "Pooling
method" causes signiicant impact on all other performance properties except for the inference accuracy. Such
a inding would be explained by the reason that the diferent performance properties of a DNN model can be
mutually conlicting (e.g., a complex model may have a better accuracy but with bigger size and longer inference
latency), thus they can be impacted by the same hyperparameters in diferent ways, for example, compared to
learning rate, number of ilters/units that control the structure of the network is more likely to have a signiicant
impact on model size and FLOPs than inference accuracy. Therefore, based on this inding, we would suggest that
practitioners should not just consider one DNNmodel performance property when choosing the hyperparameters
to tune.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 19

3) Tuning the samehyperparameter or same dimension of hyperparameters lead to the similar impact

on model size and FLOPs. As illustrated in Table 3, we can clearly see that, for all our four subject DNN models,
the model size and FLOPs are almost equally inluenced by the architecture-related hyperparameters, for instance,
ixing the value of "Number of ilters/units" for LSTM sentiment classiicationmodel leads to similar impact between
model size and FLOPs in both best model relative diference (i.e., 0.015 and 0.018 for model size and FLOPs
respectively) and efect size (i.e., both are large). In addition, for Resnet-50, those two performance properties
(i.e., model size and FLOPs) are also signiicantly impacted by layer-level model training decisions (i.e., pooling
method) and optimizer hyperparameters (i.e., loss function and the number of epochs). By further investigating
the reason behind such a result, we ind that a DNN model is essentially a collection of mathematical functions
that are structured by deep learning frameworks (e.g., TensorFlow or PyTorch) as tensor-oriented computation
graphs. A larger model size usually indicates that the network has a relatively more complex structure and/or
more compute nodes in the graphs, and thus requires more computations in the DNN model, i.e., higher FLOPs.
Therefore, to some extent, there is a relationship between the model size and FLOPs, and tuning the same
hyperparameter or same dimension of hyperparameters would have a similar impact on these two performance
properties. Such a result also agrees with a recent study [14] that performs benchmark analysis of some existing
DNN models proposed in the state-of-the-art for image recognition.

: Summary of RQ1

While tuning the hyperparameters has a signiicant impact on the performance of all the studied DNN
models, the impact of tuning speciic hyperparameters varies across diferent DNNmodels. In addition, we
observe that, although the top tuned DNN models have very similar accuracy, they may have signiicantly
diferent performance in terms of other aspects (e.g., inference latency). Thus, practitioners should not
always choose the best tuned model, but instead consider other performance properties while choosing
the most appropriate model from the tuning results.

4.2 RQ2: What is the combined impact of hyperparameter tuning and model optimization on the
performance of optimized DNN models?

4.2.1 Motivation. RQ1 shows that tuning diferent hyperparameters of DNN models can impact the model
performance in terms of diferent aspects. However, the standard DNN models generated by hyperparameter
tuning process may not be suitable for direct deployment in production due to various environment restrictions,
e.g., processing, memory, power consumption, or model storage space. Instead, they may need to be optimized
for deployment and execution in a particular production environment, especially on resource-bounded mobile
devices. However, tuning the hyperparameters may have diferent impact on the standard and the optimized
models in terms of various performance properties. Thus, the goal of this RQ is to assess the combined inluence
of tuning diferent hyperparameters and model optimization on the performance of optimized DNN models for
mobile devices.

4.2.2 Approach. In order to understand how the performance of optimized DNN models is afected by tuning
diferent hyperparameters, we perform pruning, quantization, and encoding on the models resulted from diferent
hyperparameter tuning trials (i.e., tuning-all, ix-one-dimension, and ix-one-hyperparameter). Then, we compare
the focused performance properties of the optimized models that are resulted from these diferent hyperparameter
tuning trials.

Optimizing standard DNN model. In order to better study the impact of tuning diferent hyperparameters
on models with diferent DNN model optimization techniques applied, for each of the subject DNN models, we

ACM Trans. Softw. Eng. Methodol.

20 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

Ta
bl
e
3.

O
ve
ra
ll
im

pa
ct

of
tu
n
in
g
h
yp

er
pa

ra
m
et
er
s
on

th
e
p
er
fo
rm

an
ce

of
st
an

d
ar
d
be
st
-1
0
D
N
N
m
od

el
s

(a
)
R
es
u
lt
fo
r
C
N
N
im

ag
e
cl
as
si
i
ca
ti
on

In
fe
re
n
ce

ac
cu
ra
cy

In
fe
re
n
ce

la
te
n
cy

M
od

el
si
ze

FL
O
P
s

H
yp

er
pa
ra
m
et
er

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

A
rc
h
it
e
ct
u
re
-r
e
la
te
d
h
y
p
e
rp

a
-

ra
m
e
te
rs

-0
.0
08

la
rg
e

-0
.0
31

0.
45
5

-0
.1
84

la
rg
e

-0
.2
14

la
rg
e

N
u
m
be
r
of

i
lt
er
s/
u
n
it
s

-0
.0
01

0.
32
5

-0
.0
83

la
rg
e

-0
.4
22

la
rg
e

-0
.5
00

la
rg
e

K
er
n
el
si
ze

-0
.0
03

la
rg
e

0.
15
9

0.
45
5

4.
48
0

0.
25
8

5.
28
7

0.
25
8

L
a
y
e
r-
le
v
e
l
m
o
d
e
l
tr
a
in
in
g
d
e
-

ci
si
o
n
s

0.
00
2

la
rg
e

-0
.0
99

0.
26
0

0.
84
7

0.
09
6

1.
00
0

0.
08
9

D
ro
po

u
t
ra
ti
o

0.
00
1

0.
05
6

-0
.0
86

la
rg
e

1.
12
8

0.
36
5

1.
32
9

0.
35
0

A
ct
iv
at
io
n
fu
n
ct
io
n

0.
00
2

la
rg
e

0.
18
8

0.
39
6

5.
93
4

0.
19
1

7.
00
0

0.
22
1

P
oo

li
n
g
m
et
h
od

0.
00
1

0.
50
0

-0
.0
88

0.
48
5

2.
54
2

0.
38
0

3.
00
0

0.
33
7

O
p
ti
m
iz
e
r
h
y
p
e
rp

a
ra
m
e
te
rs

-0
.0
04

la
rg
e

0.
08
4

la
rg
e

2.
54
2

0.
13
4

3.
00
0

0.
13
3

Lo
ss

fu
n
ct
io
n

≪
0.
00
1

0.
10
6

-0
.0
37

0.
45
5

0.
84
7

0.
43
9

1.
00
0

0.
48
5

O
pt
im

iz
er

≪
0.
00
1

0.
10
6

-0
.0
82

0.
39
6

0.
00
1

0.
45
5

≪
0.
00
1

0.
46
9

Le
ar
n
in
g
ra
te

-0
.0
01

0.
44
0

0.
17
9

0.
42
5

7.
05
0

0.
44
0

8.
31
7

0.
45
5

B
at
ch

si
ze

0.
00
1

0.
24
8

-0
.0
24

0.
31
2

2.
54
4

0.
21
3

3.
00
0

0.
27
0

N
u
m
be
r
of

ep
oc
h
s

-0
.0
04

la
rg
e

0.
21
9

0.
39
6

8.
34
0

0.
17
2

9.
84
1

0.
22
3

(b
)
R
es
u
lt
s
fo
r
R
es
n
et
-5
0

In
fe
re
n
ce

ac
cu
ra
cy

In
fe
re
n
ce

la
te
n
cy

M
od

el
si
ze

FL
O
P
s

H
yp

er
pa
ra
m
et
er

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

A
rc
h
it
e
ct
u
re
-r
e
la
te
d
h
y
p
e
rp

a
-

ra
m
e
te
rs

0.
00
1

0.
14
5

0.
30
2

la
rg
e

2.
84
5

la
rg
e

2.
91
2

la
rg
e

N
u
m
be
r
of

i
lt
er
s/
u
n
it
s

0.
03
0

0.
26
0

0.
11
6

la
rg
e

2.
84
5

la
rg
e

2.
91
1

la
rg
e

K
er
n
el
si
ze

-0
.0
26

la
rg
e

-0
.4
63

la
rg
e

-0
.8
05

0.
31
2

-0
.8
22

0.
31
2

L
a
y
e
r-
le
v
e
l
m
o
d
e
l
tr
a
in
in
g
d
e
-

ci
si
o
n
s

0.
00
2

0.
48
5

-0
.1
42

0.
05
2

-0
.1
82

0.
39
6

-0
.1
86

0.
39
6

D
ro
po

u
t
ra
ti
o

0.
00
6

la
rg
e

-0
.0
78

la
rg
e

0.
50
1

0.
17
2

0.
51
1

0.
17
2

A
ct
iv
at
io
n
fu
n
ct
io
n

0.
05
7

0.
33
9

0.
02
3

la
rg
e

0.
62
1

0.
19
2

0.
63
4

0.
19
2

P
oo

li
n
g
m
et
h
od

0.
04
0

0.
48
5

0.
29
4

la
rg
e

2.
58
8

la
rg
e

2.
64
9

la
rg
e

O
p
ti
m
iz
e
r
h
y
p
e
rp

a
ra
m
e
te
rs

0.
01
1

0.
48
5

0.
66
1

0.
17
2

7.
48
6

0.
05
2

7.
67
1

0.
05
2

Lo
ss

fu
n
ct
io
n

0.
00
2

0.
15
4

0.
39
9

la
rg
e

3.
42
2

la
rg
e

3.
42
2

la
rg
e

O
pt
im

iz
er

-0
.0
12

0.
45
5

-0
.0
67

0.
39
6

-0
.6
25

0.
09
3

-0
.6
39

0.
09
3

Le
ar
n
in
g
ra
te

0.
04
5

0.
07
0

0.
12
0

0.
09
3

0.
62
8

0.
10
6

0.
64
2

0.
10
6

B
at
ch

si
ze

0.
00
3

0.
36
7

0.
19
7

0.
39
6

1.
43
1

0.
06
1

1.
46
5

0.
06
1

N
u
m
be
r
of

ep
oc
h
s

0.
01
4

la
rg
e

0.
54
0

la
rg
e

4.
89
1

la
rg
e

5.
00
7

la
rg
e

N
ot
e:
fo
r
co
lu
m
n
"p
-v
al
u
e/
E
f
ec
t
si
ze
",
if
p-
va
lu
e
sm

al
le
r
th
an

0.
05
,w

e
pr
es
en
t
th
e
ef

ec
t
si
ze
,e
ls
e
w
e
sh
ow

th
e
p-
va
lu
e.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 21

Ta
bl
e
3.

O
ve
ra
ll
im

pa
ct

of
tu
n
in
g
h
yp

er
pa

ra
m
et
er
s
on

th
e
p
er
fo
rm

an
ce

of
st
an

d
ar
d
be
st
-1
0
D
N
N
m
od

el
s
(c
on

t.
)

(c
)
R
es
u
lt
s
fo
r
C
N
N
te
xt

cl
as
si
i
ca
ti
on

In
fe
re
n
ce

ac
cu
ra
cy

In
fe
re
n
ce

la
te
n
cy

M
od

el
si
ze

FL
O
P
s

H
yp

er
pa
ra
m
et
er

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

A
rc
h
it
e
ct
u
re
-r
e
la
te
d
h
y
p
e
rp

a
-

ra
m
e
te
rs

≪
0.
00
1

0.
21
4

-0
.4
85

0.
06
1

-0
.4
53

la
rg
e

-0
.4
54

la
rg
e

N
u
m
be
r
of

i
lt
er
s/
u
n
it
s

0.
00
5

0.
48
5

-0
.6
74

0.
48
5

-0
.9
07

0.
28
5

-0
.9
09

0.
28
5

K
er
n
el
si
ze

≪
0.
00
1

la
rg
e

-0
.0
50

0.
42
5

0.
02
7

0.
17
2

0.
02
7

0.
17
2

E
m
be
dd

in
g
di
m
en
si
on

0.
00
5

0.
17
2

-0
.4
16

0.
06
1

-0
.4
97

la
rg
e

-0
.4
97

la
rg
e

L
a
y
e
r-
le
v
e
l
m
o
d
e
l
tr
a
in
in
g
d
e
-

ci
si
o
n
s

0.
00
2

0.
33
9

-0
.5
72

0.
10
6

-0
.7
47

0.
48
5

-0
.7
48

0.
48
5

D
ro
po

u
t
ra
ti
o

0.
00
3

0.
06
1

-0
.6
99

0.
10
6

-0
.9
23

0.
48
5

-0
.9
24

0.
48
5

A
ct
iv
at
io
n
fu
n
ct
io
n

0.
01
1

0.
15
4

-0
.6
04

0.
15
4

-0
.8
74

0.
07
0

-0
.8
75

0.
07
0

P
oo

li
n
g
m
et
h
od

0.
01
1

la
rg
e

-0
.5
54

0.
42
5

-0
.6
86

0.
26
0

-0
.6
87

0.
26
0

O
p
ti
m
iz
e
r
h
y
p
e
rp

a
ra
m
e
te
rs

0.
02
3

la
rg
e

-0
.6
72

0.
36
7

-0
.8
66

0.
33
9

-0
.8
67

0.
31
2

Lo
ss

fu
n
ct
io
n

0.
00
1

0.
45
5

-0
.7
46

0.
12
1

-0
.9
60

0.
28
5

-0
.9
61

0.
28
5

O
pt
im

iz
er

≪
0.
00
1

0.
48
5

-0
.6
45

la
rg
e

-0
.7
16

0.
26
0

-0
.7
17

0.
26
0

Le
ar
n
in
g
ra
te

-0
.0
19

0.
23
6

-0
.7
10

0.
06
1

-0
.9
28

0.
42
5

-0
.9
29

0.
42
5

B
at
ch

si
ze

-0
.0
04

0.
13
6

-0
.6
97

la
rg
e

-0
.9
21

0.
31
2

-0
.9
23

0.
31
2

N
u
m
be
r
of

ep
oc
h
s

-0
.0
13

la
rg
e

-0
.5
15

0.
26
0

-0
.6
38

0.
09
3

-0
.6
39

0.
09
3

(d
)
R
es
u
lt
s
fo
r
LS

T
M

se
n
ti
m
en
t
cl
as
si
i
ca
ti
on

In
fe
re
n
ce

ac
cu
ra
cy

In
fe
re
n
ce

la
te
n
cy

M
od

el
si
ze

FL
O
P
s

H
yp

er
pa
ra
m
et
er

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

A
rc
h
it
e
ct
u
re
-r
e
la
te
d
h
y
p
e
rp

a
-

ra
m
e
te
rs

0.
00
6

0.
32
5

-0
.0
44

0.
13
7

-0
.4
87

0.
22
1

-0
.4
83

0.
22
1

N
u
m
be
r
of

i
lt
er
s/
u
n
it
s

-0
.0
01

0.
20
2

-0
.5
93

0.
21
4

0.
01
5

la
rg
e

0.
01
8

la
rg
e

E
m
be
dd

in
g
di
m
en
si
on

-0
.0
11

0.
41
0

0.
62
2

0.
28
5

-0
.4
30

0.
16
3

-0
.3
79

0.
16
3

L
a
y
e
r-
le
v
e
l
m
o
d
e
l
tr
a
in
in
g
d
e
-

ci
si
o
n
s

-0
.0
17

0.
23
6

-0
.5
27

la
rg
e

0.
10
2

0.
23
6

0.
14
9

0.
26
0

D
ro
po

u
t
ra
ti
o

-0
.0
15

0.
41
0

-0
.6
47

0.
23
6

-0
.8
68

0.
36
7

-0
.8
65

0.
36
7

A
ct
iv
at
io
n
fu
n
ct
io
n

-0
.0
09

0.
35
3

-0
.5
44

la
rg
e

-0
.8
02

0.
42
5

-0
.7
50

0.
36
7

O
p
ti
m
iz
e
r
h
y
p
e
rp

a
ra
m
e
te
rs

-0
.0
02

la
rg
e

0.
64
7

0.
31
2

0.
04
0

0.
42
5

0.
05
3

0.
42
5

Lo
ss

fu
n
ct
io
n

-0
.0
02

0.
21
3

-0
.0
76

0.
48
5

-0
.9
14

0.
26
0

-0
.8
99

0.
26
0

O
pt
im

iz
er

-0
.0
25

0.
44
0

-0
.5
99

0.
39
6

-0
.4
83

0.
11
3

-0
.4
72

0.
11
3

Le
ar
n
in
g
ra
te

0.
00
7

0.
24
7

-0
.0
40

0.
28
5

-0
.4
23

0.
20
3

-0
.3
75

0.
16
3

B
at
ch

si
ze

-0
.0
02

0.
07
5

-0
.6
63

0.
45
5

-0
.8
72

0.
12
1

-0
.8
72

0.
13
7

N
u
m
be
r
of

ep
oc
h
s

-0
.0
14

0.
18
2

0.
60
2

0.
13
7

-0
.8
74

0.
31
2

-0
.8
75

0.
31
2

N
ot
e:
fo
r
co
lu
m
n
"p
-v
al
u
e/
E
f
ec
t
si
ze
",
if
p-
va
lu
e
sm

al
le
r
th
an

0.
05
,w

e
pr
es
en
t
th
e
ef

ec
t
si
ze
,e
ls
e
w
e
sh
ow

th
e
p-
va
lu
e.

ACM Trans. Softw. Eng. Methodol.

22 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

carry out the optimization process in three steps, including pruning, quantization, and encoding, then obtain the
optimized models (with all three model optimization techniques applied together) that are suitable for deployment
and execution on mobile devices. In particular, we irst prune the standard model generated from hyperparameter
tuning by using the TensorFlow Model Optimization Toolkit, in which the pruning is performed to the whole
model (i.e., all layers in the model). We opt to prune the DNN models with 80% sparsity (i.e., 80% zeros in weights)
to get the optimal result. We would like to note that our choice of sparsity (i.e., 80% sparsity) is inspired by
the oicial tutorial about pruning in TensorFlow Keras [3]. From the result of the tutorial, we observe that by
applying pruning on DNN models with such coniguration, one can create a signiicantly smaller and sparser
DNN model, while with minimal accuracy diference. However, our experiments and results have no restriction
on the pruning conigurations and practitioners can apply their preferred choice of sparsity to the pruning process
in the DNN optimization pipeline. Then, we convert the precision of weights from 32-bit loats to 8-bit integers
in post-training model quantization, which is the commonly-used approach in practice. By default, our used
deep learning back-end framework, i.e., TensorFlow, supports such quantization operations, except for the LSTM
layer, therefore, we skip quantization step on the pruned LSTM models. Afterwards, we use the TensorFlow
Optimization Toolkit to convert the standard TensorFlow models to the TensorFlow Lite format before deploying
the models on mobile devices. Finally, we apply Hufman and LZ77 encoding to further compress the DNN
models, i.e., reduce the model size.

Measuring the performance of optimized DNN models. After applying DNN model optimization tech-
niques, for each standard DNNmodel, we generate the corresponding optimized model with all three optimization
methods (i.e., pruning, quantization, and encoding) applied in order to fully study the efects of tuning diferent
hyperparameters on the DNN models with diferent aspects of optimizations. Therefore, we irst deploy the
optimized DNN models on the mobile devices, and then measure the performance properties of each optimized
DNN model when it is under prediction workload. In particular, for model size, we calculate it for both unencoded
and encoded models. Similar to RQ1, we perform inference on the testing dataset 30 times and keep the median
inference latency result to reduce the noise caused by system warm-up and cool-down.
After completing the measurement of the performance properties for all optimized DNN models, we follow

the same process of calculating and comparing the diferent performance properties’ distributions as in RQ1 (cf.
Section 4.1.2) for each of our subject DNN models, to understand the impact of tuning diferent hyperparameters
on the performance of the optimized DNN models.

Comparing the performance property distributions between standard and optimized DNN models.

To evaluate whether the optimized DNN models perform diferently from the corresponding standard models, we
compare the distributions of diferent DNN models’ performance properties in the standard form and optimized
form. Our intuition is that if the set of DNN models have diferent distributions in performance properties before
and after optimization, this may be an indicator that model optimization will cause changes in the performance
characteristics of the DNN model. For example, if the standard DNN models have similar inference speed on
the server side, after applying multiple optimization techniques on these models, they may have signiicantly
diferent inference speed on mobile devices. In particular, we select the best 10 standard models from tuning all
selected hyperparameters and the corresponding optimized models. Then, for each of the performance properties,
we calculate the largest absolute relative deviation (LARD) of these two distributions as in the following:

LARDP =

�

�

�

�

Best(P) −Worst(P)

Worst(P)

�

�

�

�

where P is the performance property vector (i.e., measured from the best 10 DNN models generated by tuning
all hyperparameters for each of the subject DNN models or their corresponding optimized ones and it has the
size of 10), Best(P) and Worst(P) are the best value and worst value of the P vector, respectively. Speciically,
for the inference latency, model size, and battery consumption of a DNN model, the lower the values are, the

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 23

better performance they indicate; while for inference accuracy, the higher values mean better performance. It
should be noted that the purpose of the LARD metric is not to show the performance diference between a
standard DNN model and its optimized counterpart. Rather, we compare the LARD metric between the standard
models and the optimized ones to understand whether the optimization leads to larger diferences among the
performance of the models. We choose the LARD metric to measure the performance characteristics (i.e., the
variance of the distributions) of DNN models as classical metrics (i.e., standard deviation or mean absolute
deviation) that measure the variability or dispersion of a set of values are not suitable for the comparison between
two performance datasets obtained from diferent platforms (i.e., standard DNN model on servers and optimized
DNN model on mobile devices) with diferent scales, while LARD can preserve the range of a set of performance
properties while reducing such bias.

In addition, to understand the distribution of the changes between standard DNN models and optimized DNN
models with respect to various performance properties, for each of the DNN models, we measure the relative
diference of performance properties (e.g., inference accuracy, inference latency) between the standard DNN
model and the corresponding optimized one. It is calculated by the performance property of the optimized DNN
model minus the performance property of the corresponding standard model, normalized by the latter. Besides,
we also visualize the distribution of these relative performance property changes between standard and optimized
DNN models using box plots.

In order to have a more comprehensive understanding of the diference between the distributions of diferent
DNN modelsâĂŹ performance properties in the standard form and optimized form, we perform further investiga-
tions and comparisons on the distributions of pairwise performance property diferences between optimized
models and standard models. In particular, for a pair of standard DNN models,m1 andm2, and the corresponding
optimized ones, m′

1 and m
′
2, we compute the relative diference for each of the performance properties (e.g.,

inference latency) betweenm1 andm2, normalized bym2, and the corresponding diference betweenm′
1 andm

′
2,

normalized bym′
2. Then, we compare these two diferences. Such a comparison can be expressed in the following

formula:

∆pairwise =
m

′
1 −m

′
2

m
′
2

−
m1 −m2

m2

We then repeat this process for all the combinations of the best-10 DNN models and the corresponding optimized
ones, which leads to a total of 45 model pairs (i.e., 10C2, which means the number of combinations when choosing
two objects from the set of 10 objects). We also visualize the distributions of such diferences using a density plot.
In addition, we utilize the Kolmogorov-Smirnov test [77] to determine if there exists a statistically signiicant
diference (i.e., p-value < 0.05) between the distributions of the pairwise model performance property diferences
of the standard DNN models and optimized DNN models. We choose the Kolmogorov-Smirnov test since it does
not enforce any assumptions on the distributions of the data.

Comparing the performance properties of the optimizedix-one-dimension andix-one-hyperparameter

models with the optimized tuning-all models. Similar to RQ1, we irst set the performance of the optimized
DNN models from tuning all the hyperparameters as the baseline, and then apply the same statistical analysis,
including calculating best model relative diference, statistical testing and measuring efect size, to compare each
focused performance property of the optimized DNN models generated when ixing the hyperparameters in one
dimension or ixing one single hyperparameter at a time with the baseline, to study the impact of tuning diferent
hyperparameters on the optimized DNN model in terms of diferent performance properties.

4.2.3 Results. DNN model optimization can lead to signiicantly diferent performance distributions

between the standard DNN models and the optimized ones. Table 4 summarizes the comparison results of
performance properties between the standard and the optimized DNNmodels for our four subject models. We ind
that after applying optimization techniques on the standard DNN models, the LARD for inference accuracy would

ACM Trans. Softw. Eng. Methodol.

24 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

be slightly diferent with the deviation ranging from 0.02 to 0.11, except for the CNN image classiication model
which achieves the same LARD between the standard and optimized models. After further investigation of the
distributions of inference accuracy, we suspect the reason being that the accuracy distributions are considerably
concentrated, i.e., with the standard deviation of ≪0.001, in both the distributions of the standard and optimized
models. For inference latency, we observe that there are notable diferences in the distributions between the
standard and the optimized DNN models. In particular, the Resnet-50 model achieves the largest deviation in
terms of LARD, with the value of 0.74 and 10.53 for standard models and optimized models, respectively. Such
noteworthy diference can be interpreted as that even a set of DNN models have similar inference speed on the
server or cloud platforms, they may have signiicant variance in inference latency on mobile devices. We also
notice mild diferences in the distributions of model sizes between the standard and the optimized DNN models.
Particularly, the standard and optimized LSTM sentiment classiication DNN models have quite close model size
distributions, with a slight diference of LARD at only 0.24 (i.e., in terms of model size, the relative diference
between the best and worst performance of the standard models are similar to the relative diference between
the best and worst performance of the optimized models). Such results can be interpreted by the fact that we
only apply standard conversion (transform a TensorFlow model to TensorFlow Lite model) on the pruned LSTM
models to make them compatible for deployment on mobile devices, but without quantizing these LSTM models
(cf. Section 4.2.2).

Figure 4 shows the distributions of the performance property changes between the standard DNN models and
the optimized DNN models. We observe that the DNN model optimization introduces a signiicant impact on
both inference latency and model size, while with relatively minor inluence on inference accuracy. In particular,
all of our four subject DNN models present remarkable diferences in inference latency between the standard
DNN models and the optimized ones, with a median relative diference4 from 5.47 times (i.e., 547.03%) (in CNN

test classiication) to 83.54 times (i.e., 8,353.57%) (in LSTM sentiment classiication). Regarding the model size, DNN
optimization has a strong ability to reduce the standard model size. For example, considering the relative changes
of the model size in Resnet-50 models, the DNN model can be compressed by 91.16% or more compared to the
standard model size. However, in terms of inference accuracy, although the DNN model optimization would
bring some variation (often degradation) in the inference accuracy (i.e., the median value of the relative changes
in inference latency for four subject DNN models are below 0), such variance is relatively small. Speciically, the
median relative diferences are -0.29%, -1.17%, -0.63%, and -1.16% for CNN image classiication, Resnet-50, CNN
text classiication, and LSTM sentiment classiication, respectively.

Figure 5 summarizes the distributions of the pairwise model performance property diferences of the standard
DNN models and optimized DNN models. Similar to Figure 4, from Figure 5 we observe that, the standard and
optimized DNN models show relatively similar distributions of inference accuracy diferences (i.e., the pairwise
diference between the relative diferences of two standard models and two optimized models (i.e., ∆pairwise) has
distributions with most values gathering around 0). Yet, we still observe more than 10% (25% for the Resnet-50
model) diferences between 1) the relative diference of two standard models and 2) the relative diference between
the optimized counterparts of the two models. Furthermore, the distributions of other properties (i.e., inference
latency and model size) can be more diferent between standard models and optimized ones (i.e., the pairwise
diference distributions (i.e., ∆pairwise) have longer tails, reaching up to 1,000% diference for the inference
latency of the Resnet-50 model). In addition, from the statistical test result (shown in Table 5), we ind that
all of our four subject DNN models (i.e., CNN image classiication, Resnet-50, CNN text classiication, and LSTM

sentiment classiication) have statistically signiicant diferences (i.e., p-value < 0.05) between the distributions of
the pairwise model performance property diferences of the standard DNN models and optimized DNN models.

4Median relative diference is calculated as the median value of the diferences of performance properties between each pair of optimized
models and standard models normalized by standard models.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 25

(a) CNN image classiication (b) Resnet-50

(c) CNN text classiication (d) LSTM sentiment classiication

Fig. 4. Performance property relative diference distributions between optimized models and standard models normalized by
standard models (best-10 models)

Such a result further supports our inding that DNN model optimization would lead to signiicantly diferent
performance distributions between the standard DNN models and the optimized ones.
These indings can be explained by the reason that diferent DNN models, even diferent layers, would have

diferent sensitivity to the optimization process. For example, since the number of parameters of convolution
layers is intuitively less than the fully connected layers, convolution layers are more likely to be sensitive to
pruning [38, 54]. Therefore, in terms of two DNN models with diferent combinations of hyperparameters,
when they undergo the same model optimization coniguration, there may be diferent degrees of optimization
(especially pruning) on them, resulting in diferent distributions of the performance properties before and after
optimization. Thus, based on these indings, we would suggest that practitioners need to pay attention to the
signiicant performance diferences between the optimized DNN models derived from the standard models with
very similar performance.

Table 4. Results of comparing the LARD metric between standard DNN models (on servers) and optimized DNN models (on
mobile devices) performance properties. A larger LARD metric indicates a larger variation of the performance properties.

Property

CNN image
Resnet-50

CNN text LSTM sentiment
classiication classiication classiication

Standard Optimized Standard Optimized Standard Optimized Standard Optimized
Inference accuracy 0.01 0.01 0.03 0.14 0.02 0.11 0.05 0.03
Inference latency 0.30 5.01 0.74 10.53 2.28 8.62 3.40 7.74

Model size 5.93 6.61 44.26 41.62 28.63 30.09 7.35 7.11

Note: Since there is no readily available tool support to calculate the FLOPs of optimized DNN models on mobile devices, we do not
report the results of comparing the LARD metric in the FLOPs between standard DNN models and optimized DNN models.

ACM Trans. Softw. Eng. Methodol.

26 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

(a) CNN image classiication (b) Resnet-50

(c) CNN text classiication (d) LSTM sentiment classiication

Fig. 5. Distribution of the diference between each pair of modelsâĂŹ performance property diferences before and ater
model optimization

Table 5. Statistical test results of the comparing the distributions of the pairwise performance property diferences between
optimized models and standard models.

Property
CNN image

Resnet-50
CNN text LSTM sentiment

classiication classiication classiication
Inference accuracy ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001
Inference latency 0.001 0.001 0.043 0.002

Model size ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001

Although the accuracy of the top DNN models after optimization is very similar, other performance

properties still difer signiicantly. For each subject model, the distributions of various scaled performance
properties (i.e., inference accuracy, inference latency, unencoded and encoded model size, and battery con-
sumption) of the best 10 DNN models from tuning all studied hyperparameters after model optimization are
summarized in Figure 6. We observe a similar result as in RQ1, which is that, for all our subject models, after
applying DNN model optimization methods on the top models, although the models show similar accuracy,
they may still have very diferent performance in terms of other properties (e.g., inference latency or model
size). It is worth noting that in addition to the performance properties that are also mentioned in the standard
DNN models (cf. Section 4.1), the variance in battery consumption is also remarkable, particularly for the CNN
text classiication model, which has a battery consumption distribution with the irst quartile of only 1.50 but a
signiicantly high third quartile of 5.06. The reason behind this inding would be that the state-of-the-art DNN
model optimization techniques (e.g., pruning) often aim to optimize the DNN models (i.e., meet computational
requirements and reduce model size) for the deployment on resource-constrained devices (e.g., mobile devices or
IoT devices), while trying to remain the accuracy of the model. Thus, the optimized DNN models tend to provide
very similar accuracy, while other performance properties may have large diferences. Therefore, this inding

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 27

Inference
accuracy

0

2

4

6

8

Inference
latency

0

2

4

6

8

Unencoded
model size

0

2

4

6

8

Encoded
model size

0

2

4

6

8

Battery
cons.

0

2

4

6

8

(a) CNN image classiication

Inference
accuracy

0
10
20
30
40
50

Inference
latency

0
10
20
30
40
50

Unencoded
model size

0
10
20
30
40
50

Encoded
model size

0
10
20
30
40
50

Battery
cons.

0
10
20
30
40
50

(b) Resnet-50

Inference
accuracy

0

10

20

30

40

Inference
latency

0

10

20

30

40

Unencoded
model size

0

10

20

30

40

Encoded
model size

0

10

20

30

40

Battery
cons.

0

10

20

30

40

(c) CNN text classiication

Inference
accuracy

0
2
4
6
8

10

Inference
latency

0
2
4
6
8

10

Unencoded
model size

0
2
4
6
8

10

Encoded
model size

0
2
4
6
8

10

Battery
cons.

0
2
4
6
8

10

(d) LSTM sentiment classiication

Fig. 6. (Scaled) Performance properties distribution of optimized best-10 DNN models on mobile devices

Note: For each subject model, all the performance properties are normalized by the minimum value of the corresponding property in
order to visually compare the distributions among each other.

would imply that practitioners should not always choose the optimized DNN model with the best accuracy,
since other optimized DNN models (derived from standard model with diferent hyperparameter conigurations)
showing slightly weaker accuracy may have signiicantly better improvements in terms of other performance
properties (e.g., lower battery consumption).
The impact of tuning diferent combinations of hyperparameters on diferent optimized DNNmodel

performance properties. Similar to Table 3 in RQ1 (cf. Section 4.1), Table 6 shows the detailed results of
comparing the performance of optimized DNN models obtained from tuning all studied hyperparameters with
the optimized models from ixing one hyperparameter or ixing one dimension of hyperparameters while tuning
all other hyperparameters.
1) The impact of tuning diferent combinations of hyperparameters on the performance properties

of the optimized DNN models can be diferent from that of the standard models. By comparing Table 3
and Table 6, we ind that, although the dimensions of hyperparameters that lead to signiicant diferences
for inference accuracy are almost identical for both the standard and optimized DNN models for all subject
models, the speciic hyperparameters that make a diference may be diferent. For example, while the inference
accuracy of the standard Resnet-50 models is impacted by "Number of epochs" ; as for optimized models, the
inference accuracy is signiicantly inluenced by the "Loss function" hyperparameter from the same dimension
(i.e., optimizer hyperparameters). In terms of inference latency, the efect of tuning hyperparameters on the
standard DNN models and on the optimized ones difer notably. In particular, tuning all three dimensions of
hyperparameters have an impact on the inference latency of the standard CNN image classiication models, while
after optimization, only architecture-related hyperparameters cause a signiicant impact. The diferent impacts of
the hyperparameters on the optimized DNN models and the standard models can be explained by the reason that
the impact of the hyperparameter tuning process and the impact of the optimization process are not completely
independent. For example, a more complex model resulting from the hyperparameter tuning process may lead to
a higher pruning ratio while maintaining similar performance. In addition, the impact of tuning hyperparameters
on the encoded and unencoded model size is the same and it remains the same as for the standard models. For
instance, before optimizing the LSTM sentiment classiication model, only one hyperparameter, i.e., "Number

ACM Trans. Softw. Eng. Methodol.

28 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

of ilters/units", leads to a notable impact on the model size, and such impact persists after optimization. After
encoding the optimized model, it is still only the "Number of ilters/units" that obviously afect the size of the
model. Therefore, based on such a inding, we would suggest that future research should consider the impact of
hyperparameter tuning on the performance of optimized DNN models and integrate the model optimization into
the hyperparameter tuning process.
2) Tuning hyperparameters can cause diverse efects on the battery consumption of diferent opti-

mized DNN models.With respect to the mobile-speciic performance property, i.e., battery consumption, we
observe that except for LSTM sentiment classiication models, our subject DNN models (i.e., CNN image classiica-

tion, Resnet-50, and CNN text classiication) can be signiicantly impacted by the tuning of the architecture-related
hyperparameters. Besides, the optimizer hyperparameters cause notable efects on both the Resnet-50 model
and LSTM sentiment classiication models while causing an insigniicant efect on the CNN text classiication

and CNN image classiication models. The layer-level model training decision hyperparameters only introduce
observable impact on Resnet-50 models. By further investigating the reason behind this result, we ind that the
battery consumption is mostly impacted by the architecture-related and optimizer-related hyperparameters since
these hyperparameters have a signiicant impact on the complexity of the models (as they signiicantly impact
the FLOPs performance property); a more complex model tends to be more battery-consuming.
3) The impact of tuning hyperparameters on the battery consumption and inference latency cannot

bemeasured without running themodels on the target devices. Regarding the performance properties that
cannot be measured without running the optimized DNN models on the target device (i.e., battery consumption
and inference latency), they can be quite diicult to be integrated into an optimization process. As shown in
Table 6, for these performance properties, we ind that there exist diferences between the hyperparameters
inluencing battery consumption, inference latency and the hyperparameters inluencing other properties. For
instance, both layer-level model training decisions and optimizer hyperparameters lead to notable impact on the
inference accuracy on CNN image classiication model, but not on the inference latency, and for LSTM sentiment

classiication model, the hyperparameter "Optimizer" causes signiicant impact on the battery consumption, but
makes no remarkable diference on both unencoded and encoded mode size. Such a inding can be explained by
the reason that current hyperparameter tuning techniques (e.g., Keras Tuner) are not able to support objective
functions involving performance properties collected from a separate platform, e.g., collecting the runtime
performance property (e.g., battery consumption or inference latency) from mobile devices and dynamically
feedback to the server-side, thus the impact of tuning hyperparameters on these performance properties may not
be considered during the tuning process. Thus, based on this inding, it would be suggested that practitioners
need to watch for the impact of the hyperparameters on the battery consumption and inference latency that
may not be available without actually running the model on a target device. Our indings also advocate the
need for future research on whether to follow a two-step approach (i.e., hyperparameter tuning irst and then
optimization) or a one-step approach (i.e., hyperparameter tuning and optimization of DNN in the same loop).

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 29

Ta
bl
e
6.

O
ve
ra
ll
im

pa
ct

of
tu
n
in
g
h
yp

er
pa

ra
m
et
er
s
on

th
e
p
er
fo
rm

an
ce

of
op

ti
m
iz
ed

be
st
-1
0
D
N
N
m
od

el
s
on

m
ob

ile
d
ev
ic
es

(a
)
R
es
u
lt
s
fo
r
C
N
N
im

ag
e
cl
as
si
i
ca
ti
on

In
fe
re
n
ce

ac
cu
ra
cy

In
fe
re
n
ce

la
te
n
cy

B
at
te
ry

co
n
su
m
pt
io
n

U
n
en
co
de
d
m
od

el
si
ze

E
n
co
de
d
m
od

el
si
ze

H
yp

er
pa
ra
m
et
er

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

A
rc
h
it
e
ct
u
re
-r
e
la
te
d
h
y
p
e
rp

a
-

ra
m
e
te
rs

-0
.0
13

la
rg
e

-0
.6
86

la
rg
e

-0
.5
48

la
rg
e

-0
.1
94

la
rg
e

-0
.1
79

la
rg
e

N
u
m
be
r
of

i
lt
er
s/
u
n
it
s

0.
00
1

la
rg
e

-0
.0
48

la
rg
e

-0
.0
57

la
rg
e

-0
.3
70

la
rg
e

-0
.2
99

la
rg
e

K
er
n
el
si
ze

-0
.0
06

la
rg
e

-0
.1
87

la
rg
e

-0
.1
91

la
rg
e

4.
95
7

0.
25
9

4.
88
1

0.
26
0

L
a
y
e
r-
le
v
e
l
m
o
d
e
l
tr
a
in
in
g
d
e
-

ci
si
o
n
s

0.
00
6

la
rg
e

0.
38
7

0.
28
5

0.
35
9

0.
39
6

0.
91
9

0.
21
3

1.
06
3

0.
15
4

D
ro
po

u
t
ra
ti
o

-0
.0
13

0.
23
6

0.
33
7

0.
21
4

0.
31
1

0.
31
1

1.
22
7

0.
24
7

1.
11
0

0.
42
5

A
ct
iv
at
io
n
fu
n
ct
io
n

0.
00
7

la
rg
e

3.
02
3

0.
45
5

2.
83
5

0.
45
5

6.
46
3

0.
38
1

6.
76
5

0.
17
2

P
oo

li
n
g
m
et
h
od

0.
00
7

0.
38
1

1.
71
3

0.
13
7

0.
80
6

0.
05
2

2.
76
7

0.
36
6

3.
01
2

0.
26
0

O
p
ti
m
iz
e
r
h
y
p
e
rp

a
ra
m
e
te
rs

0.
00
6

la
rg
e

1.
73
8

0.
42
5

0.
90
3

0.
28
5

2.
76
7

0.
23
6

2.
92
6

0.
12
1

Lo
ss

fu
n
ct
io
n

-0
.0
02

0.
33
9

0.
34
6

0.
19
2

0.
79
6

0.
33
9

0.
92
4

0.
39
6

0.
86
4

0.
39
6

O
pt
im

iz
er

-0
.0
01

0.
23
6

0.
03
0

0.
28
5

-0
.0
19

0.
13
7

≪
0.
00
1

0.
45
5

0.
05
3

0.
39
6

Le
ar
n
in
g
ra
te

0.
00
5

0.
23
6

2.
77
9

0.
12
1

1.
51
5

0.
10
6

7.
67
6

0.
45
5

7.
61
6

0.
48
5

B
at
ch

si
ze

0.
00
3

0.
35
3

1.
67
5

0.
21
4

1.
57
3

0.
31
2

2.
77
2

0.
27
2

2.
80
2

0.
48
5

N
u
m
be
r
of

ep
oc
h
s

0.
00
4

0.
48
5

1.
28
9

0.
19
2

1.
07
8

0.
28
5

9.
07
9

0.
28
5

8.
89
7

0.
23
6

(b
)
R
es
u
lt
s
fo
r
R
es
n
et
-5
0

In
fe
re
n
ce

ac
cu
ra
cy

In
fe
re
n
ce

la
te
n
cy

B
at
te
ry

co
n
su
m
pt
io
n

U
n
en
co
de
d
m
od

el
si
ze

E
n
co
de
d
m
od

el
si
ze

H
yp

er
pa
ra
m
et
er

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

A
rc
h
it
e
ct
u
re
-r
e
la
te
d
h
y
p
e
rp

a
-

ra
m
e
te
rs

-0
.0
47

0.
15
4

0.
05
5

la
rg
e

0.
02
4

la
rg
e

2.
86
9

la
rg
e

2.
80
3

la
rg
e

N
u
m
be
r
of

i
lt
er
s/
u
n
it
s

0.
00
9

0.
39
6

0.
47
9

la
rg
e

0.
24
4

la
rg
e

2.
86
7

la
rg
e

2.
52
7

la
rg
e

K
er
n
el
si
ze

-0
.0
62

la
rg
e

-0
.6
79

0.
36
7

-0
.6
98

0.
36
7

-0
.8
10

0.
31
2

-0
.8
08

0.
39
6

L
a
y
e
r-
le
v
e
l
m
o
d
e
l
tr
a
in
in
g
d
e
-

ci
si
o
n
s

0.
02
2

0.
39
6

-0
.7
12

0.
26
0

-0
.5
86

0.
48
5

-0
.1
84

0.
39
6

-0
.2
34

0.
39
6

D
ro
po

u
t
ra
ti
o

-0
.0
07

la
rg
e

-0
.2
86

0.
42
5

-0
.1
83

0.
39
6

0.
50
5

0.
17
2

-0
.0
01

0.
26
0

A
ct
iv
at
io
n
fu
n
ct
io
n

0.
05
3

0.
48
5

-0
.0
35

0.
23
6

-0
.0
12

0.
31
2

0.
62
7

0.
19
2

0.
62
8

0.
23
6

P
oo

li
n
g
m
et
h
od

0.
00
1

0.
17
2

0.
24
4

la
rg
e

0.
22
0

la
rg
e

2.
60
7

la
rg
e

1.
58
1

la
rg
e

O
p
ti
m
iz
e
r
h
y
p
e
rp

a
ra
m
e
te
rs

0.
02
0

0.
19
2

1.
88
5

0.
26
0

1.
64
0

0.
17
2

7.
53
3

0.
05
2

3.
71
8

0.
09
3

Lo
ss

fu
n
ct
io
n

-0
.2
05

la
rg
e

0.
64
9

0.
07
0

0.
56
7

0.
07
0

3.
36
5

la
rg
e

0.
87
9

la
rg
e

O
pt
im

iz
er

-0
.0
43

0.
36
7

-0
.8
07

0.
31
2

-0
.7
34

0.
48
5

-0
.6
31

0.
09
3

-0
.6
14

0.
23
6

Le
ar
n
in
g
ra
te

0.
04
1

0.
10
6

-0
.0
47

0.
33
9

0.
02
4

0.
26
0

0.
63
5

0.
10
6

0.
58
0

0.
12
1

B
at
ch

si
ze

-0
.0
10

0.
12
1

-0
.1
66

0.
17
2

-0
.1
04

0.
10
6

1.
44
2

0.
06
1

1.
20
4

m
ed
iu
m

N
u
m
be
r
of

ep
oc
h
s

0.
01
8

0.
06
1

1.
56
9

la
rg
e

1.
53
0

la
rg
e

4.
92
9

la
rg
e

3.
78
9

la
rg
e

N
ot
e:
fo
r
co
lu
m
n
"p
-v
al
u
e/
E
f
ec
t
si
ze
",
if
p-
va
lu
e
sm

al
le
r
th
an

0.
05
,w

e
pr
es
en
t
th
e
ef

ec
t
si
ze
,e
ls
e
w
e
sh
ow

th
e
p-
va
lu
e.

ACM Trans. Softw. Eng. Methodol.

30 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

Ta
bl
e
6.

O
ve
ra
ll
im

pa
ct

of
tu
n
in
g
h
yp

er
pa

ra
m
et
er
s
on

th
e
p
er
fo
rm

an
ce

of
op

ti
m
iz
ed

be
st
-1
0
D
N
N
m
od

el
s
on

m
ob

ile
d
ev
ic
es

(c
)
R
es
u
lt
s
fo
r
C
N
N
te
xt

cl
as
si
i
ca
ti
on

In
fe
re
n
ce

ac
cu
ra
cy

In
fe
re
n
ce

la
te
n
cy

B
at
te
ry

co
n
su
m
pt
io
n

U
n
en
co
de
d
m
od

el
si
ze

E
n
co
de
d
m
od

el
si
ze

H
yp

er
pa
ra
m
et
er

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

A
rc
h
it
e
ct
u
re
-r
e
la
te
d
h
y
p
e
rp

a
-

ra
m
e
te
rs

-0
.0
15

0.
13
7

0.
39
9

la
rg
e

0.
39
7

la
rg
e

-0
.4
53

la
rg
e

-0
.4
44

la
rg
e

N
u
m
be
r
of

i
lt
er
s/
u
n
it
s

0.
00
2

0.
36
7

-0
.0
78

0.
06
1

-0
.3
31

0.
07
0

-0
.9
07

0.
28
5

-0
.9
09

0.
19
2

K
er
n
el
si
ze

0.
00
1

la
rg
e

0.
57
8

0.
05
2

0.
48
3

0.
07
0

0.
02
6

0.
17
2

0.
04
6

0.
15
4

E
m
be
dd

in
g
di
m
en
si
on

0.
01
4

0.
42
5

-0
.2
41

m
ed
iu
m

-0
.3
67

0.
06
1

-0
.4
97

la
rg
e

-0
.5
11

la
rg
e

L
a
y
e
r-
le
v
e
l
m
o
d
e
l
tr
a
in
in
g
d
e
-

ci
si
o
n
s

-0
.0
10

0.
10
6

-0
.5
18

0.
39
6

-0
.4
98

0.
33
9

-0
.7
47

0.
48
5

-0
.7
19

0.
39
6

D
ro
po

u
t
ra
ti
o

-0
.0
04

0.
17
2

-0
.5
18

0.
36
7

-0
.4
98

0.
33
9

-0
.9
22

0.
48
5

-0
.9
22

0.
39
6

A
ct
iv
at
io
n
fu
n
ct
io
n

0.
00
9

0.
08
1

-0
.8
03

0.
13
7

-0
.7
89

0.
13
7

-0
.8
74

0.
07
0

-0
.8
83

0.
05
2

P
oo

li
n
g
m
et
h
od

0.
01
1

0.
08
1

0.
88
9

0.
28
5

0.
31
0

0.
31
2

-0
.6
86

0.
26
0

-0
.6
78

0.
19
2

O
p
ti
m
iz
e
r
h
y
p
e
rp

a
ra
m
e
te
rs

0.
02
0

la
rg
e

-0
.2
95

0.
36
7

-0
.4
75

0.
36
7

-0
.8
66

0.
33
9

-0
.8
61

0.
28
5

Lo
ss

fu
n
ct
io
n

-0
.0
11

0.
12
1

-0
.4
28

0.
48
5

-0
.4
07

0.
45
5

-0
.9
60

0.
28
5

-0
.9
58

0.
31
2

O
pt
im

iz
er

-0
.0
09

0.
19
2

0.
37
8

0.
36
7

0.
37
1

0.
48
5

-0
.7
16

0.
26
0

-0
.7
02

0.
28
5

Le
ar
n
in
g
ra
te

-0
.0
23

0.
26
0

-0
.5
83

0.
33
9

-0
.5
63

0.
39
6

-0
.9
28

0.
42
5

-0
.9
29

0.
48
5

B
at
ch

si
ze

-0
.0
27

0.
21
4

-0
.2
56

0.
45
5

-0
.4
45

0.
45
5

-0
.9
21

0.
33
9

-0
.9
18

0.
28
5

N
u
m
be
r
of

ep
oc
h
s

-0
.0
11

0.
07
0

1.
21
5

0.
13
7

0.
60
3

0.
19
2

-0
.6
38

0.
09
3

-0
.5
93

0.
06
1

(d
)
R
es
u
lt
s
fo
r
LS

T
M

se
n
ti
m
en
t
cl
as
si
i
ca
ti
on

In
fe
re
n
ce

ac
cu
ra
cy

In
fe
re
n
ce

la
te
n
cy

B
at
te
ry

co
n
su
m
pt
io
n

U
n
en
co
de
d
m
od

el
si
ze

E
n
co
de
d
m
od

el
si
ze

H
yp

er
pa
ra
m
et
er

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

B
es
t
m
od

el
p-
va
lu
e

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

re
la
ti
ve

di
f
.

/
E
f
ec
t
si
ze

A
rc
h
it
e
ct
u
re
-r
e
la
te
d
h
y
p
e
rp

a
-

ra
m
e
te
rs

0.
02
3

0.
47
0

0.
46
6

0.
10
6

0.
43
8

0.
07
0

-0
.4
85

0.
23
4

-0
.4
88

0.
26
0

N
u
m
be
r
of

i
lt
er
s/
u
n
it
s

0.
03
7

0.
12
8

0.
62
5

m
ed
iu
m

1.
00
6

0.
10
6

0.
01
7

la
rg
e

0.
00
2

la
rg
e

E
m
be
dd

in
g
di
m
en
si
on

0.
02
0

0.
13
6

2.
86
0

0.
45
5

2.
87
4

0.
36
7

-0
.4
28

0.
15
4

-0
.4
51

0.
15
4

L
a
y
e
r-
le
v
e
l
m
o
d
e
l
tr
a
in
in
g
d
e
-

ci
si
o
n
s

0.
00
1

0.
15
4

5.
46
3

0.
17
2

5.
45
0

0.
33
9

0.
11
1

0.
23
6

0.
10
0

0.
17
2

D
ro
po

u
t
ra
ti
o

0.
00
4

0.
38
1

-0
.5
09

0.
15
4

-0
.0
20

0.
36
7

-0
.8
65

0.
38
1

-0
.8
75

0.
39
6

A
ct
iv
at
io
n
fu
n
ct
io
n

0.
02
1

0.
39
6

2.
99
7

0.
23
6

3.
66
5

0.
26
0

-0
.7
91

0.
45
5

-0
.8
20

0.
45
5

O
p
ti
m
iz
e
r
h
y
p
e
rp

a
ra
m
e
te
rs

0.
00
5

0.
39
6

1.
57
4

0.
12
1

2.
50
9

0.
17
2

0.
04
5

0.
41
0

0.
01
3

0.
39
6

Lo
ss

fu
n
ct
io
n

0.
03
2

0.
15
3

0.
21
8

0.
19
2

0.
75
5

0.
21
4

-0
.9
11

0.
26
0

-0
.9
19

0.
26
0

O
pt
im

iz
er

0.
00
4

la
rg
e

0.
17
9

la
rg
e

0.
62
1

la
rg
e

-0
.4
82

0.
10
6

-0
.4
90

0.
10
6

Le
ar
n
in
g
ra
te

0.
02
6

0.
48
5

3.
08
7

0.
39
6

2.
95
5

0.
31
2

-0
.4
14

0.
20
3

-0
.4
42

0.
17
2

B
at
ch

si
ze

0.
01
8

0.
09
9

-0
.6
57

0.
12
1

-0
.3
41

0.
12
1

-0
.8
70

0.
10
6

-0
.8
77

0.
10
6

N
u
m
be
r
of

ep
oc
h
s

0.
01
5

0.
42
5

-0
.7
39

0.
10
6

-0
.4
83

0.
13
7

-0
.8
73

0.
31
2

-0
.8
79

0.
33
9

N
ot
e:
fo
r
co
lu
m
n
"p
-v
al
u
e/
E
f
ec
t
si
ze
",
if
p-
va
lu
e
sm

al
le
r
th
an

0.
05
,w

e
pr
es
en
t
th
e
ef

ec
t
si
ze
,e
ls
e
w
e
sh
ow

th
e
p-
va
lu
e.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 31

: Summary of RQ2

We observe that optimization techniques (e.g., pruning) can lead to signiicantly diferent performance
distributions between the standard DNN models and the optimized ones. For example, for two standard
DNN models with similar inference latency on the server, their corresponding optimized models deployed
on the mobile device may have very diferent inference latency. In addition, tuning the hyperparameters
may have diferent impact on the optimized models than on the standard models. Practitioners should
consider the impact of model optimization on the performance of optimized models when building
and tuning their models in the cloud/server environments. Our indings also advocate the need for
future research on whether to follow a two-step approach (i.e., hyperparameter tuning irst and then
optimization) or a one-step approach (i.e., hyperparameter tuning and optimization of DNN in the same
loop).

5 DISCUSSION

In this section, we discuss the implications of our empirical study results.

5.1 Do not always choose the top-1 DNN model from hyperparameter tuning as the final decision

After submitting many DNN model training jobs with diferent combinations of hyperparameters, we can
acquire a list of generated DNN models prioritized by the target metrics, e.g., accuracy or mean squared error,
depending on the target use scenarios of the DNN model. From such a list of models, practitioners often adopt
the top-1 DNN model as it has the optimal hyperparameters that yield the best model performance. However,
after our comprehensive analysis of the performance of the resulting DNN models, we realize that, compared
to other models, although the top-1 DNN model has the best accuracy, it is likely to achieve comparatively
worse performance in terms of other aspects. Instead, other candidate models with slightly worse accuracy may
outperform the top-1 model in terms of other performance properties. For example, from the results of tuning
all the chosen hyperparameters for the CNN text classiication models, the top-1 model achieves an inference
accuracy and an average inference latency of 0.87 and 2,639.26 ms, respectively; the second-best model, while
having a trivial degradation in inference accuracy (i.e., 0.86), achieves a signiicantly faster inference speed (i.e.,
967.74 ms). By examining the details of these two DNN models, we ind that, compared to the second-best model,
the top-1 model has a much more complex model structure (i.e., higher embedding dimensions and more ilters)
to provide a modest improvement in inference accuracy, but it also causes the model size to be larger and the
inference speed to be notably slower.

Therefore, our empirical study results imply that, as current hyperparameter tuning tools (e.g., Keras Tuner or
Hyperopt) are mainly based on tuning for one objective (e.g., accuracy or loss), the most accurate DNN model
(i.e., top-1) resulting from hyperparameter tuning is not necessarily the most appropriate model. Practitioners
should take into account the trade-of between inference accuracy and other important performance properties
(e.g., inference latency or mode size) in the speciic usage scenarios and context. On the other hand, practitioners
can also take into account the multi-objective hyperparameter optimization that achieves an optimal trade-of
between various diferent and even mutually conlicting objectives. For example, in addition to improving the
inference accuracy, the objectives regarding inference latency, model size, FLOPs, and/or battery consumption
may also be incorporated when choosing the appropriate DNN model in the speciic usage scenarios and context
(e.g., autonomous vehicles, embedded systems, or mobile phones). There exists much prior work in this ield
and they propose approaches based on various techniques such as scalarization [7, 41, 67, 90, 94], Pareto front

ACM Trans. Softw. Eng. Methodol.

32 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

approximation [28, 48, 58, 80], and decomposition [44, 57, 93] to achieve an optimal trade-of between the
individual objectives.

5.2 Diferences of performance characteristics between standard DNN models for servers/clouds and
optimized DNN models for mobile platforms

During the DNN development process, practitioners may face the requirement to deploy a DNN model trained
from powerful servers or cloud platforms to resource-constrained mobile devices, e.g., in Android or IOS devices.
Due to the fact that a standard DNN model often involves many redundant operations making it complex in
structure and large in size, various model optimization methods are adopted to optimize the standard DNN model.
However, we ind that there exist signiicant diferences between the standard and optimized DNNmodels in terms
of various performance properties. For example, before optimizing the best-10 CNN image classiication models,
the diference in inference latency between these models is not quite signiicant: the model with the highest
inference speed is only 30% faster than the one with the lowest speed. In comparison, after the optimization, the
distribution of inference latency becomes highly dispersed: the relative diference of inference speed between the
fastest and slowest optimized DNN models increases dramatically to 501% (cf. Table 4).

Hence, the results imply that the performance characteristics (e.g., distribution of inference latency) of standard
DNNmodels for server/cloud platforms may be impacted by the model optimization techniques, thus practitioners
need to be careful not to simply transfer the hyperparameter conigurations or the understanding of the impact
of such hyperparameter settings from one platform to another platform (e.g., tuning hyperparameters on the
server and transferring them to mobiles). Instead, one needs to consider performing hyperparameter tuning on
the target devices for deployment.

5.3 The impact of hyperparameter tuning on performance properties varies across diferent DNN
models

From our empirical study results, we observe that by comparing the performance property distributions of the
DNN model generated from tuning and not tuning one hyperparameter or one dimension of hyperparameters,
the impact of that hyperparameter or that dimension of hyperparameters on our studied performance properties
is not always consistent among various DNN models. For example, in terms of inference latency, tuning the
"Dropout ratio" hyperparameter or not leads to signiicant impact on the CNN image classiication and Resnet-50

models, while having trivial efects on the CNN text classiication and LSTM sentiment classiication models. The
only exception is that, regardless of diferent DNN models, the "Kernel size" hyperparameter always introduces a
notable efect on inference accuracy.
In addition to taking the impact of not tuning a speciic hyperparameter into account, we also consider how

the interactions among multiple hyperparameters inluence the performance properties. In particular, our studied
hyperparameters are structured into three dimensions, including architecture-related hyperparameters, layer-
level model training decisions, and optimizer hyperparameters. By ixing the value of all hyperparameters within
each dimension and comparing the result to ixing each speciic hyperparameter in that dimension, we observe
the interactions among multiple hyperparameters. For example, from the investigation results of the overall
impact of tuning hyperparameters on the performance of standard best-10 DNN models (cf., Table 3), we ind that
for the CNN image classiication model, when the values of each hyperparameter in optimizer hyperparameters
are ixed, there is no signiicant efect on inference latency, but when the values of all hyperparameters are
ixed, there is a signiicant efect observed. We also observe such interactions among hyperparameters from
the result of optimized standard best-10 DNN models (cf., Table 6), for example, for Resnet-50, ixing the value
of the pooling method causes signiicant impacts on inference latency, battery consumption, and model size

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 33

(both unencoded and encoded), while ixing the entire dimensions of hyperparameters (i.e., the layer-level model
training decisions), there is no such signiicant impact on these performance properties.
Our results imply that the impact of a hyperparameter on a certain aspect of a DNN model’s performance

is not homogeneous across diferent models and is not independent of other hyperparameters. Instead, there
exist interactions among multiple hyperparameters (especially the hyperparameters within the same dimension).
These diferent hyperparameters often inluence each other and their impact is related to the structure of the
speciic DNN models. Practitioners should perform a speciic analysis of particular DNN models and performance
requirements as the best practices.

6 THREATS TO VALIDITY

This section discusses the threats to the validity of our study.
Construct validity. One potential threat to the construct validity is the DNN model performance properties
used in our experiments. Considering other performance properties, e.g., memory utilization or the number
of trained parameters, would beneit our study. However, in order to reduce this threat, we utilize the widely-
used and representative properties in practice and literature [10, 34, 47, 53, 86, 87], to evaluate the diferent
performance perspectives of the DNN models. We would also like to note that model size, latency, and FLOPs may
be inter-correlated. In fact, we calculated PearsonâĂŹs correlation for each subject model between these three
performance properties, i.e., model size, FLOPs, and inference latency. According to our result, the performance
properties are not always correlated, and their correlations can be as low as 0.03. The results can be explained
by the fact that these properties provide diferent and complementary perspectives of DNN performance. For
example, although the inference latency of a DNN model would be impacted by FLOPs and model size, it is
also afected by the number of memory accesses and other factors. The results prove that these performance
properties are not redundant to each other. In addition, the Resnet-50 model has diferent blocks; however, during
hyperparameter tuning, we opt to regard these diferent blocks uniformly, which would be a potential threat to
the construct validity. The reason for this decision is that Resnet-50 has 5 diferent blocks and a total of 48 layers
of convolution and 2 layers of pooling; if we treat each of these layers independently, the result for Resnet-50 is
not suitable for horizontal comparison with other models. Besides, our studied hyperparameters include over
11 types of commonly-used hyperparameters in practice, each of which contains a wide range of values, and
they already comprise a large hyperparameter search space with a magnitude of 1010. Thus, we choose to treat
each block of Resnet-50 uniformly. However, more investigations and studies on an even larger search scope
(e.g., consider each block of a DNN model independently) are in our ongoing future work. Moreover, we perform
the post-training model quantization on the DNN models to convert the precision of weights from 32-bit loats
to 8-bit integers. Such optimization operations are by default supported by our used deep learning back-end
framework, i.e., TensorFlow, except for the LSTM layer, thus, we do not consider the quantization step on the
pruned LSTM models as it is not supported. Due to the lack of readily available techniques for the quantization
of LSTM, we could not estimate the impact of skipping this quantization step for LSTM. Therefore, we would
leave the investigation of such impacts to our future work.
Internal validity. Our study uses the approach of ixing one hyperparameter or ixing one dimension of
hyperparameters at a time to understand the impact of tuning diferent hyperparameters on the performance of
the standard and optimized DNN models. However, the choice of the ixed values for the studied hyperparameters
or the dimension of hyperparameters may afect our results. To mitigate this threat, when a hyperparameter
needs to be ixed, we use the value adopted in the oicial example model building code and if the example does
not specify the hyperparameter value, we use the default value in the DNN framework API. In addition, when
measuring the performance of the DNN models, we perform inference on the testing dataset 30 times and keep
the median inference latency result to reduce the noise caused by system warm-up and cool-down. Taking all

ACM Trans. Softw. Eng. Methodol.

34 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

these measures down to a single value would be a threat to our results. On the other hand, we ind that these
performance property distributions are rather concentrated, i.e., with an average relative standard deviation
(RSD) of 8.03%, and according to prior studies [26, 74], such a small RSD may imply that the performance property
distributions are considered low-variance and it would be reasonable to take the median value of all measured
results as the inal performance property of that model to minimize the noise from the system warm-up and
cool-down periods.
External validity. Our study is performed on two DNN models for image classiication (i.e., CNN image classii-

cation and Resnet-50) and two for text classiication (i.e., CNN text classiication and LSTM sentiment classiication).
However, our study cannot cover all state-of-the-art DNN models (e.g., BERT [27]) and our results may not
generalize to them. Under the constraint of computing resources, we consider the four representative DNN
models that cover diferent types of neural networks, including CNN (Convolutional Neural Networks) and RNN
(Recurrent Neural Networks) that are widely used in practice [9, 18, 39, 59, 69, 84, 91]. Our results indicate that
these DNN models can achieve high accuracy (i.e., the best tuned models of these DNN models achieve 0.77 to
0.99 accuracy). Nevertheless, future work that considers more other DNN models and datasets can beneit our
study. In addition, all our studied DNN models are implemented with the TensorFlow deep learning framework,
since it is both the most in-demand framework and the fastest growing in recent years [36]. However, diferent
choices of deep learning frameworks may lead to diferent results. In future work, we will perform experiments
on other mainstream deep learning frameworks R2.5 (e.g., PyTorch, Cafe, or MXNet) and other datasets.

7 CONCLUSIONS

We noticed that DNN model hyperparameter tuning and optimization techniques are widely adopted by prac-
titioners to ensure the quality of services provided by DNN models. However, how the tuning of diferent
hyperparameters afects a DNN model and its optimized counterpart in terms of various performance properties
remains an under-explored area. Improper hyperparameters can lead to sub-optimal models falling to meet
desired performance requirements. In this paper, we perform an empirical study of the efect of tuning diferent
DNN model hyperparameters on the standard DNN models and the DNN models that are optimized by pruning,
quantization, and encoding, in terms of various performance properties (i.e., inference accuracy, inference la-
tency, model size, FLOPs, and battery consumption). We observe that tuning speciic hyperparameters can cause
diferent impact on the performance of DNN models across models and performance properties. Further, model
optimization has a confounding efect on the impact of hyperparameters tuning on the model performance. Our
indings highlight that practitioners can beneit from paying attention to a variety of performance properties
and the confounding efect of model optimization when tuning and optimizing their DNN models. For example,
practitioners can improve their choice of the tuned models by choosing one from the top tuned models that has
similar accuracy with the most accurate model while possessing signiicantly better performance in terms of
other properties.

This paper provides the following contributions:

• To our best knowledge, this is the irst work that comprehensively investigates the relationship between
tuning diferent DNN model hyperparameters and its efect on diferent performance properties of the
standard DNN models and the optimized DNN models.

• We perform comprehensive experiments, tuning up to 11 types of hyperparameters and evaluating the
performance of four state-of-the-art DNN models on two platforms (i.e., server and mobile devices) in
terms of ive performance properties.

• Our results and indings provide insights and guidelines for practitioners who are interested in DNN
hyperparameter tuning and DNN model optimization to achieve speciic performance requirements, and
advocate the need for future research on whether to follow a two-step approach (i.e., hyperparameter

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 35

tuning irst and then optimization) or a one-step approach (i.e., hyperparameter tuning and optimization of
DNN in the same loop).

REFERENCES
[1] 2019. Hyperparameters in Deep Learning. https://towardsdatascience.com/hyperparameters-in-deep-learning-927f7b2084dd. Last

accessed 10/10/2020.
[2] 2020. keras code examples. https://github.com/keras-team/keras-io/tree/master/examples. Last accessed 10/16/2020.
[3] 2020. Pruning in Keras example. https://www.tensorlow.org/model_optimization/guide/pruning/pruning_with_keras.
[4] 2020. Tensorlow Model Optimization. https://www.tensorlow.org/model_optimization.
[5] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, and Yuan Yu et al. 2015. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems. https://www.tensorlow.org/ Software available from tensorlow.org.
[6] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. 2017. Structured pruning of deep convolutional neural networks. ACM Journal on

Emerging Technologies in Computing Systems (JETC) 13, 3 (2017), 1ś18.
[7] Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and Kris M. Kitani. 2018. N2N learning: Network to Network Compression via

Policy Gradient Reinforcement Learning. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,

April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.
[8] Babajide O Ayinde and JacekM Zurada. 2018. Building eicient convnets using redundant feature pruning. arXiv preprint arXiv:1802.07653

(2018).
[9] Abdullah Aziz Sharfuddin, Md. Nais Tihami, and Md. Saiful Islam. 2018. A Deep Recurrent Neural Network with BiLSTM model for

Sentiment Classiication. In 2018 International Conference on Bangla Speech and Language Processing (ICBSLP). 1ś4.
[10] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2018. Accelerating Neural Architecture Search using Performance

Prediction. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop

Track Proceedings. OpenReview.net.
[11] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. The Journal of Machine Learning Research

13, 1 (2012), 281ś305.
[12] James Bergstra, Daniel Yamins, and David D. Cox. 2013. Making a Science of Model Search: Hyperparameter Optimization in Hundreds

of Dimensions for Vision Architectures. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA,

USA, 16-21 June 2013 (JMLR Workshop and Conference Proceedings, Vol. 28). JMLR.org, 115ś123.
[13] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms for hyper-parameter optimization. In Advances in

neural information processing systems. 2546ś2554.
[14] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. 2018. Benchmark analysis of representative deep neural network

architectures. IEEE Access 6 (2018), 64270ś64277.
[15] Ekaba Bisong. 2019. Google AutoML: cloud vision. In Building Machine Learning and Deep Learning Models on Google Cloud Platform.

Springer, 581ś598.
[16] Carlo Bonferroni. 1936. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche

e Commericiali di Firenze 8 (1936), 3ś62.
[17] Han Cai, Ligeng Zhu, and Song Han. 2018. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. CoRR

abs/1812.00332 (2018).
[18] Jingjing Cai, Jianping Li, Wei Li, and Ji Wang. 2018. Deeplearning Model Used in Text Classiication. In 2018 15th International Computer

Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). 123ś126.
[19] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. 2016. An analysis of deep neural network models for practical applications.

arXiv preprint arXiv:1605.07678 (2016).
[20] Tse-Hsun Chen, Weiyi Shang, Ahmed E Hassan, Mohamed Nasser, and Parminder Flora. 2016. Cacheoptimizer: Helping developers

conigure caching frameworks for hibernate-based database-centric web applications. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. 666ś677.
[21] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A Survey of Model Compression and Acceleration for Deep Neural Networks.

CoRR abs/1710.09282 (2017).
[22] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. 2020. Universal deep neural network compression. IEEE Journal of Selected Topics in

Signal Processing (2020).
[23] François Chollet et al. 2015. Keras. https://keras.io.
[24] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. 2019. Low-bit Quantization of Neural Networks for Eicient Inference. In

2019 IEEE/CVF International Conference on Computer Vision Workshops, ICCV Workshops 2019, Seoul, Korea (South), October 27-28, 2019.
IEEE, 3009ś3018.

[25] Norman Clif. 2014. Ordinal methods for behavioral data analysis. Psychology Press.

ACM Trans. Softw. Eng. Methodol.

https://towardsdatascience.com/hyperparameters-in-deep-learning-927f7b2084dd
https://github.com/keras-team/keras-io/tree/master/examples
https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras
https://www.tensorflow.org/model_optimization
https://www.tensorflow.org/
https://keras.io

36 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

[26] Mauricio Farias Couto, Luiz Alexandre Peternelli, and Márcio Henrique Pereira Barbosa. 2013. Classiication of the coeicients of
variation for sugarcane crops. Ciência rural 43 (2013), 957ś961.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics, 4171ś4186.

[28] Michael T. M. Emmerich, André H. Deutz, and Jan Willem Klinkenberg. 2011. Hypervolume-based expected improvement: Monotonicity
properties and exact computation. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2011, New Orleans, LA, USA, 5-8

June, 2011. IEEE, 2147ś2154.
[29] Livia Faes, Siegfried K Wagner, Dun Jack Fu, Xiaoxuan Liu, Edward Korot, Joseph R Ledsam, Trevor Back, Reena Chopra, Nikolas

Pontikos, Christoph Kern, et al. 2019. Automated deep learning design for medical image classiication by health-care professionals
with no coding experience: a feasibility study. The Lancet Digital Health 1, 5 (2019), e232śe242.

[30] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Eicient Hyperparameter Optimization at Scale. In Proceedings

of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018 (Proceedings

of Machine Learning Research, Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR, 1436ś1445.
[31] Chris Fawcett and Holger H. Hoos. 2016. Analysing diferences between algorithm conigurations through ablation. J. Heuristics 22, 4

(2016), 431ś458.
[32] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. 2020. Auto-Sklearn 2.0. arXiv:2007.04074

[cs.LG] (2020).
[33] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, andMao Yang. 2020. Estimating GPUMemory Consumption

of Deep Learning Models. Technical Report MSR-TR-2020-20. Microsoft.
[34] Robert B Gramacy, Matt Taddy, and Stefan M Wild. 2013. Variable selection and sensitivity analysis using dynamic trees, with an

application to computer code performance tuning. The Annals of Applied Statistics (2013), 51ś80.
[35] Jia Guo and Miodrag Potkonjak. 2017. Pruning convnets online for eicient specialist models. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops. 113ś120.
[36] Jef Hale. 2019. Which Deep Learning Framework is Growing Fastest? https://towardsdatascience.com/which-deep-learning-framework-

is-growing-fastest-3f77f14aa318.
[37] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing deep neural networks with pruning, trained

quantization and hufman coding. arXiv preprint arXiv:1510.00149 (2015).
[38] Song Han, Jef Pool, John Tran, and William J. Dally. 2015. Learning both Weights and Connections for Eicient Neural Networks. CoRR

abs/1506.02626 (2015).
[39] Seong-Hyeon Han and Kwang-Yeob Lee. 2017. Implemetation of image classiication CNN using multi thread GPU. In 2017 International

SoC Design Conference (ISOCC). 296ś297.
[40] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. 2018. Soft ilter pruning for accelerating deep convolutional neural

networks. arXiv preprint arXiv:1808.06866 (2018).
[41] Chi-Hung Hsu, Shu-Huan Chang, Da-Cheng Juan, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Shih-Chieh Chang. 2018. MONAS:

Multi-Objective Neural Architecture Search using Reinforcement Learning. CoRR abs/1806.10332 (2018).
[42] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013. Identifying Key Algorithm Parameters and Instance Features Using

Forward Selection. In Learning and Intelligent Optimization - 7th International Conference, LION 7, Catania, Italy, January 7-11, 2013,

Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7997), Giuseppe Nicosia and Panos M. Pardalos (Eds.). Springer, 364ś381.
[43] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2014. An Eicient Approach for Assessing Hyperparameter Importance. In

Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014 (JMLR Workshop and

Conference Proceedings, Vol. 32). JMLR.org, 754ś762.
[44] Jing Jiang, Fei Han, Qinghua Ling, Jie Wang, Tiange Li, and Henry Han. 2020. Eicient network architecture search via multiobjective

particle swarm optimization based on decomposition. Neural Networks 123 (2020), 305ś316.
[45] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Eicient Neural Architecture Search System. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur
Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, 1946ś1956.

[46] Julie. 2020. Hands on hyperparameter tuning with Keras Tuner. https://www.sicara.ai/blog/hyperparameter-tuning-keras-tuner.
[47] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. 2015. Compression of deep convolutional

neural networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015).
[48] Joshua D. Knowles. 2006. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization

problems. IEEE Trans. Evol. Comput. 10, 1 (2006), 50ś66.
[49] Lars Kotthof, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown. 2017. Auto-WEKA 2.0: Automatic model

selection and hyperparameter optimization in WEKA. J. Mach. Learn. Res. 18 (2017), 25:1ś25:5.

ACM Trans. Softw. Eng. Methodol.

https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318
https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318
https://www.sicara.ai/blog/hyperparameter-tuning-keras-tuner

An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural
Networks • 37

[50] Alex Krizhevsky, Geofrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).
[51] Alex Krizhevsky, Ilya Sutskever, and Geofrey E Hinton. 2017. Imagenet classiication with deep convolutional neural networks. Commun.

ACM 60, 6 (2017), 84ś90.
[52] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit database. ATT Labs [Online]. Available:

http://yann.lecun.com/exdb/mnist 2 (2010).
[53] Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. 2016. Evaluating the energy eiciency of deep convolutional neural networks

on cpus and gpus. In 2016 IEEE international conferences on big data and cloud computing (BDCloud), social computing and networking

(SocialCom), sustainable computing and communications (SustainCom)(BDCloud-SocialCom-SustainCom). IEEE, 477ś484.
[54] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016. Pruning ilters for eicient convnets. arXiv preprint

arXiv:1608.08710 (2016).
[55] Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Jianmei Guo, Catalin Sporea, Andrei Toma, and Sarah Sajedi. 2020. Using

black-box performance models to detect performance regressions under varying workloads: an empirical study. Empirical Software

Engineering 25, 5 (2020), 4130ś4160.
[56] Marius Lindauer and Frank Hutter. 2019. Best Practices for Scientiic Research on Neural Architecture Search. CoRR abs/1909.02453

(2019).
[57] Jia Liu, Maoguo Gong, Qiguang Miao, Xiaogang Wang, and Hao Li. 2018. Structure Learning for Deep Neural Networks Based on

Multiobjective Optimization. IEEE Trans. Neural Networks Learn. Syst. 29, 6 (2018), 2450ś2463.
[58] Mohammad Loni, Sima Sinaei, Ali Zoljodi, Masoud Daneshtalab, and Mikael Sjödin. 2020. DeepMaker: A multi-objective optimization

framework for deep neural networks in embedded systems. Microprocess. Microsystems 73 (2020), 102989.
[59] Yuandong Luan and Shaofu Lin. 2019. Research on Text Classiication Based on CNN and LSTM. In 2019 IEEE International Conference

on Artiicial Intelligence and Computer Applications (ICAICA). 352ś355.
[60] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and Dinesh Manocha. 2019. Traicpredict: Trajectory prediction for

heterogeneous traic-agents. In Proceedings of the AAAI Conference on Artiicial Intelligence, Vol. 33. 6120ś6127.
[61] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. Learning Word Vectors

for Sentiment Analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language

Technologies. Association for Computational Linguistics, Portland, Oregon, USA, 142ś150.
[62] AbhinavMehrotra, Alberto Gil C. P. Ramos, Sourav Bhattacharya, Lukasz Dudziak, Ravichander Vipperla, Thomas C. P. Chau, Mohamed S.

Abdelfattah, Samin Ishtiaq, and Nicholas Donald Lane. 2021. NAS-Bench-ASR: Reproducible Neural Architecture Search for Speech
Recognition. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

[63] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[64] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2016. Pruning convolutional neural networks for resource
eicient inference. arXiv preprint arXiv:1611.06440 (2016).

[65] Nadim Nachar et al. 2008. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution.
Tutorials in quantitative Methods for Psychology 4, 1 (2008), 13ś20.

[66] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin, Luca Invernizzi, et al. 2019. Keras Tuner. https://github.com/
keras-team/keras-tuner.

[67] Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. 2019. A Flexible Framework for Multi-Objective Bayesian Optimization
using Random Scalarizations. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artiicial Intelligence, UAI 2019, Tel Aviv, Israel,

July 22-25, 2019 (Proceedings of Machine Learning Research, Vol. 115), Amir Globerson and Ricardo Silva (Eds.). AUAI Press, 766ś776.
[68] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning systems. In

proceedings of the 26th Symposium on Operating Systems Principles. 1ś18.
[69] Saeed Mian Qaisar. 2020. Sentiment Analysis of IMDb Movie Reviews Using Long Short-Term Memory. In 2020 2nd International

Conference on Computer and Information Sciences (ICCIS). 1ś4.
[70] Elad Rapaport, Oren Shriki, and Rami Puzis. 2019. EEGNAS: Neural Architecture Search for Electroencephalography Data Analysis and

Decoding. In Human Brain and Artiicial Intelligence - First International Workshop, HBAI 2019, Held in Conjunction with IJCAI 2019,

Macao, China, August 12, 2019, Revised Selected Papers (Communications in Computer and Information Science, Vol. 1072), An Zeng, Dan
Pan, Tianyong Hao, Daoqiang Zhang, Yiyu Shi, and Xiaowei Song (Eds.). Springer, 3ś20.

[71] Nils Reimers and Iryna Gurevych. 2017. Optimal hyperparameters for deep lstm-networks for sequence labeling tasks. arXiv preprint
arXiv:1707.06799 (2017).

[72] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. 2020. A Comprehensive Survey of
Neural Architecture Search: Challenges and Solutions. CoRR abs/2006.02903 (2020).

[73] C Saranya and G Manikandan. 2013. A study on normalization techniques for privacy preserving data mining. International Journal of
Engineering and Technology (IJET) 5, 3 (2013), 2701ś2704.

ACM Trans. Softw. Eng. Methodol.

https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

38 • Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

[74] Macfarlane TU Scott, Tannath J Scott, and Vincent G Kelly. 2016. The validity and reliability of global positioning systems in team sport:
a brief review. The Journal of Strength & Conditioning Research 30, 5 (2016), 1470ś1490.

[75] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian optimization of machine learning algorithms. In Advances

in neural information processing systems. 2951ś2959.
[76] Nitish Srivastava, Geofrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A Simple Way to Prevent

Neural Networks from Overitting. Journal of Machine Learning Research 15, 56 (2014), 1929ś1958.
[77] James H Stapleton. 2007. Models for probability and statistical inference: theory and applications. Vol. 652. John Wiley & Sons.
[78] Pierre Stock, Angela Fan, Benjamin Graham, Edouard Grave, Rémi Gribonval, Hervé Jégou, and Armand Joulin. 2021. Training with

Quantization Noise for Extreme Model Compression. In 9th International Conference on Learning Representations, ICLR 2021, Virtual

Event, Austria, May 3-7, 2021.
[79] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Eicient processing of deep neural networks: A tutorial and survey.

Proc. IEEE 105, 12 (2017), 2295ś2329.
[80] El-Ghazali Talbi. 2019. A uniied view of parallel multi-objective evolutionary algorithms. J. Parallel Distributed Comput. 133 (2019),

349ś358.
[81] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V. Le. 2019. MnasNet: Platform-

Aware Neural Architecture Search for Mobile. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,

CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2820ś2828.
[82] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013. Auto-WEKA: combined selection and hyperparameter

optimization of classiication algorithms. In The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD 2013, Chicago, IL, USA, August 11-14, 2013, Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh
Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy (Eds.). ACM, 847ś855.

[83] Frederick Tung and Greg Mori. 2018. Clip-q: Deep network compression learning by in-parallel pruning-quantization. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 7873ś7882.
[84] An Tien Vo, Hai Son Tran, and Thai Hoang Le. 2017. Advertisement image classiication using convolutional neural network. In 2017

9th International Conference on Knowledge and Systems Engineering (KSE). 197ś202.
[85] Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. 2016. Attention-based LSTM for aspect-level sentiment classiication. In

Proceedings of the 2016 conference on empirical methods in natural language processing. 606ś615.
[86] Jenna Wong, Travis Manderson, Michal Abrahamowicz, David L Buckeridge, and Robyn Tamblyn. 2019. Can hyperparameter tuning

improve the performance of a super learner?: A case study. Epidemiology (Cambridge, Mass.) 30, 4 (2019), 521.
[87] Shuochao Yao, Yiran Zhao, Huajie Shao, ShengZhong Liu, Dongxin Liu, Lu Su, and Tarek Abdelzaher. 2018. Fastdeepiot: Towards

understanding and optimizing neural network execution time on mobile and embedded devices. In Proceedings of the 16th ACM Conference

on Embedded Networked Sensor Systems. 278ś291.
[88] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang, Michael W.

Mahoney, and Kurt Keutzer. 2021. HAWQ-V3: Dyadic Neural Network Quantization. In Proceedings of the 38th International Conference

on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139). PMLR, 11875ś11886.
[89] Shaokai Ye, Xiaoyu Feng, Tianyun Zhang, Xiaolong Ma, Sheng Lin, Zhengang Li, Kaidi Xu, Wujie Wen, Sijia Liu, Jian Tang, et al.

2019. Progressive dnn compression: A key to achieve ultra-high weight pruning and quantization rates using admm. arXiv preprint
arXiv:1903.09769 (2019).

[90] Min Yoon, Yeboon Yun, and Hirotaka Nakayama. 2009. Sequential Approximate Multiobjective Optimization Using Computational

Intelligence. Springer.
[91] Zharfan Zahisham, Chin Poo Lee, and Kian Ming Lim. 2020. Food Recognition with ResNet-50. In 2020 IEEE 2nd International Conference

on Artiicial Intelligence in Engineering and Technology (IICAIET). 1ś5.
[92] Julie Zelenski, K. Hufman, K. Schwarz, and Marty Stepp. 2012. Hufman Encoding and Data Compression.
[93] Qingfu Zhang and Hui Li. 2007. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput.

11, 6 (2007), 712ś731.
[94] Richard Zhang and Daniel Golovin. 2020. Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization. In

Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine

Learning Research, Vol. 119). PMLR, 11096ś11105.

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related work

	3 Empirical Study Setup
	3.1 Study design
	3.2 Subject models and datasets
	3.3 Hyperparameters of DNN models
	3.4 DNN model performance properties
	3.5 Hardware and platforms

	4 Empirical Study Results
	4.1 RQ1: What is the impact of tuning different hyperparameters on the performance of DNN models?
	4.2 RQ2: What is the combined impact of hyperparameter tuning and model optimization on the performance of optimized DNN models?

	5 Discussion
	5.1 Do not always choose the top-1 DNN model from hyperparameter tuning as the final decision
	5.2 Differences of performance characteristics between standard DNN models for servers/clouds and optimized DNN models for mobile platforms
	5.3 The impact of hyperparameter tuning on performance properties varies across different DNN models

	6 Threats to Validity
	7 Conclusions
	References

