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Abstract
Performance regressions of large-scale software systems often lead to both financial and
reputational losses. In order to detect performance regressions, performance tests are
typically conducted in an in-house (non-production) environment using test suites with pre-
defined workloads. Then, performance analysis is performed to check whether a software
version has a performance regression against an earlier version. However, the real workloads
in the field are constantly changing, making it unrealistic to resemble the field workloads in
predefined test suites. More importantly, performance testing is usually very expensive as
it requires extensive resources and lasts for an extended period. In this work, we leverage
black-box machine learning models to automatically detect performance regressions in the
field operations of large-scale software systems. Practitioners can leverage our approaches
to complement or replace resource-demanding performance tests that may not even be real-
istic in a fast-paced environment. Our approaches use black-box models to capture the
relationship between the performance of a software system (e.g., CPU usage) under vary-
ing workloads and the runtime activities that are recorded in the readily-available logs.
Then, our approaches compare the black-box models derived from the current software
version with an earlier version to detect performance regressions between these two ver-
sions. We performed empirical experiments on two open-source systems and applied our
approaches on a large-scale industrial system. Our results show that such black-box mod-
els can effectively and timely detect real performance regressions and injected ones under
varying workloads that are unseen when training these models. Our approaches have been
adopted in practice to detect performance regressions of a large-scale industry system on a
daily basis.
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1 Introduction

Many large-scale software systems (e.g., Amazon, Google, Facebook) provide services to
millions or even billions of users every day. Performance regressions in such systems usually
lead to both reputational and monetary losses. For example, a recent incident of performance
regressions at Salesforce1 affected eight data centers, resulting in a negative impact (i.e.,
slowdown and failures of the provided services) on the experience of clients across many
organizations (Cannon 2019). It is reported that 59% of Fortune 500 companies experience
at least 1.6 hours of downtime per week (Syncsort 2018), while most of the field failures are
due to performance issues rather than feature issues (Weyuker and Vokolos 2000). To avoid
such performance-related problems, practitioners perform in-house performance testing to
detect performance regressions of large-scale software systems (Jiang and Hassan 2015).

For in-house performance testing, load generators (e.g., JMeter2) are used to mimic thou-
sands or millions of users (i.e., the workload) accessing the system under test (SUT) at the
same time. Performance data (e.g., CPU usage) is recorded during the performance testing
for later performance analysis. To determine whether a performance regression exists, the
performance data of the current software version is compared to the performance data from
running an earlier version on the same workload, using various analysis techniques (Gao
et al. 2016) (e.g., control charts (Nguyen et al. 2012)). However, such in-house performance
testing suffers from two important challenges. First, the real workloads in the field are con-
stantly changing and difficult to predict (Syer et al. 2014), making it unrealistic to test such
dynamic workloads in a predefined manner. Second, performance testing is usually very
expensive as it requires extensive resources (e.g., computing power) and lasts for a long
time (e.g., hours or even weeks). For software systems that follow fast release cycles (e.g.,
Facebook is released every few hours), conducting performance testing in a short period of
time becomes particularly difficult.

There exist software testing techniques such as A/B testing (Xu et al. 2015) and canary
releasing (Sato 2014) that depend on end user’s data in the field for software quality assur-
ance. Similarly, in this work, we propose to directly detecting performance regressions
based on the end users’ data of large-scale software systems when they are deployed in the
field3. Such an automated detection can complement or even replace typical in-house per-
formance testing when testing resources are limited (e.g., in an agile environment) and/or
the field workloads are challenging to be reproduced in the testing environment. In particu-
lar, we leverage sparsely-sampled performance metrics and readily-available execution logs
from the field to detect performance regressions, which only adds negligible performance
overhead to SUT.

Inspired by prior research (Yao et al. 2018; Farshchi et al. 2015), we use black-box
machine learning and deep learning techniques (i.e., CNN, RNN, LSTM, Linear Regression,
Random Forest, and XGBoost) to capture the relationship between the runtime activities

1https://www.salesforce.com
2https://jmeter.apache.org
3Note that our approach serves different purposes and has different usage scenarios from A/B testing and
canary releasing, as discussed in Section 9.
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that are recorded in the readily-available logs of a software system (i.e., the independent
variables) and its performance under such activities (i.e., the dependent variables). We use
the black-box model that describes the current version of a software system and the black-
box model that describes an earlier version of the same software system, to determine the
existence of performance regressions between these two versions.

Prior research that builds black-box models to detect performance regressions (Yao et al.
2018; Farshchi et al. 2015) typically depends on the data from in-house performance test-
ing, where the workload is consistent between two releases. However, when using the field
data from the end users, one may not assume that the workloads from the two releases are
the same. In order to study whether the use of black-box performance models under such
inconsistent workloads may still successfully detect performance regressions, we performed
empirical experiments on two open-source systems (i.e., OpenMRS and Apache James) and
applied our approaches on a large-scale industrial system. In particular, our study aims to
answer two research questions (RQs):

RQ1: How well can we model system performance under varying workloads?
In order to capture the performance of a system under varying workloads, we built six
machine learning models (including three traditional models and three deep neural net-
works). We found that simple traditional models can effectively capture the relationship
between the performance of a system and its dynamic activities that are recorded in logs.
In addition, such models can equivalently capture the performance of a system under new
workloads that are unseen when building the models.

RQ2: Can our approaches detect performance regressions under varying workloads?
Our black-box model-based approaches can effectively detect both the real performance
regressions and injected ones under varying workloads (i.e., when the workloads are
unseen when training the black-box models). Besides, our approaches can detect per-
formance regressions with the data from a short period of operations, enabling early
detection of performance regressions in the field.

Our work makes the following key contributions:

– Our study demonstrates the effectiveness of using black-box machine learning models
to model the performance of a system when the workloads are evolving (i.e., the model
trained on a previous workload can capture the system performance under new unseen
workloads).

– Our experimental results show that we can use black-box machine learning models to
detect performance regressions in the field where workloads are constantly evolving
(i.e., two releases of the same system are never running the same workloads).

– Our approaches can complement or even replace traditional in-house performance
testing when testing resources are limited.

– We shared the challenges and the lessons that we learned from the successful adop-
tion of our approaches in the industry, which can provide insights for researchers and
practitioners who are interested in detecting performance regressions in the field.

The remainder of the paper is organized as follows. Section 2 introduces the background
of black-box performance modeling. Section 3 outlines our approaches for detecting perfor-
mance regressions in the field. Sections 4 and 5 present the setup and the results of our case
study on two open-source subject systems, respectively. Section 6 shares our experience of
applying our approaches on a large-scale industrial system. The challenges and the lessons
that we learned from the successful adoption of our approaches are discussed in Section 7.

Author's personal copy
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Sections 8 and 9 discuss the threats to the validity of our findings and the related work,
respectively. Finally, Section 10 concludes the paper.

2 Background: Black-box performancemodels

Performance models are built to model system operations in terms of resources consumed.
Performance models can be used to predict the performance of systems in the purpose of
workload design (Krishnamurthy et al. 2006; Yadwadkar et al. 2010; Syer et al. 2017),
resources control (Gong et al. 2010; Cortez et al. 2017), configuration selection (Guo
et al. 2013; Valov et al. 2017; Guo et al. 2018), and anomaly detection (Ibidunmoye et al.
2015; Farshchi et al. 2015; Ghaith et al. 2016). Performance models can be divided into
two categories (Didona et al. 2015). One is white box performance models, which is also
called analytical models. White box performance models predict performance based on the
assumption of system contexts, i.e., workload intensity and service demand.

Another type of performance model is black-box performance models. Black-box per-
formance models employ statistical modeling or machine learning techniques to predict
system performance by taking the system as a black box. Black-box performance models
typically require no knowledge about the system’s internal behavior (Didona et al. 2015;
Gao et al. 2016). Such models apply various machine learning algorithms to model a sys-
tem’s performance behavior taking system execution logs or performance metrics as input.
The main strength of using black-box modeling techniques is to model the system perfor-
mance when the system is under field operations. While white-box performance models
typically require knowledge about the system’s internal behaviour, such knowledge is often
not available when the system is deployed in the production environment. Thus, under the
production environment, black-box approaches appear to be more effective than white-box
modeling approaches.

Typical examples of black-box performance models are linear regression models (Shang
et al. 2015; Yao et al. 2018). For example, prior studies use linear regression models to cap-
ture the relationship between a target performance metric (e.g., CPU usage) and the system
operations (Yao et al. 2018) or other performance metrics (e.g., memory utilization) (Shang
et al. 2015):

y = α + β1x1 + β2x2 + ... + βnxn (1)

where the response variable y is the target performance metric, while the explanatory vari-
ables (x1, x2, ..., xn) are the frequency of each operation of the system (Yao et al. 2018) or
each of the other performance metrics (Shang et al. 2015). The coefficients β1, β2, ..., βn

describe the relationship between the target performance metric and the corresponding
explanatory variables.

Linear regression requires that the input data satisfies a normal distribution. With the
benefit of being applicable to data from any distribution, regression tree (Xiong et al. 2013)
has been used to model system performance. Regression tree models a system’s perfor-
mance behavior by using a tree-like structure. Quantile regression (de Oliveira et al. 2013)
can model a system’s different phases of performance behavior.

The prior success of black-box performance modeling supports our study to detect
performance regressions under variable workloads from the field.

Author's personal copy
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3 Approaches

In this section, we present our three approaches that automatically detect performance
regression in a new version of a software system based on the logs and performance data
that are collected under varying workloads. Our approaches contain three main steps: 1)
extracting metrics, 2) building black-box performance models, and 3) detecting perfor-
mance regressions. The three approaches share the first two steps, while being different in
the third step. The overview of our studied approaches is shown in Fig. 1.

3.1 Extractingmetrics

We aim to identify whether there is performance regression in the new version of the system
based on modeling the relationship between the system performance (e.g., CPU usage) and
the corresponding logs that are generated during system execution. Specifically, we collect
system access logs that are readily generated during the execution of web servers, such as the
Jetty, Tomcat, and IIS (Internet Information Services). Those logs represent the workload
of the system during a period of execution. The performance data is sparsely sampled at a
fixed frequency (e.g., every 30 seconds).

In this step, we extract log metrics and performance metrics from the system access logs
and the recorded performance data, respectively.

3.1.1 Splitting logs and performance data into time periods

We would like to establish the relationship between the execution of the system and the per-
formance of the system during run time. Since both performance data and logs are generated
during system runtime and are not synchronized, i.e., there is no corresponding record of
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performance metrics for each line of logs, we would first align the logs and records of per-
formance data by splitting them into time periods. For example, one may split a two-hour
dataset into 120 time periods where each time period is one minute in the data. Each log
line and each record of performance data are allocated into their corresponding time period.

3.1.2 Extracting logmetrics and performance metrics

We parse the collected logs into events and their corresponding time stamps. For exam-
ple, a line of web log “[2019-09-27 22:43:13] GET /openmrs/ws/rest/ v1/person/HTTP/1.1
200” will be parsed into the corresponding web request or URL “GET /open-
mrs/ws/rest/v1/person/” and time stamp “2019-09-27 22:43:13”. Afterwards, each value of
a log metric is the number of times that each log event executes during the period. For exam-
ple, if the log event “GET /openmrs/ws/rest/v1/person/” is executed 10 times during a 30-
second time period, the corresponding log metric for “GET /openmrs/ws/rest/v1/person/”’s
value is 10 for that period. Then, we consider the aggregation (e.g., taking the average) of
the records of performance data as the value of the performance metric of the time period,
similar to prior research (Foo et al. 2010). Table 1. shows an illustrative example of log
metrics and performance metrics in five 30-second time periods.

These log metrics together with the performance metrics in the corresponding time peri-
ods are used to construct our performance models. Each data point of a log metric is based
on a time period (e.g., 30 seconds) instead of a log entry. For example, if we run the subject
system for eight hours and we take each 30 seconds as a time period, there will be 960 data
instances in total: 8 (hours) * 60 (minutes per hour) * 2 (time periods per minute).

3.2 Building black-box performancemodels

In this step, we use the log metrics and performance metrics extracted from the last step to
build black-box performance models. The log metrics and the performance metrics (e.g.,
CPU usage) are used as the independent variables and dependent variables of the models,
respectively.

Table 1 An illustrative example of log metrics and performance metric data from OpenMRS

Log metrics∗ Performance metric

Time slice GET person GET observation CPU

1 sec. - 30 sec. 17 18 74.19

31 sec. - 60 sec. 10 2 52.25

61 sec. - 90 sec. 5 19 64.61

91 sec. - 120 sec. 6 6 56.26

121 sec. - 150 sec. 0 3 55.57

*In this example, we show the log metrics that are used in the linear regression, random forest, and XGBoost
models. For CNN, RNN, and LSTM, we sort the logs in each time period by their corresponding time stamp
to create a sequence of log events

Author's personal copy
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3.2.1 Reducing metrics

The frequency of some log events (e.g., periodical events) may not change over time. The
constant appearance of such events may not provide information about the changes in sys-
tem workloads. Therefore, after we calculate the log metrics of each log event, we reduce
log metrics by removing redundant log metrics or log metrics with constant values in both
previous and current versions. We first remove log metrics that have zero variance in both
versions of the performance tests.

Different log events may always appear at the same time, e.g., user logging in and check-
ing user’s privilege, and provide repetitive information for the workloads. To avoid bias from
such repetitive information, we then perform correlation analyses and redundancy analy-
ses on the log metrics. We calculate Pearson’s correlation coefficient (Benesty et al. 2009)
between each pair of log metrics (i.e., in total N*N/2 times of correlation calculations where
N refers to the number of log metrics). If a pair of log metrics have a correlation higher
than 0.7, we remove the one that has a higher average correlation with all other metrics. We
repeat the process until there exists no correlation higher than 0.7. The redundancy analysis
would consider a log metric redundant if it can be predicted from a combination of other log
metrics. We use each log metric as a dependent variable and use the rest of the log metrics
as independent variables to build a regression model. We calculate the R2 of each model. If
the R2 is larger than a threshold (e.g., 0.9), the current dependent variable (i.e., the log met-
ric) is considered redundant. We then remove the log metric with the highest R2 and repeat
the process until no log metrics can be predicted with an R2 higher than the threshold.

We only apply this step when using traditional statistical models or machine learning
models (like linear regression or random forest), while if a deep neural network (like con-
volutional neural network or recurrent neural network) is adopted to build the black-box
performance models, we skip this step.

3.2.2 Building models

We build models that capture the relationship between a certain workload that is represented
by the logs and the system performance. In particular, the independent variables are the
log metrics from the last step and the dependent variable is the target performance metric
(e.g., CPU usage). One may choose different types of statistical, machine learning or deep
learning models, as our approach is agnostic to the choice of models. However, the results
of using different types of models may vary (cf. RQ1).

3.3 Detecting performance regressions

The goal of building performance models is to detect performance regressions. Therefore, in
this step, we use the black-box performance models that are built from an old version of the
system to predict the expected system performance of a new version. Then, we use statistical
analysis to determine whether there exists performance deviance based on prediction errors
of the models. The input of this step is the black-box performance models built from the old
version and the new version; the output of this step is the determination of whether there
exists performance deviance between the old version and the new version of the system.

Intuitively, one may use the model that is built from the old version of the system to
predict the performance metrics from running the new version of the system. By measur-
ing the prediction error, one may be able to determine whether there exists performance
deviance (Cohen et al. 2004; Nguyen et al. 2012). However, such a naive approach may be
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biased by the choice of thresholds that are used to determine whether there is performance
deviance. For example, a well-built performance model may only have less than 5% average
prediction error; while another less fit performance model may have 15% average predic-
tion error. In these cases, it is challenging to determine whether an average prediction error
of 10% on the new version of the system should be considered as a performance regression.
Therefore, statistical analyses are used to detect performance regressions in a systematic
manner (Gao et al. 2016; Shang et al. 2015; Foo et al. 2015).

In particular, we leverage three approaches to detect performance regressions: Approach
1) by comparing the predicted performance metrics (using the model built from the old ver-
sion) and the actual performance metrics of the new version, Approach 2) by comparing
the predicted performance metrics of the new version using the model built from the old
version and the model built from the new version, and Approach 3) by comparing the pre-
diction errors of the performance metrics on the new version using the model built from the
old version and the model built from the new version. We describe each approach in detail
in the rest of this subsection.

Approach 1: comparing the predicted performance metrics (using the model built form
the old version) and the actual performance metrics of the new version. The most intu-
itive way of detecting performance regression is to compare the predicted value and the
actual value of performance metrics. Since the model is built from the old version of
the system, if the actual value of the performance metrics from the new version of the
system is higher than the predicted value and the difference between them is large, we
may consider the existence of performance regressions. In particular, we use the data
from the old version of the system, i.e., Dataold to build a black-box performance model
Modelold (cf. Section 3.2). Afterwards, we apply the model Modelold on the data from
the new version of the system, i.e., Datanew . Then we compare the predicted and the
actual values of the performance metrics.

Approach 2: comparing the predicted performance metrics of the new version using the
model built from the old version and the model built from the new version. Since our
approach aims to be applied to varying workloads, the performance regression may only
impact a small number of time periods, while the source code with performance regres-
sions may not be executed in other time periods. Therefore, only the time periods that are
impacted by the performance regressions may contain large prediction errors. To address
such an issue, we also built a performance model Modelnew using the data from the new
version of the system (Datanew). This way, Modelnew is built using the data with poten-
tial performance regressions. Afterwards, we use Modelold and Modelnew to predict the
performance metrics in Datanew .

Since Modelnew is built from Datanew , there exists a bias when applying Modelnew

on Datanew , as the training data and testing data are exactly the same (a model without
any generalizability can just remember all the instances in the training data and make
perfect predictions). To avoid the bias, instead of building one Modelnew , we build n

models, where n is the number of data points that exist in Datanew . In particular, for
each data point in Datanew , we build a performance model Modelnnew by excluding that
data point and apply the model Modelnnew on the excluded data point. Therefore, for n

data points from Datanew , we end up having n models and n predicted values.
Finally, we compare the predicted values using Modelold on Datanew , and the pre-

dicted values by applying each Modelnnew on each of the n data points in Datanew .
Similar to approach 1, if the predicted values by applying each Modelnnew on each of the
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n data points in Datanew are higher than predicted values using Modelold on Datanew

and the difference is large, we may consider the existence of performance regressions.
Approach 3: comparing the prediction errors on the new version using the model built

from the old version and the model built from the new version. The final approach of
detecting performance regression is similar to the previous one (Approach 2), where
instead of directly comparing the predicted performance metrics, we compare the dis-
tribution of the prediction errors by applying Modelold on Datanew , and the predicted
errors by applying each Modelnnew on each of the n data points in Datanew . The intu-
ition is that, when Modelold has a larger prediction error than Modelnew , it may be an
indication of performance deviance between the two versions. We note that this approach
would only be able to determine whether there exists performance deviance, which may
actually be improvement instead of regression.

Statistical analysis. All three approaches generate two distributions of either
actual/predicted performance metric values, or prediction errors. we compare the two
distributions to determine if there are performance regressions between the two software
versions. However, the differences between the data distributions may be due to experi-
mental noises rather than the systematic difference between the two versions. Therefore,
similar to previous studies (Chen et al. 2016), we use statistical methods (i.e., statistical
tests and effect sizes) to compare the data distributions of the two versions while taking
into consideration the experimental noises.

In particular, we use the Mann-Whitney U test since it is non-parametric and it does not
assume a normal distribution of the compared data. we run the test at the 5% level of sig-
nificance, i.e., if the p-value of the test is not greater than 0.05, we would reject the null
hypothesis in favor of the alternative hypothesis, i.e., there exists a statistically significant
difference between the performance of old version and new version systems. In order to
study the magnitude of the performance deviation without being biased by the size of the
data, we further adopt the effect sizes as a complement of the statistical significance test.
Considering the non-normality of our data, we utilize Cliff’s Delta (Cliff 1996) and thresh-
olds provided in prior research (Romano et al. 2006). For approach 1 and 2, we can use the
direction (i.e., positive or negative) of the effect size to further tell whether the deviation
indicates a performance regression or improvement.

4 Case Study Setup

To study the effectiveness of our approaches for detecting performance regressions under
varying workloads, we perform case studies on two open-source systems.4 In this section,
we first present the subject systems. Then, we present the workloads applied to the systems,
the experimental environment and performance issues. Finally, we present the choices of
machine learning models that are used in our approaches.

4Our experimental setup, workloads, and results are shared online https://github.com/senseconcordia/
EMSE2020Data as a replication package.
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4.1 Subject systems

We evaluate our approaches on two open-source systems, namely OpenMRS and Apache
James. We also discuss the successful application of our approach in System X, a large-
scale industrial system that provides government-regulation related reporting services (in
Section 6). Apache James is a Java-based mail server. OpenMRS is an open-source health
care system that supports customized medical records and it is wildly used in developing
countries. The two open-source subject systems and the industrial system are all studied in
prior research (Yao et al. 2018; Gao et al. 2016) and cover different domains, which ensures
that our findings are not limited to a specific domain. The details of the two open-source
subject systems and the industrial system are shown in Table 2.

Both two open-source subject systems and the industrial system are CPU-intensive.
Besides, CPU is usually the main contributor to server costs (Greenberg et al. 2008). Per-
formance regression in terms of CPU would result in the need for more CPU resources
to provide the same quality of service, thereby significantly increasing the cost of system
operations. Therefore, in this study, we use CPU as the performance metric for detecting
performance regressions.

4.2 Subject workload design

4.2.1 OpenMRS

OpenMRS provides a web-based interface and RESTFul services. We used the default
OpenMRS demo database in our performance tests. The demo database contains data for
over 5K patients and 476K observations. OpenMRS contains four typical scenarios: adding,
deleting, searching, and editing operations. We designed different performance tests that
are composed of eight various test actions, including 1) creation of patients, 2) deletion of
patients, 3) searching for patients, 4) editing patients, 5) searching for concepts, 6) search-
ing for encounters, 7) searching for observations, and 8) searching for types of encounters.
Those performance tests are different in the ratio between the actions. In order to simu-
late a more realistic workload in the field, we added random controllers and random order
controllers in JMeter to vary the workload. Moreover, we also simulated the variety of the
number of users and activities in the field by setting random gaps between the repetitions
of each user’s activities, randomizing the order of the user activities, and setting a different
number of maximum concurrent users for different workloads at different times.

Furthermore, we designed a total of five JMeter-based performance tests, each of which
consists of a mixture of random workloads. In particular, to drive different workloads, for
each of the load drivers, we pick several different test actions and put them in an extra

Table 2 Overview of the open-source subject systems and the industrial system

Subjects Versions Domains SLOC (K)

OpenMRS 2.1.4 Medical 67

Ap ache James 2.3.2, 3.0M1, 3.0M2 Mail Server 37

System X∗ 10 releases in 2019 Commercial >2,000

*We share our experience of applying our approaches on System X in Section 6
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JMeter loop controller that iterates a random number of times to increase their appearances
in the workload. Table 3 shows the detailed choice of the looped actions of each load driver.
To make sure that the two versions of the subject systems have different workloads, for one
version of the system (e.g., the old version), we run four JMeter tests together to exercise
the system. For the other version (e.g., the new version) of the system, we run one additional
JMeter test, i.e, a total of five JMeter tests, to ensure that the two versions have undergone
different workloads.

Despite the variation in the workloads, we keep our systems not saturated and running in
normal conditions. The CPU saturation can be qualified as the average CPU load increases
to a very large value (e.g., 90%) and remains for a long period of time (Krasic et al. 2007).
When the system is saturated, the services of the systems are not provided normally and
the relationship between the performance of a software system (e.g., CPU usage) and the
runtime activities may change. Besides, real software systems are usually not running under
saturated conditions. The details of the workload, such as the CPU usage values, are shared
in our replication package.

For the OpenMRS system, we do not have any evidence showing performance regres-
sions of specific versions. Therefore, we manually inject several performance regressions
in the system. The injected performance regressions are shown in Table 4. The original ver-
sion, i.e., v0 of OpenMRS does not have any injected or known performance regressions.
We separately injected four performance regressions (heavier DB request, additional I/O,
constant delay and additional calculation) on the basis of version v0. These four versions are
called v1, v2, v3, and v4, respectively. The details of the injected performance regressions
of OpenMRS are explained below:

• v1: Injected heavier DB request. We increased the number of DB requests in the
code responsible for accessing the database in OpenMRS. This performance issue will
increase the CPU usage of the MySQL server.

• v2: Added additional I/O access. Since accessing I/O storage devices (e.g., hard
drives) are usually slower than accessing memory, we added redundant logging state-
ments to the source code that is frequently executed. The execution of the logging
statements will introduce performance regression.

• v3: Created constant delay. We added the delay bug in the frequently executed code,
which creates a blocking performance issue.

• v4: Injected additional calculation. We added additional calculation to the source
code of OpenMRS that is frequently executed during the performance test.

We deployed the OpenMRS on two machines, each with a configuration of Intel Core
i5-2400 CPU (3.10GHz), 8 GB memory, and 512GB SATA hard drive. One machine
is deployed as the application server and the other machine is deployed as the MySQL
database server. We ran JMeter using the RESTFul API of OpenMRS on five extra machines
with the same specification to simulate user workloads on the client side for five hours. Each
machine hosts one JMeter instance with one type of workload. We used Pidstat (2019) to
monitor the CPU usage that is used as the performance metrics of this study. To minimize
the noise from the system warm-up and cool-down periods, we filtered out the data from
the first and last half hour of running each workload. Thus, we only kept four hours of data
from each performance test.
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4.2.2 Apache James

Apache James is an open-source enterprise mail server. It contains two main actions: send-
ing and retrieving mails. Those two actions can be further divided into many smaller actions,
e.g., sending mails with or without attachments and retrieving an entire mail or only the
header of the mail. In total, we built eight actions for the performance test, including 1)
sending mails with short messages and without attachments, 2) sending mails with long
messages and without attachments, 3) sending mails with short messages and with small
attachments, 4) sending mails with short messages and with large attachments, 5) sending
mails with long messages and with small attachments, 6) sending mails with long messages
and with large attachments, 7) retrieving entire mails, and 8) retrieving only the header of
mails. Similar to OpenMRS, we also created a total of five different workloads, where each
workload consists of a mixture of eight test actions with different ratios. We conduct perfor-
mance tests with different versions of Apache James with varying workloads (i.e., 4 tests for
one version and 5 tests for the other version). We used JMeter to create performance tests
that exercise Apache James. Different from OpenMRS, in which the performance regres-
sions are manually injected, we performance-tested on three different versions of systems
with known real-world performance issues for Apache James. Apart from the last stable
version 2.3.2, there are multiple Milestone Releases for version 3.0. After checking the
release notes on the Apache James website, we picked 3.0M1 and 3.0M2 to use in our study.
These three selected versions have many bug fixes and performance improvements (Apache
James 2019). The same subjects are studied in prior research on performance testing (Gao
et al. 2016). Table 4 summarizes the details of performance improvements of three selected
versions.

We deployed Apache James on a server machine with an Intel Core i7-8700K CPU
(3.70GHz), a 16 GB memory, and a 3TB SATA hard drive. We ran JMeter on five extra
machines with a configuration of Intel Core i5-2400 CPU (3.10GHz), 8 GB memory and
320GB SATA hard drive. These JMeter instances generate multiple workloads for five
hours. Similar to OpenMRS, we use Pidstat (2019) to monitor the CPU usage as the perfor-
mance metrics of this study. We filtered out the data from the first and last half hour of the
tests to minimize the system noises.

4.2.3 Generated workloads

Our generated workloads are different across different software versions. By conducting
chi-square tests of independence between the number of different actions and the versions,
we find that in both OpenMRS and Apache James, the number of different actions and the
versions are not statistically independent (p-value � 0.05), which means that the distribu-
tion of the actions are statistically different across versions. For example, for the OpenMRS
system, the total number of all actions ranges from 10,673 to 22,392 across versions. In par-
ticular, the number of the deletion of patients action has a range from 293 to 1,861 across
all versions. For another example from Apache James, the number of the retrieving only the
header of mails action has a range from 411 to 25,532 across all versions. In addition, we
provide the detailed numbers of each action that are sent to each version in our replication
package.

Table 5 summarizes the average CPU utilization of each version of the systems under
our generated dynamic workloads. We would like to note that when we observe a higher
CPU usage, it may not correspond to a performance regression; instead it may be just due to
the system having a higher workload. The influence of the dynamic workload on the CPU
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Table 4 Performance regressions in the studied open-source systems

System Versions Performance regressions

v0 Original version

v1 Injected heavier DB request

OpenMRS v2 Added additional I/O access

v3 Created constant delay

v4 Injected additional calculation

2.3.2 Stable release version

Apache James 3.0M1 Improved ActiveMQ spool efficiency (Apache James 2019)

3.0M2 Improved large attachment handling efficiency (Apache James 2019)

usage is one of the reasons that we leverage performance modeling to detect performance
regressions in the field. The detailed CPU utilization information during the entire test time
period is reported in the replication package.

4.3 Subject models

Our approach presented in Section 3 is not designed strictly for any particular type of
machine learning models. In fact, practitioners may choose their preferred models. In this
study, we study the use of six different types of models, namely linear regression, random
forest, XGBoost, convolutional neural network (CNN), recurrent neural network (RNN)
and long short-term memory (LSTM). In particular, for linear regression, random forest,
and XGBoost, the inputs of the models are vectors whose values are the number of appear-
ances of each log event in a time period. For CNN, RNN, and LSTM, we sort the logs in
each time period by their corresponding time stamp to create a sequence as the input of the
neural networks. Our XGBoost model is fine-tuned using the GridSearchCV (Gridsearchc
2019) method. Our CNN, RNN, and LSTM have three, four and four layers, respectively,
and they are trained with five, five and ten epochs, respectively. The number of layers and
epochs are manually fine-tuned to avoid overfitting.

5 Case Study Results

In this section, we evaluate our approaches by answering two research questions.

Table 5 Summary of average CPU utilization of each version in our case studies

OpenMRS

v0 (4w) v0 (5w) v1 v2 v3 v4

52.03 52.24 55.55 53.76 53.05 55.11

Apache James

3.0M2 (4w) 3.0M2 (5w) 3.0M1 2.3.2

0.48 0.51 3.54 4.89
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5.1 RQ1: Howwell can wemodel system performance under varying workloads?

5.1.1 Motivation

In order to use black-box machine learning models to detect performance regressions under
varying workloads, we first need to understand whether such black-box models could accu-
rately model the performance of a software system under varying workloads. Although prior
research demonstrates promising results of using black-box models to capture the relation-
ship between system performance and logs (Yao et al. 2018; Farshchi et al. 2015), these
models are built on predefined in-house workloads instead of varying field workloads. If
such black-box models are sensitive to the variance in the workloads, they may not be suit-
able for modeling the performance of software systems under the field workloads from real
end users.

5.1.2 Approach

In order to understand the black-box models’ ability for modeling system performance
under varying workloads, we train the models on one set of workloads and evaluate the
performance of the models on a different set of workloads (i.e., unseen workloads).

Performancemodeling For each open-source system (i.e., OpenMRS and Apache James),
we select the version of the system that is without performance regressions. We first run
the system with four different concurrent workloads (i.e., 4W) and collect the logs and
performance metrics. In order to ensure having new workloads to the system, we conduct
another run by having an additional concurrent workload, i.e., having five different concur-
rent workloads (i.e., 5W). We build the performance models using the data that is generated
by running the 4W workloads (a.k.a. the training set) and apply the model on the data that
is generated by running the 5W workloads (a.k.a. the testing set). The training and testing
sets are derived from independent system runs. We evaluate the prediction performance of
the black-box models on the 5W workloads by comparing the predicted performance and
the measured performance.

Analysis of modeling results We calculate the prediction errors of the models on the new
workloads (i.e., the 5W workloads for the open-source systems). In order to understand the
magnitude of the prediction errors, we use the prediction errors of the models on the old
workloads (i.e., the 4W workloads for the open-source systems) as baselines. The baseline
prediction errors are calculated using 10-fold cross-validation to avoid the bias of having
the same training and testing data.

• Median relative error. The difference between the predicted performance and the
measured performance, normalized by the measured performance.

• p-value (Mann-Whitney U). In order to understand whether the models trained on the
old workloads can equivalently capture the system performance under the new work-
loads, we use the Mann-Whitney U test (Nachar and et al 2008) to determine whether
there exists a statistically significant difference (i.e., p-value < 0.05) between the
prediction errors on the new workloads and the prediction errors on the old workloads.

• Effect size (Cliff's delta). Reporting only the statistical significance may lead to erro-
neous results (i.e., if the sample size is very large, the p-value can be very small
even if the difference is trivial) (Sullivan and Feinn 2012). Therefore, we apply Cliff's
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Delta (Cliff 1996) to quantify the effect size of the difference between the prediction
errors on the old workloads and the prediction errors on the new workloads.

5.1.3 Results

Table 6 shows the detailed results of using six machine learning techniques to model the
performance of the studied open-source systems (i.e., OpenMRS and Apache James) under
varying workloads. The column “MRE” shows the median relative errors of applying the
models (trained on the 4W workloads) on the 4W workloads and the 5W workloads, respec-
tively. The columns “p-value” and “effect size” show the statistical significance and the
effect size of the difference between the prediction errors of the models on the 4W work-
loads and the prediction errors of the models on the 5W workloads, respectively. The “violin
plot” column shows the distribution of the relative prediction errors under the 4W and 5W
workloads.

Our black-box models can effectively model the performance of the studied systems
using the dynamic runtime activities that are recorded in the logs. As shown in Table 6,
the XGBoost model achieves the best results for modeling the performance of the OpenMRS
system, with a median relative error of 2.11% on the 5W workloads (i.e., the newworkloads)
and a median relative error of 2.16% on the 4W workloads (i.e., the baseline workload). The
random forest model achieves the best results for Apache James, reaching a median relative
error of 22.99% and 23.08% for the 4W workloads and 5W workloads, respectively. All the
machine learning models achieve better results for the OpenMRS system than the results for
the Apache James system. The less-promising results for the Apache James system might
be explained by the latency between the actual activities of the mail server system and the
recorded logs. For example, the system can take an extended period of time to process an
email with a large attachment, while a log about the successful processing of the email is
only printed after the processing period.

The traditional models (e.g., linear regression and random forest) outperform the deep
neural networks (e.g., CNN and RNN) for modeling the performance of the studied sys-
tems. As shown in Table 6, for both the OpenMRS and the Apache James systems, the three
traditional models achieve better results than the three deep neural networks for modeling
the system performance. These results indicate that the relationship between the system per-
formance and the runtime activities recorded in the logs can be effectively captured by the
simple traditional models. Such results also agree with a recent study (Dacrema et al. 2019)
that compares deep neural networks and traditional models for the application of automated
recommendations.

Our black-boxmodels can equivalently explain the performance of a system under new
workloads that are unseen when constructing the models. Table 6 shows the statistical
significance (i.e. the p-value) and the effect size of the difference between the prediction
errors of applying the old models (i.e., trained from the 4W workloads) on the new work-
loads (i.e., the 5W workloads) and applying the old models on the old workloads (i.e., the
4W workloads). Table 6 also compares the distributions of the prediction errors for the 4W
and 5W workloads. The prediction errors of most of the models (except LSTM) have an
either statistically insignificant or negligible difference between the 4W and the 5W work-
loads, indicating that the models trained from the old workloads can equivalently model the
system performance under new workloads. The LSTM model results in a small difference
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of the prediction errors between the 4W and the 5W workloads. We suspect that the complex
LSTM model is likely to over-fit towards the training workloads.

5.2 RQ2: Can our approach detect performance regressions under varying
workloads?

5.2.1 Motivation

In traditional performance testing, in order to detect performance regressions, performance
analysts compare the performance data of two versions of a software system that is gen-
erated by running the same workloads from the same performance test suites. However, in
a field environment, as the workloads of the systems are constantly changing, it is almost
impossible to run two software versions on the same workloads to detect performance
regressions. The results of RQ1 show that our black-box models can accurately capture the
performance of a software system even under new workloads that are unseen when training
the models. Therefore, in this research question, we would like to leverage such black-
box models to detect performance regressions when the workloads of the two versions of a
system are not consistent.

Running the systems for hours or days before discovering performance regressions incurs
a high cost. As the systems are already running in the field, any delay in detecting the per-
formance regressions may pose a huge impact on the end users. Hence, the desired approach
in practice should be able to detect performance regression in a timely manner. Therefore,
we also want to study how fast our approaches can detect performance regressions.

5.2.2 Approach

The results from RQ1 show that random forest and XGBoost have the lowest prediction
errors when modeling performance (cf. Table 6). Since XGBoost requires resource-heavy
fine-tuning, we opt to use random forest in this research question. For the open-source sys-
tems, we first build the performance models from running the systems without performance
regressions under the 4W workloads (i.e., a combination of four different concurrent work-
loads). We then run the systems without performance regressions under the 5W workloads
(i.e., a combination of five different concurrent workloads). Ideally, our approach should
not detect performance regressions from these runs. We use such results as a baseline to
evaluate the effectiveness of our approach for detecting performance regressions under the
new workloads (i.e., the 5W workloads). Afterwards, we run the systems with the perfor-
mance regressions (cf. Table 4) under the 5W workloads. Our approach should be able to
detect performance regressions from these runs.

Finally, to study how fast our approaches can detect performance regressions, for the
new versions of the systems that have performance regressions, we only use the first 15-
minute data and apply our approach to detect the performance regressions. Then, we follow
an iterative approach to add another 5-minute data to the existing data, until our approach
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can detect the performance regressions (i.e., with a medium or large effect size that is higher
than the baseline).

5.2.3 Results

Our black-box-based approaches can effectively detect performance regressions under
varying workloads. Table 7 shows the results of our three approaches of performance
regression detection (cf. Section 3.3) on OpenMRS and Apache James. We find that with
all three approaches, when there are known performance regressions between two ver-
sions, the statistical analysis always shows a significant difference between the two versions
with medium or large effect sizes. In addition, the effects sizes from Approach 1 and 2
are negative, confirming the existence of performance regressions (negative values indicate
performance regression and positive values indicate performance improvement).

When we compare the effect sizes with the baseline, i.e., running our approaches with
systems without performance regressions but under two different workloads, we find that
the baseline effect sizes are always smaller than the corresponding ones with performance
regressions, except when detecting the regression in v3 of OpenMRS. We consider the rea-
son being the nature of the regression in v3, i.e., an injected delay. Since our considered
performance metric is the CPU usage and such a delay may not have a large impact on the
CPU usage, it is difficult for our approaches to detect such a regression.

Comparing the prediction errors ismore effective than comparing the prediction values
when detecting performance regressions between two versions. We observe that for
OpenMRS, the differences between the prediction values using Approach 1 and 2 can still
be medium (0.39 and 0.36) even for the baseline (i.e., without regressions). On the other
hand, when comparing the prediction errors instead of the prediction values, i.e., using
Approach 3, the baseline without regressions has only a small effect size (0.17). Such a
smaller baseline effect size makes Approach 3 easier to be adopted in practice, i.e., without
the need of spending efforts searching for an optimal threshold on the effect size to detect
performance regressions. However, Approach 3 only shows the deviance of the prediction

Table 7 Performance regression detection results for OpenMRS and Apache James

Versions Approach 1 Approach 2 Approach 3

Old version New version P-value Effect size P-value Effect size P-value Effect size

OpenMRS

v0 v0 �0.001 0.39 (medium) �0.001 0.36 (medium) �0.001 0.17(small)

v0 v1 �0.001 -0.59 (large) �0.001 -0.69 (large) �0.001 0.38 (medium)

v0 v2 �0.001 -0.44 (medium) �0.001 -0.63 (large) �0.001 0.37 (medium)

v0 v3 �0.001 -0.36 (medium) �0.001 -0.42 (medium) �0.001 0.53 (large)

v0 v4 �0.001 -0.69 (large) �0.001 -0.76 (large) �0.001 0.51 (large)

Apache James

3.0m2 3.0m2 0.008 0.09 (negligible) �0.001 -0.12 (negligible) �0.001 -0.03 (negligible)

3.0m2 3.0m1 �0.001 -0.65 (large) �0.001 -0.76 (large) �0.001 0.41 (medium)

3.0m2 2.3.2 �0.001 -0.90 (large) �0.001 -0.93 (large) �0.001 0.82 (large)

Note: For all the old versions, we use four concurrent workloads and for all the new versions with and without
regressions, we use five concurrent workloads (one extra workload)
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errors without showing the direction of the performance deviance, thus it cannot distinguish
a performance regression from a performance improvement. Hence, Approach 3 may be
used first to flag the performance deviance then be combined with other approaches in
practice to determine whether the performance deviation is a performance regression or a
performance improvement.

Our approaches can detect performance regressions as early as 15 minutes after
running a new version. Table 8 shows the earliest time that our approach can detect per-
formance regressions in the studied open-source systems. We find that all the performance
regressions in the open-source systems can be detected by at least one approach with less
than 20-minute data from the new version. In particular, the regressions from both versions
of Apache James and three versions of OpenMRS can even be detected using only the first
15-minute data. The ability of early detection eases the adoption of our approaches in the
practices of testing in the field, where performance regressions are detected directly based
on the field data, instead of using dedicated performance testing. In our future work, we plan
to investigate on further shortening the needed time for detecting performance regressions
in the field to ease practitioners in adopting our approach.

6 An Industrial Experience Report

System X is a commercial software system that provides government-regulation related
reporting services. The service is widely used as the market leader of the domain. System
X has over ten years of history with more than two million lines of code that are based on
Microsoft .Net. System X is deployed in an internal production environment and is used by
external enterprise customers worldwide. System X is a CPU-intensive system. Thus, CPU
usage is the main concern of our industrial collaborator in performance regression detection.
Due to a Non-Disclosure Agreement (NDA), we cannot reveal additional details about the
hardware environment and the usage scenarios of System X.

6.1 Modeling system performance

We directly use the field data that is generated by workloads from the real end users to
model the performance of System X. For each release cycle with n days, we use the data
from the first n/2 days to build the models and apply them on the data from the second n/2
days to evaluate the prediction performance of the models. We would like to note that there
exists no control on the end users for applying any particular workload, and that all the data
is directly retrieved from the field with no interference on the behavior of the end users. We
studied 10 releases of System X.

We find that black-box models can accurately capture the relationship between the sys-
tem performance and the system activities recorded in the logs, with a prediction error
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Table 8 The earliest time for our approaches to detect regressions in the two open-source systems

OpenMRS Apache james

v1 v2 v3 v4 3.0m1 2.3.2

Approach 1 60 mins 160 mins 15 mins 15 mins 15 mins 15 mins

Approach 2 20 mins 50 mins 15 mins 15 mins 15 mins 15 mins

Approach 3 45 mins 15 mins 15 mins 15 mins 15 mins 15 mins

between 10% to 20%. In particular, the models trained from the first half-release data can
effectively predict the system performance of the second half release.

6.2 Detecting performance regressions

For every new release, we use our approaches to compare the field data from the new release
and the previous release to determine whether there are performance regressions. Since
there are no injected or pre-known performance regressions, we present the detected per-
formance regressions to the developers of the system and manually study the code changes
to understand whether the detection results are correct. For the releases that are detected
as not having performance regressions, we cannot guarantee that these releases are free of
performance regressions. However, we also present the results to the developers to confirm
whether there exist any users who report performance-related issues for these releases. If
so, our detection results may be considered false.

Within all the 10 studied releases of System X, our approaches detected performance
regressions from one release. All three approaches detected performance regressions from
the release with large effect sizes when compared with the previous release. None of
the three approaches false-positively detect performance regressions from the other nine
releases (i.e., with either statistically insignificant difference or negligible effect sizes when
compared with the previous release). By further investigating the release with detected
performance regressions, we observed that developers added a synchronized operation to
lock the resources that are responsible for generating a report, in order to protect the
shared resources under the multi-thread situation. However, the reporting process is rather
resource-heavy, resulting in significant overhead for each thread to wait and acquire the
resources. Thus, the newly added lock causes the performance regression. After we dis-
cussed with the developers who are responsible for this module, we confirmed that this
synchronized operation introduced the performance regression to the software. In addition,
for all the nine releases from which our approaches did not detect performance regressions,
the developers of System X have not yet received any reported performance issues from the
end users till the day of writing this paper.

Our approaches have been adopted by our industrial collaborator to detect performance
regressions of System X on a daily basis.

7 Challenges and Lessons Learned

In this section, we discuss our faced challenges and learned lessons during applying our
approach to the production environment of an industrial setting where a large number of
customers worldwide access the system on a daily basis.
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C1: Determining the sampling frequency of performance metrics

Challenge. Our approach uses both logs and performance metrics as the input data
to our black-box models. We use the logs that are automatically generated by the
web servers, such as the Jetty, Tomcat, and IIS (Internet Information Services) web
servers. The performance metrics (e.g., CPU, I/O) of the systems are collected
using tools (e.g., Pidstat). A higher sampling frequency of the performance metrics
can capture the system performance more accurately. However, a higher sampling
frequency would also introduce more performance overhead. Since we need to
apply our approach to the production environment, it is necessary to produce as
low performance overhead as possible.

Solution. At a first attempt, we intuitively chose 10 seconds as the sampling inter-
val of the performance metrics. After we deployed our approach in production, we
found that there is 0.5%-0.8% CPU overhead each time when our approach is col-
lecting the performance metrics, and the overhead happens six times in 1 minute.
Such a monitoring overhead cannot be ignored, especially when the system is
serving heavy workloads. After working closely with the IT staffs from our indus-
trial partner, we gained a deeper understanding of how the sampling frequency of
performance metrics impact the monitoring overhead. Finally, we agreed that col-
lecting the performance metrics for every 30 seconds would be a good balance
between reducing the monitoring overhead and ensuring accurate measurement of
the system performance.

Lessons learned. Monitoring a system usually comes with the monitoring over-
head. A higher monitoring frequency can provide a better monitoring accuracy at
the cost of a larger monitoring overhead, which is usually undesirable when the
system is serving large workloads. Finding a good balance between the monitor-
ing accuracy and the overhead is crucial for the successful adoption of similar
approaches in practice.

C2: Reducing the time cost of performance regression detection

Challenge. We choose random forest as our final black-box model to detect per-
formance regressions, as random forest achieves the best results for modeling the
performance of the studied systems (see RQ1). A random forest model contains a
configurable multitude of decision trees and takes the average output of the indi-
vidual decision trees as the final output. At first, we started with the default number
of trees (i.e., 500 trees) (Breiman et al. 2018). It took 5-6 hours to detect perfor-
mance regressions between two releases of the industry system, including training
and testing the random forest models and performing statistical tests. The industrial
practitioners usually have an early need of checking if there is performance regres-
sion between the current version and multiple historical versions, which makes our
approaches difficult to be adopted in a fast-paced development environment (e.g.,
an agile environment).

Solution. A larger number of trees usually result in a more accurate random for-
est model, at the cost of longer training and prediction time. In order to reduce the
time cost of performance regression detection, we gradually decreased the number
of trees in our random forest model while ensuring the model performance is not
significantly impaired. In the end, we kept 100 decision trees in our random forest
models. It took less than 2 hours to detect performance regressions between two
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releases of the industry system (i.e., training and testing the random forest mod-
els and performing statistical tests). Such a lighter model also enables us to detect
performance regressions between the current version and multiple history versions
(e.g., taking less than 10 hours when comparing the current version with five his-
torical versions). We compared the prediction results of the 100-tree model with
the original 500-tree models. We found that the 100-tree model only has a slightly
higher median relative error (around 0.1%) than the previous 500-tree models,
which is negligible in practice.

Lessons learned. In addition to the model performance, the time cost of training
and applying a black-box model is also a major concern in the practice of perfor-
mance regression detection in the field. Seeking an appropriate trade-off between
the model performance and the time cost is essential for the successful adoption of
performance regression detection approaches in the field.

C3: Early detection of performance regressions

Challenge. In an in-house performance testing process, performance engineers
usually wait until all the tests finish before they analyze the testing results. How-
ever, in a field environment, any performance regressions can directly impact
users’ experience. We cannot usually wait for a long time to gather plenty of data
before performing performance analysis. If our approach cannot detect perfor-
mance regressions in a timely manner, the performance regressions would already
have brought non-negligible negative impact to users. This is a unique challenge
facing the detection of performance regressions in the field.

Solution. In order to detect field performance regressions in a timely manner, we
continuously apply our approach to detect performance regressions using the cur-
rently available data. For example, after a new version of the system has been up
and running for one hour, we use only the one-hour data as our new workloads to
determine the existence of performance regressions in the new versions. Using the
data generated in a short time period also allows the analysis part of our approach
(i.e., model training and predictions) to be processed faster. As discussed in RQ2,
our approach can effectively detect performance regressions when the system has
run for a very short time (e.g., down to 15 minutes for Apache James). In other
words, our approach can detect early performance regressions in the field.

Lessons Learned. Different from performance regression detection in an in-house
testing environment, performance regressions in the field need to be detected in
a timely manner, in order to avoid notable performance impact to the users. Con-
tinuously detecting performance regressions using the currently available data can
help detect early performance regressions in the field.

8 Threats to Validity

This section discusses the threats to the validity of our study.

External validity. Our study is performed on two open-source systems (i.e., OpenMRS
and Apache James) and one industry system (i.e., System X) that are from different
domains (e.g., health care system and mail server). All our studied systems are mature
systems with years of history and have been studied in prior performance engineering
research. Nevertheless, more case studies on other software systems in other domains can
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benefit the evaluation of our approach. All our studied systems are developed in either
Java or .Net. Our approach may not be directly applicable to systems developed in other
programming languages, especially dynamic languages (e.g., JavaScript and Python).
Future work may investigate approaches to minimize the uncertainty in the performance
characterization of systems developed in dynamic languages.

Internal validity. Our approach builds machine learning models to capture the rela-
tionship between the runtime activities that are recorded in logs and the measured
performance of a system. However, there might be some runtime activities that are not
recorded in logs and that also impact system performance. In our approach, we use logs
that capture the high-level workloads of the system. Our experiments on our studied sys-
tems demonstrated that such logs can predict system performance with high accuracy.
Nevertheless, the correlation between the runtime activities recorded in the logs and the
measured system performance does not necessarily suggest a causal relationship between
them.

Our approach relies on comparing performance models that are constructed based on
software behaviors that are recorded in logs. We admit that our approach is not applica-
ble in situations where the old version and the new version have fundamentally different
features. If a new version has many new features that do not exist in an old version, the
model constructed on the old version would not have the knowledge about the perfor-
mance impact of the new features, thus comparing performance models between these
two versions would not be practical. However, we would like to emphasize that the goal
of our approach is to verify whether the black-box performance models can work in the
scenarios where the workloads have high variations (e.g., variation in the ratio between
different types of activities).

Our approach relies on non-parametric statistical analysis (i.e., Mann-Whitney U test
and Cliff’s delta) to compare the black-box behaviors of two software versions to detect
performance regressions. Our assumption is that statistically different behaviors between
two software versions would suggest performance regressions. In practice, however,
determining whether there is a performance regression usually depends on the subjec-
tive judgment of the performance analysts. Therefore, our approach enables performance
analysts to adjust the threshold of the statistics (e.g., the effect size) to detect performance
regressions in their specific scenarios.

Construct validity. In this work, instead of using modern performance monitoring tools
(e.g., application performance monitoring (APM)), we use traditional system monitoring
tools (e.g., Pidstat) to collect the performance data (e.g., CPU usage) when running the
systems. The use of APM to collect more information may complement our approach.

We use the CPU usage as our performance metric to detect performance regressions.
There exist other performance metrics, such as memory utilization and response time
that can be considered to detect performance regressions. Considering other performance
metrics would benefit our approach. However, monitoring more performance metrics
would introduce more performance overhead to the monitored system. In the case of our
industrial system, CPU usage is the main concern in performance regression detection.
Besides, the three studied approaches are not limited to the performance metric of CPU
usage. Practitioners can leverage our approach to consider other performance metrics that
are appropriate in their context.

We use JMeter to send workloads to the open-source systems. We are not experts for
these open-source software systems and the actual field users’ data for these open-source
systems is not available. Therefore, the portions of each type of action are not pre-chosen
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but just the results of our randomized workload drivers, and we do not have any empirical
evidence to support such numbers. However, our goal is just to make different workloads
across different versions, instead of having chosen specific numbers. Similarly, in the
real world, it may be difficult to anticipate the number of users of a system and their
usage patterns.

9 RelatedWork

We discuss related work along with four directions: analyzing performance test results, A/B
testing and canary releasing, source code evolution and performance, and leveraging logs to
detect performance-related anomalies.

9.1 Analyzing performance test results

Prior research has proposed many automated techniques to analyze the results of perfor-
mance tests (Gao et al. 2016; Jiang and Hassan 2015). Initially, the Queuing Network Model
(QNM) (Lazowska et al. 1984) has been proposed to model the performance of a soft-
ware system based on the queuing theory. Based on QNM, Barna et al. (2011) propose an
autonomic performance testing framework to locate the software and hardware bottlenecks
in the system. They use a two-layer QNM to automatically target hardware and software
resources utilization limits (e.g., hardware utilization, web container threads number, and
response time).

Due to the increasing complexity of software systems and their behaviors, the QNM-
based performance model becomes insufficient. Therefore, prior work uses statistical
methods to assist in performance analysis. Cohen et al. (2005) present an approach that
captures the signatures of the states of a running system and then cluster such signatures to
detect recurrent or similar performance problems. Nguyen et al. (2011) and Nguyen et al.
(2012) use control charts to analyze performance metrics across test runs to detect perfor-
mance regressions. Malik et al. (2010) and Malik et al. (2013) use principle component
analysis (PCA) to reduce the large number of performance metrics to a smaller set, in order
to reduce the efforts of performance analysts.

Prior work also uses machine learning techniques for performance analysis (Shang et al.
2015; Xiong et al. 2013; Foo et al. 2015; Lim et al. 2014; Didona et al. 2015). Shang
et al. (2015) propose an approach that automatically selects target performance metrics
from a larger set, in order to model system performance. Xiong et al. (2013) propose an
approach that automatically identifies the system metrics that are highly related to system
performance and detects changes in the system metrics that lead to changes in the system
performance. Foo et al. (2015) build ensembles of models and association rules to detect
performance regressions in heterogeneous environments, in order to achieve high precision
and recall in the detection results.

Different from existing approaches that analyze the results of in-house performance tests,
our approach builds black-box performance models that leverage performance metrics and
readily available logs to detect performance regressions in the field.

9.2 A/B testing and canary releasing

As the software system evolves, developers need to take actions to ensure that the new ver-
sions meet the expectations, in terms of both functional and non-functional requirements. In
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order to reduce the potential risk of introducing new releases, one common approach is to
perform A/B testing to compare two versions of the system against each other to determine
which one performs better. For example, Xu et al. (2015) build an A/B testing experimen-
tation platform at LinkedIn to support data-driven decisions and improve user experiences.
A/B tests is a standard way to evaluate user engagement or satisfaction with a new service,
feature, or product and its main concern is not about the system performance. In comparison,
our approach aims to detect performance regressions in the field.

Another prevalent industrial live experimentation technique is called canary releas-
ing, which gradually delivers the new versions or features to an increasingly larger user
group. Sato (2014) indicates that canary releasing reduces the risk associated with releas-
ing a new version of the software by limiting its audience at the beginning. Different
from canary releasing, our approach relies on the field data from the normal operations of
a software system (i.e., without gradual releasing to gain confidence). Our approach has
advantages over canary releasing when new features need to be delivered to all the users
quickly, such as the scenario faced by our industrial partner. Nevertheless, our approach can
be used in a canary releasing process to detect performance regressions based on the field
data collected from a sample of the users, which can be a step in our future research.

In summary, although A/B testing, canary releasing and our approach all rely on the end
user data from the field, our approach serves different purposes and has different usage
scenarios from the other two techniques (as discussed above). Our approach is not a direct
replacement or peer to A/B testing or canary releasing, and we do not aim to alter how
the software is released to the end users. On the other hand, our approach can complement
existing A/B testing and canary releasing practices.

9.3 Source code evolution and performance

Performance issues are essentially related to the source code. Thus, understanding how
software performance evolves across code revisions is very important. Alcocer and Bergel
(2015) conduct an empirical study on the performance evolution of 19 applications. Their
findings show that every three code revisions introduce a performance variation and the
performance variations can be classified into some patterns. Based on these patterns, Zhou
et al. (2019) propose an approach called DeepTLE that can predict the performance of
submitted source code before executing the system, based on the semantic and structural
features of the submitted source code. While source-code level techniques aim to identify
performance issues before running performance tests, we believe that the performance of the
whole system is not just a simple combination of each code snippet’s performance. Instead,
the performance of the whole system needed to be measured by performance testing. In
this work, we propose three approaches that identify performance issues when the system is
running in the field, which can complement or even replace traditional performance testing.

9.4 Leveraging logs to detect performance-related anomalies

Prior research proposes various approaches that leverage execution logs to detect
performance-related anomalies (Jiang and Hassan 2015; Xu et al. 2009; Tan et al. 2010;
He et al. 2018). Jiang et al. (2009) propose a framework that automatically generates a
report to detect and rank potential performance problems and the associated log sequences.
Xu et al. (2009) extract event features from the execution logs and leverage PCA to
detect performance-related anomalies. Tan et al. (2010) present a state-machine view from
the execution logs of Hadoop to understand the system behavior and debug performance
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problems. Syer et al. (2017) propose to leverage execution logs to continuously validate
whether the workloads in the performance tests are reflective of the field workloads. Syer
et al. (2013) also propose to combine execution logs and performance metrics to diagnose
memory-related performance issues. Similarly, He et al. (2018) correlate the clusters of log
sequences with system performance metrics to identify impactful system problems (e.g.,
request latency and service availability).

In comparison, our approach leverages the relationship between the logs and perfor-
mance metrics from the field to detect performance regressions between two versions of a
software system.

10 Conclusions

In this paper, we propose to leverage automated approaches that can effectively detect
early performance regressions in the field. We study three approaches that use black-
box performance models to capture the relationship between the activities of a software
system and its performance under such activities, and then compare the black-box mod-
els derived from the current version of a software system and an earlier version of the
same software system, to determine the existence of performance regressions between
these two versions. By performing empirical experiments on two open-source systems
(OpenMRS and Apache James) and applying our approaches on a large-scale indus-
trial system, we found that simple black-box models (e.g., random forest) can accurately
capture the relationship between the performance of a system under varying workloads
and its dynamic activities that are recorded in logs. We also found that these black-box
models can effectively detect real performance regressions and injected performance regres-
sions under varying workloads, requiring data from only a short period of operations.
Our approaches can complement or even replace typical in-house performance testing
when testing resources are limited (e.g., in an agile environment). The challenges and
the lessons that we learned from the successful adoption of our approach also provide
insights for practitioners who are interested in performance regression detection in the
field.
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Montreal, Quebec, Canada

3 Alibaba Group, Hangzhou, Zhejiang, China
4 ERA Environmental Management Solutions, Montreal, Quebec, Canada

Author's personal copy

http://orcid.org/0000-0001-9920-5855
mailto: fu_chen@encs.concordia.ca
mailto: heng.li@polymtl.ca
mailto: ze_yi@encs.concordia.ca
mailto: shang@encs.concordia.ca
mailto: jianmei.gjm@alibaba-inc.com
mailto: steve.sporea@era-ehs.com
mailto: andrei.toma@era-ehs.com
mailto: sarah.sajedi@era-ehs.com

	Using black-box performance models to detect performance regressions under varying workloads: an empirical study
	Abstract
	Introduction
	Background: Black-box performance models
	Approaches
	Extracting metrics
	Splitting logs and performance data into time periods
	Extracting log metrics and performance metrics

	Building black-box performance models
	Reducing metrics
	Building models

	Detecting performance regressions

	Case Study Setup
	Subject systems
	Subject workload design
	OpenMRS
	Apache James
	Generated workloads

	Subject models

	Case Study Results
	RQ1: How well can we model system performance under varying workloads?
	Motivation
	Approach
	Performance modeling
	Analysis of modeling results

	Results
	Our black-box models can effectively model the performance of the studied systems using the dynamic runtime activities that are recorded in the logs.
	The traditional models (e.g., linear regression and random forest) outperform the deep neural networks (e.g., CNN and RNN) for modeling the performance of the studied systems.
	Our black-box models can equivalently explain the performance of a system under new workloads that are unseen when constructing the models.


	RQ2: Can our approach detect performance regressions under varying workloads?
	Motivation
	Approach
	Results
	Our black-box-based approaches can effectively detect performance regressions under varying workloads.
	Comparing the prediction errors is more effective than comparing the prediction values when detecting performance regressions between two versions.
	Our approaches can detect performance regressions as early as 15 minutes after running a new version.



	An Industrial Experience Report
	Modeling system performance
	Detecting performance regressions

	Challenges and Lessons Learned
	Threats to Validity
	Related Work
	Analyzing performance test results
	A/B testing and canary releasing
	Source code evolution and performance
	Leveraging logs to detect performance-related anomalies

	Conclusions
	References
	Affiliations


