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Abstract—Performance regression is an important type of
performance issue in software systems. It indicates that the
performance of the same features in the new version of the
system becomes worse than that of previous versions, such as
increased response time or higher resource utilization. In order to
prevent performance regressions, current practices often rely on
conducting extensive system performance testing before releasing
the system into production based on the testing results. However,
faced with a great demand for resources and time to perform
system performance testing, it is often challenging to adopt such
approaches to the practice of fast-paced development and release
cycles, e.g., DevOps. This thesis focuses on addressing software
performance regressions in DevOps without relying on expensive
system performance tests. More specifically, I first propose a
series of approaches to helping developers detect performance
regressions and locate their root causes by only utilizing the
readily-available operational data when the software system is
running in the field and used by real end users. I then leverage
small-scale performance testing and architectural modeling to
estimate the impact of source code changes on the end-to-end
performance of the system in order to detect performance regres-
sions early in the software development phase. Through various
case studies on open-source projects and successful adoptions
by our industrial research collaborator, we expect that our study
will provide helpful insights for researchers and practitioners who
are interested in addressing performance regressions in DevOps
without expensive system performance testing.

Index Terms—performance regression, performance regression
root cause, field testing, performance modeling, performance
engineering

I. INTRODUCTION

Performance is an essential quality attribute of software
systems. It measures how effective a software system is with
various metrics such as response time, throughput, or CPU
utilization. A prior study [22] indicates that compared to func-
tional issues, performance issues are more likely to cause field
failures in large-scale software systems. As a common and
important type of performance issue, performance regressions
are the circumstances where the new version of a system still
functions correctly, but offers a worse user experience (e.g.,
higher response time) and/or consumes extra resources (e.g.,
memory leak) compared to previous versions. Performance
regressions may decrease user satisfaction, increase operating
costs, and cause field failures [7]. This is especially critical
for large-scale software systems, such as Amazon or Netflix,
since they need to continuously provide high-quality services
to millions of clients across the globe, and performance regres-
sions in the system can cause serious financial and reputation

losses [3], [20]. In addition, more and more software systems
adopt DevOps practices that integrate development (Dev) and
operations (Ops) for continuous and fast delivery (e.g., a new
version is released every few hours) [24]. However, it also
poses the challenges of addressing performance regressions
prior to the new release of such systems, since performance as-
surance activities often require a considerable amount of time
to conduct. Therefore, how to address performance regressions
in DevOps, including detecting the existence of performance
regressions and locating their root causes, is an important yet
challenging task to prevent the new version of the system from
performing worse than previous versions.

Current practices that address performance regressions often
rely on running system performance tests in the in-house
testing environment prior to the deployment of every new
version of a software system. There has been extensive prior
research [1], [13], [14], [17]-[19], [21] that proposes various
techniques, such as control charts, associations rules, and
statistical models, that compare and analyze the performance
testing results (e.g., performance metrics) in order to detect
performance regressions and locate the root causes. However,
system performance testing is often expensive in resources
and time, making it hard to adopt in the DevOps process.
It also requires a similar or even the same testing workload
between performance testing different software versions, while
the real-world workload is constantly varying and may even
be completely different over time. Furthermore, to avoid
the expensive performance testing on the entire system, unit
testing [4], [8], [12] and field data [2], [9], [15], [23] are also
leveraged in prior studies to address performance regressions.
Nevertheless, unit testing-based approaches can only be aware
of the performance of separate small-scale components, while
existing field data-based approaches often yield too coarse-
grained results (e.g., only at the service level) to provide
developers with enough information in fixing the regressions.

Research hypothesis: By leveraging the abundant
information during software development and field
operations, I hypothesize that we can provide effective
and timely support to developers and operators in
addressing performance regressions in DevOps without
expensive system performance testing.

As summarized in Figure 1, addressing performance re-
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Fig. 1. The overall process of addressing performance regressions during the
software development and release cycle
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gressions may be related to different phases of the software
development and release cycle. Faced with the challenges of
traditional practices that rely on time- and resource-consuming
system performance testing, I hypothesize that by analyzing
software development and field operational data, we can
provide automated solutions to tackle the challenges and assist
developers and operators in detecting performance regressions
and locating the root causes in DevOps.

In this thesis, we first attempt to address performance

regressions directly based on the operational data when the
system is deployed in the field (cf. Part 1 in Figure 1).
In particular, we will leverage black-box machine learning
models to automatically detect performance regressions when
the system is under field operations. We will then propose a
technique to locate the root causes of performance regressions
by utilizing the readily-available operational data when the
software system is directly deployed in the field. Finally, we
will adapt existing performance analytic techniques in a real-
life database-centric system from our industrial research col-
laborator. We also attempt to detect performance regressions
by directly analyzing the data collected during the software
development phase (cf. Part 2 in Figure 1). In particular, we
will propose an approach that predicts the impact of source
code changes on the end-to-end performance of the system
to detect the existence of performance regressions as early as
during the development phase. I expect to finish the work for
this thesis by the end of 2023.
Paper organization. The rest of the paper is structured as
follows. Section II and Section III respectively present our
proposed approaches to assisting developers and operators
in addressing performance regressions with field operational
data and early detection of performance regressions during the
development phase. Section IV surveys prior research related
to this thesis. Finally, Section V concludes our work.

II. ADDRESSING PERFORMANCE REGRESSIONS WITH
FIELD OPERATIONAL DATA

For large-scale systems delivered at a fast pace (e.g., De-
vOps), it is often challenging to conduct system performance
testing prior to a new release due to the great demand for
resources and time. This is especially the case for our indus-
trial research collaborator. In particular, the stakeholders would
like to be aware of any performance regressions introduced in
a new version of the system. However, the industrial system
follows a fast-paced DevOps process where the system has a
new version every two weeks. Such a short release cycle brings

challenges in detecting performance regressions and locating
the root causes. On the other hand, the software operational
data generated in the field provides abundant information about
the performance of a software system and its runtime behav-
iors. Therefore, in the first part of our research, we propose
a series of automated approaches to helping developers and
operators first detect performance regressions and then locate
performance regression root causes directly based on analyzing
field operational data without the need for system performance
testing, and finally, we adapt the existing performance analytic
techniques in a real-life database-centric system.

A. Detecting Performance Regressions in the Field Operations

Problem: System performance testing with predefined test
workloads is commonly employed in an in-house (non-
production) testing environment before delivering the system
into production to detect performance regressions. However,
such a practice can be extremely expensive since it essen-
tially requires costly resources, complex configurations, and
extended time. Furthermore, it is also hard to resemble the
field workloads in the predefined test suites as the real-life
workloads can constantly vary over time.

Our proposed solution: Inspired by some existing software
testing techniques, such as A/B testing or canary releasing,
which rely on the end user’s data in the field for software
quality assurance, in this work, we propose to directly detect
performance regressions based on the field operational data
while a software system is deployed and running in the field.
In particular, we utilize sparsely-sampled performance metrics
and readily-available execution logs from the field, which only
add negligible performance overhead to the runtime system.
We then leverage various black-box machine learning and deep
learning techniques (i.e., Linear Regression, Random Forest,
XGBoost, RNN, LSTM, and CNN) to capture the relation-
ship between the runtime activities (i.e., workloads) that are
recorded in the execution logs and their performance under
such activities. Afterward, we analyze and compare the black-
box performance model that describes the current version of
a system and the model that describes an earlier version of
the same system to identify the existence of performance
regressions between these two versions. Since we utilize field
operational data from end users and the workloads from two
versions are often inconsistent, we finally perform evaluation
experiments on both open-source and industrial systems to
study the effectiveness of using black-box performance models
to detect performance regressions.

Results: We find that our black-box performance models can
effectively model the performance of the studied systems with
a mean relative error (MRE) as low as 2.11%. The experiment
results also show that our approach can successfully identify
the performance regressions between the old and new versions
in the field operations with a significant difference in the
statistical analysis results (i.e., with a magnitude of medium
or large in effect size).

Expected timeline: This work is completed and published
at EMSE [10].



B. Locating Performance Regression Root Causes in the Field
Operations

Problem: Locating the root causes of software performance
regressions remains a challenging yet vital task for developers
due to the considerable effort, time, and expertise required.
Prior research has proposed various approaches that utilize
system performance testing, unit testing, or field data to
locate performance regression root causes. However, existing
approaches are often resource-intensive and time-consuming,
pay no attention to the impact of large and varying system
workloads, or can only locate too coarse-grained root causes.

Our proposed solution: To bridge the gap, we propose
an approach to assisting developers in locating performance
regression root causes in the field operations of web-based
systems. We first extract the web-access logs recorded by web
servers and the performance metrics collected by performance
monitoring tools. Afterward, we preprocess the data and
construct performance models that capture the performance
of the system and its runtime activities for the old and the
new versions of the systems respectively. The intuition of our
approach is that the root cause of performance regressions
is related to the deviation between these two performance
models. Therefore, we then calculate the deviation of modeling
errors of these two performance models and build a linear
regression model to explain the relationship between the ap-
pearance of web requests and the deviation of modeling errors.
We only keep the independent variables (i.e., web requests)
that have a statistically significant effect on the output of the
model (i.e., deviation of modeling errors) and rank them by the
effect. We then leverage static source code analysis techniques
to extract the call graph for each target web request. Finally,
we locate the code changes that change any methods along the
extracted call graph and provide them to developers to assist in
fixing regressions. Our evaluation considers three open-source
projects and one commercial system.

Results: From the results, we observe that our approach
can distinguish between system versions with and without
performance regressions by leveraging R? of the constructed
linear regression model. For example, in the results of the
OpenMRS subject, the R? of the version without injected
regressions is only 0.14, while for all other versions with
injected regressions, the lowest R? is 0.50. The experiment
results also present that by applying our approach, there is
usually a large difference between the effect of web requests
with performance regressions and the highest effect of web
requests without performance regressions. Finally, we find that
for all open-source subjects, the web requests with perfor-
mance regressions are always ranked in the first place and we
can also successfully locate the corresponding code changes.

Expected timeline: This work is completed and published
at TSE [11].

C. Adapting Existing Performance Analytic Techniques in a
Real-Life Database-Centric System

Problem: Many large-scale systems embrace the database-
centric design to cope with the ever-increasing complexity,

scale, and amount of data. There are several studies and tech-
niques proposed to diagnose performance issues and improve
the performance of traditional software systems. However,
directly applying existing techniques in large-scale database-
centric systems is often challenging and may not perform
well due to the unique nature of database-centric systems, for
example, a major part of the business logic and calculations
reside in the database rather than in the application server.

Our proposed solution: To assist developers in the per-
formance assurance of large-scale database-centric systems,
we share our industrial experience of adapting the existing
performance analytic techniques in a real-life database-centric
system from our industrial research collaborator. By consider-
ing both the database and the surrounding components, our
solution aims to provide multiple-aspect automated perfor-
mance analysis, including detecting performance issues within
one version, between two versions, and root cause analysis,
to improve the system performance while minimizing the
need for manual efforts and expertise. During the engineer-
ing process of adapting the existing performance analytic
techniques in the industrial setting, we encountered many
challenges in terms of design and development, and then we
proposed solutions to resolve them. In particular, we first
propose to record system performance and runtime behaviors
to have a comprehensive understanding of the running system
from the ground up. Based on the rich information, we then
aim to provide automated performance analysis of the entire
system including performance analysis within one version and
performance analysis between two versions. In order to help
developers locate the root causes of performance issues, we
also propose to add version management to the database code
changes in addition to the application code changes. We then
propose to utilize static code and string analysis techniques to
connect the problematic database activities (e.g., SQL queries)
to the corresponding web application code and connect prob-
lematic web application activities (e.g., web requests) to the
corresponding database code. Finally, we provide these root
causes to developers for further investigation.

Preliminary results: Our developed performance analytic
techniques have been adopted and used by our industrial
research collaborator to ensure the performance of a large-
scale database-centric system on a daily basis. We have
assisted developers from our industrial research collaborator
to successfully detect several real-life performance issues that
were missed before. We believe that our experience in adapting
existing performance analytic techniques to database-centric
systems can provide valuable insights to interested software
practitioners and researchers.

Expected timeline: This work is expected to be completed
before the spring of 2023.

III. EARLY DETECTION OF PERFORMANCE REGRESSIONS
DURING THE DEVELOPMENT PHASE

Software performance regressions are often addressed late
in the software development and release cycle, for instance,
after the system is built, integrated, or even released. Not only



does this make it laborious for developers to detect, locate, and
fix performance regressions, but it can also lead to potential
adverse effects on users and companies. Therefore, in the
second part of our research, our goal is to provide developers
with an early impression of how the source code changes in
specific components are related to the presence of performance
regressions of the entire software system.

A. Bridging Local Performance Data and Architectural Mod-
els: A Performance Regression Detection Approach

Problem: During a development iteration, developers may
introduce many source code changes to implement new fea-
tures or fix bugs, some of which may degrade the system per-
formance. Inspired by this, prior research advocates using tests
on a smaller scale, such as micro-performance benchmarks or
functional tests, to detect performance regressions. Although
small-scale testing and profiling of individual software com-
ponents are easy to operate and time efficient, they often suffer
from the inability to take the end-to-end performance and
system workloads into consideration.

Our proposed solution: To tackle the problem, we plan to
propose an approach to estimating the impact of component-
level performance deviation on the end-to-end performance of
the entire system to detect performance regressions as early
as during the software development phase. In particular, we
first extract component-level call graphs with related perfor-
mance information by running performance unit tests (e.g.,
Java Microbenchmark Harness (JMH)) of specific components
and extract system-level call graphs with related performance
information by monitoring and analyzing the behaviors of the
running system in terms of both structural and performance
aspects. Based on this information, we then build an analyt-
ical model (e.g., Queueing Petri Nets) that can predict the
end-to-end performance of the system. Afterward, we utilize
statistically rigorous approaches to identify the components
that suffer from degraded performance and calculate their
impact on the corresponding architecture-level performance
information by analyzing the component-level and system-
level call graphs previously extracted. Finally, we propagate
such impact into the constructed performance model of the
system and leverage the model to predict the end-to-end
performance deviation to detect performance regressions of
the entire software system.

Our proposed evaluation: We will apply our approach to
various prevalent open-source applications with both synthetic
and real-life performance regressions to evaluate the effec-
tiveness of our approach in detecting performance regressions
during the development phase.

Expected timeline: This work is expected to be completed
before the summer of 2023.

IV. STATE OF THE ART AND PRACTICE

In this section, we discuss the current research that is closely
related to our work in this thesis.
Detecting performance regressions. Previous research has
proposed various approaches to detecting performance regres-
sions. Nguyen et al. [16], [18] leverage a statistical process

control technique named control charts that compare each
performance metric from the old and new versions pairwise
to automatically detect performance regressions. Foo et al. [6]
extract association rules between multiple performance met-
rics collected during system performance testing and identify
performance regressions by the change to the mined asso-
ciation rules between the two versions. Shang et al. [19]
propose to group a great number of performance metrics
into multiple clusters and then build regression models for
each cluster to detect performance regressions. However, prior
research relies on the data generated from resource- and time-
consuming system performance testing with predefined or
fixed workloads. Our work attempts to automatically detect
performance regressions by leveraging the development and
field operational data that are more affordable and accessible.
Locating performance regression root causes. There are
several studies that analyze different types of data to locate
performance regression root causes. The first type [14], [17],
[21] analyzes the system performance testing results (e.g.,
performance metrics) across versions of software systems
to locate performance regression root causes. The second
type [4], [8], [12] proposes to adopt unit tests and combine
the testing results with static or dynamic source code analysis
techniques to locate the root cause. The last type [2], [5],
[23] utilizes system runtime information (e.g., execution logs
and performance metrics) collected directly from end-user
operations in the field to locate performance regression root
causes. However, system performance tests usually require
extensive resources and a long time to execute, unit tests-based
approaches only consider the performance of small-scale com-
ponents and cannot take the impact of large and varying system
workloads into consideration, and the located root causes
generated by the existing field-data based approaches are often
too coarse-grained (e.g., only at the service level) to provide
enough help for developers to fix the regressions. In our work,
we aim to locate fine-grained performance regression root
causes (e.g., source code changes) under continuously varying
workloads without the need for executing expensive system
performance tests.

V. CONCLUSION

Performance regressions are common and vital in large-
scale software systems. However, existing practices in address-
ing performance regressions often do not fit well in the fast-
paced process of DevOps. In this thesis, we aim to provide a
series of automated approaches and share our industrial adop-
tion experience to assist developers in addressing performance
regressions in DevOps by leveraging the data collected during
the software development and field operations, rather than
relying on running expensive system performance tests. Our
current progress and future plans would provide insights and
support to benefit practitioners and researchers in conducting
performance assurance activities during DevOps without ex-
pensive system performance testing. I expect to finish the work
for this thesis by the end of 2023.
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