
CS 3719 (Theory of Computation and Algorithms) –
Lecture 19

Antonina Kolokolova∗

February 18, 2011

1 Closure properties of semi-decidable languages

Recall that the class of regular languages is closed under union, intersection, complemen-
tation, concatenation and so on, but CFLs are only closed under some of these operations
(union and concatenation, but not intersection or complementation). What would be the case
for semi-definite languages? Here we will show that they are closed under union; moreover
they are also closed under intersection, however complementation may create a non-semi-
decidable language.

Theorem 16. The class of semi-decidable languages is closed under union and intersection
operations.

Proof. Let L1 and L2 be two semi-decidable languages, and let M1, M2 be Turing machines
such that L(M1) = L1 and L(M2) = L2. We will construct Turing machines ML1∪L2 and
ML1∩L2 accepting union and intersection of L1 and L2, respectively.

Consider the union operation first; intersection will be similar. Let x be the input for which
we are trying to decide whether it is in L1 ∪ L2. The first idea could be to try to run M1

on x, and if it does not accept, then run M2 on x. But M1 is not guaranteed to stop on x,
and we would still like to accept x if M2 accepts it. So the solution is to run M1 and M2 in
parallel, switching between executing one or the other. If at some point in the computation
either M1 or M2 accepts, we accept; if neither accepts, can run forever – but this is OK,
because if neither M1 nor M2 accepts x then x /∈ L1 ∪ L2. So we define ML1∪L2 as follows:

ML1∪L2 : On input x
Fori = 1 to ∞

Run M1 on x for i steps. If M1 accepts, accept.

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1



Run M2 on x for i steps. If M2 accepts, accept.

The intersection, in this case, is very similar. The only difference is that we accept at stage
i if not just one, but both M1 and M2 accepted in i steps.

Corollary 17. ATM is not semi-decidable. Moreover, complement of any semi-decidable,
but undecidable language is not semi-decidable.

Proof. Otherwise, running Turing machines MATM
and MATM

simultaneously, as in the proof
above, we could decide ATM . Same holds for any semi-decidable, but undecidable language.

This shows that the class of semi-decidable languages is different (incomparable) from the
class of co-semi-decidable ones. Also, there are languages that are neither semi-decidable
nor co-semi-decidable. For example, consider a simple language 0 − 1Atm = {< M,w > |
TM M accepts 01 and loops on 1w}.

Intuitively, testing if < M, w > is in the language requires solving an ATM problem and a
ATM problem. The first one makes it not co-semi-decidable, the second not semi-decidable.

To make this intuition formal, we need a concept which is going to be used a lot for the
rest of this course: the notion of a reduction. A reduction is a method of “disguising” one
problem as another, so if we can solve the disguised one it can give us the solution to the
original. This method is very useful for proving that problems are hard: if you can disguise
a hard problem as one in hand, then solving this problem is at least as hard as solving the
hard one.

Definition 14. A function f : Σ∗ → Σ∗ is computable if there is a Turing machine M that
halts on every input x with f(x) as its output on the tape.

Definition 15. Let L1, L2 ⊆ Σ∗. We say that L1 ≤m L2 if there is a computable function
f : Σ∗ → Σ∗ such that for all x ∈ Σ∗,
x ∈ L1 ⇔ f(x) ∈ L2.

Here, we need f to be computable so that it always gives us an answer. The notation ≤m

stands for “many-one reduction” or “mapping reduction”. It is many-one since f may map
many different instances of a problem to a single output.

Theorem 18. Let L1, L2 ⊆ Σ∗ such that L1 ≤m L2. Then

1) L1 ≤m L2

2



2) If L2 is decidable then L1 is decidable.
(And hence, if L1 is not decidable then L2 is not decidable either).

3) If L2 is semi-decidable then L1 is semi-decidable.
(And hence, if L1 is not semi-decidable then neither is L2.)

Proof. 1) Say that L1 ≤m L2 via the computable function f . Then we also have L1 ≤m L2

via f , since x ∈ L1 ⇔ f(x) ∈ L2 implies that x ∈ L1 ⇔ f(x) ∈ L2.

2) Say that L2 = L(M2) where M2 is a Turing machine that halts on every input. Let M
be a Turing machine that computes f . We now define Turing machine M1 as follows.
On input x, M1 runs M on x to get f(x), and then runs M2 on f(x), accepting or rejecting
as M2 does. Clearly M1 halts on every input, and L1 = L(M1), so L1 is decidable.

3) Say that L2 = L(M2) where M2 is a Turing machine. Let M be a Turing machine that
computes f . We now define Turing machine M1 as follows.
On input x, M1 runs M on x to get f(x), and then runs M2 on f(x), accepting or rejecting
as M2 does if and when M2 halts. Clearly L1 = L(M1), so L1 is semi-decidable.

Now we can use this notion of reduction to prove that some languages are undecidable by
reducing languages for which we already know that (such as ATM) to them.

Example 1. Let RegularTM = {< M > |M is a Turing machine and L(M) is regular}. We
can show that this language is undecidable using a reduction ATM ≤m RegularTM . Assume,
for simplicity, that Σ = {0, 1}.

We define the reduction function f , f(< M,w >=< M ′ > such that < M,w >∈ ATM if and
only if the language of M ′ is regular. where M ′ is:

M ′ : On input x
If x is of the form 0n1n, accept
Otherwise, run M on w, if M accepts w, accept. If M rejects w, reject.

Now, suppose M accepts w. Then L(M ′) = Σ∗: all strings are accepted. This language is
definitely regular. Suppose now that M does not accept w. Then the only strings accepted
by M ′ are of the form 0n1n, so L(M ′) = {0n1n|n ∈ N} which is not regular.

3


