
Natural Language Syllable Alignment:
From Conception to Implementation

Greg J. Hedlund, Keith Maddocks, Yvan Rose, and Todd Wareham

Abstract— Several types of linguistic analyses, e.g.,
studies of first or second language acquisition, require
the alignment of the (actual) syllables produced by
a speaker with those in the corresponding intended
(target) utterance. Maddocks (2005) described a dy-
namic programming algorithm for performing such
alignments. In this paper, we will describe (1) the
implementation of this algorithm and its integration
into Phon, a software program for analyzing language
acquisition data (Rose et al. 2005) and (2) the devel-
opment of a genetic algorithm for optimizing the per-
formance of this algorithm relative to a user-provided
corpus of actual / target utterance pairs.

Keywords— Software Design; User Interface Design;
Dynamic Programming; Genetic Algorithm

I. Introduction

Given two sequences, an alignment of these se-
quences is a display in which each symbol in each
sequence is matched with either (i) a symbol in the
other sequence or (ii) a special symbol called an indel

(denoted here by ’#’). An alignment graphically dis-
plays symbol correspondences and substitutions (if
two symbols are matched) as well as symbol inser-
tions and/or deletions (if a symbol is matched with
an indel). An alignment is thus a succinct summary
of possible processes relating a pair of sequences.

Alignment problems occur in language acquisi-
tion research, in which the sequences are syllabified
learner (actual) and intended (target) utterances and
both phone and syllable alignments of actual-target
pairs are required to ensure valid analyses of learner-
produced speech errors (see Figure 1). With the ad-
vent of large-scale analytical systems such as Child-
Phon and Phon [3], [7], [8], alignment algorithms
have become necessary. Given the size of the datasets
involved, such algorithms need to be both efficient
and accurate; moreover, as these algorithms must be
embedded inside a large pre-existing software system
with a non-CS user base, issues of software architec-
ture and user interface design are also crucial.

In this paper, we will describe our experience in in-
tegrating the syllable alignment algorithm proposed

Department of Computer Science (KM, TW) and Depart-
ment of Linguistics (GJH, YR), Memorial University of New-
foundland, St. John’s, NL, Canada

This work has been supported by SSHRC grant 410-2004-
1836 (YR) and NSERC grant 228104 (TW).

Fig. 1. Phone and Syllable Alignment

by Maddocks [5] into Phon. In Section II, we give
a brief overview of the syllable alignment problem
and of the algorithm proposed in [5]. In Section III,
we describe the software architecture and user inter-
face underlying the implementation of this algorithm
in Phon. In Section IV, we describe a genetic al-
gorithm which optimizes parameters associated with
the alignment algorithm and enables it to reach ac-
curacies of greater than 98%. Finally, in Section V,
we discuss some directions for future research.

II. Background

A. The Syllable Alignment Problem

The alignment problem in natural language oper-
ates on pairs of utterances. Utterances can in turn be
subdivided into smaller units. Phon uses a five-level
utterance structure (see Figure 2). Utterances are
transcribed using the International Phonetic Alpha-
bet, and individual phones are described by feature
matrices based on a standard set of features which
provide detailed descriptions of the phonetic makeup
of these phones [3, Appendix B]. Utterances tran-
scribed within Phon are automatically syllabified us-
ing a standard onset-rhyme syllable internal struc-
ture [3, Section 2.4.1].

The main goal of sequence alignment is to match
related items in sequences while avoiding matches
between unrelated items. There are many possible
alignments for a given pair of sequences, so the pre-



Fig. 2. Utterance Structure

ferred alignments are those that have the minimum
or maximum value for an associated score-function.

The most basic type of utterance alignment is
phone alignment. If syllabifications of the utterances
are available, one can also create syllable alignments,
which are essentially enhanced phone alignments that
include syllable boundaries placed such that sylla-
ble integrity is preserved, i.e., phones that are part
of one syllable in an actual or target form are not
scattered across multiple syllables in the alignment.
Note that syllable integrity within utterances does
not forbid many-one mappings of syllables between
utterances; indeed, such mappings are necessary to
model syllable epenthesis, e.g., “[spy]” → “[si][py]”,
and truncation, e.g., “[ba][na][na]” → “[ba][na]”.

A number of phone alignment algorithms have
been proposed [1], [2], [4], [10]. However, the only
previous work on syllable alignment is by Connolly
[1] (in which he discusses possible algorithms and
syllable-pair scores), Hedlund and O’Brien [3] (in
which they give an algorithm which did not achieve
more than 70% accuracy), and Maddocks [5]. The
last of these, which is arguably the only successful
syllable alignment proposed to date, is described in
the next section.

B. A Syllable Alignment Algorithm

The algorithm proposed in Maddocks [5] is what
is known as a single-level alignment algorithm, i.e.,
utterances are viewed as sequences of phones and
syllable-boundary markers and utterance alignment
is treated as an alignment of these sequences that
preserves syllable integrity. This algorithm is based
on the standard dynamic programming algorithm for
pairwise sequence alignment, which has been derived
independently in several disciplines (see [9] and ref-
erences therein). At the core of this algorithm is a

function sim(x, y) that assesses the degree of similar-
ity of a symbol x from the first given sequence and
a symbol y from the second given sequence. Given a
linguistically-relevant definition of sim(), the classi-
cal sequence alignment algorithm can perform phone
alignments. However, this algorithm can also be
adapted to create syllable alignments if we (1) define
a version of sim() that simulates syllable integrity
and matching constraints via constraints on phone
matchings and (2) define a set of rules that reintro-
duce the actual and target form syllable boundaries
back into the enhanced phone alignment. Full de-
tails of these modifications are given in [5]; however,
for our purposes here, we need only describe those
modifications associated with (1).

In our sim() function for enhanced phone align-
ments, the similarity value of two phones is a function
of a basic score and the associated values of a num-
ber of applicable rewards or penalties, where each re-
ward and penalty condition encodes a linguistically-
motivated constraint on the form of the alignment.
Our basic score is the number of features shared by
phones x and y. If any penalty condition applies,
sim() is the value associated with that penalty; oth-
erwise, sim() is the sum of the values associated with
applicable reward conditions times the basic score.
Note that we assume that no more than one penalty
is applicable to any phone-pair. Our reward and
penalty conditions were defined by repeatedly exam-
ining the set of incorrect alignments produced the al-
gorithm and proposing conditions that addressed the
largest possible subset of these alignments, and the
associated condition-values were optimized manually
by trial and error.

The scheme proposed above has two advantages:
(1) it performs both phone and syllable alignments,
and (2) it readily handles many-one syllable map-
pings. It has the disadvantage that syllable integrity
is not explicitly enforced but is a product of the inter-
actions of various mechanisms, and hence can be per-
turbed by the introduction of new mechanisms or the
modification of old ones. This problem becomes more
acute when the alignment algorithm parameters, i.e.,
the condition-values, must be re-calibrated to handle
utterances in a new natural language. However, such
difficulties can be ameliorated by the addition of an
automatic algorithm parameter optimization proce-
dure such as that described in Section IV.

III. Algorithm Implementation

A. Initial Implementation and Testing

The phone and syllable alignment algorithms de-
scribed in the previous section were implemented in
Java 1.4.2 and a testbed was constructed using soft-



Fig. 3. Alignment Algorithm / Phon Integration Architecture.

ware components from Phon (notably the utterance-
structure and syllabification mechanisms) with which
these algorithms were tested against a corpus of 168
adult-child utterance pairs extracted from the litera-
ture on first and second language acquisition of En-
glish. The alignments produced for this corpus were
then compared to the “correct” alignments prepared
by Rose. Both phone and syllable alignments im-
proved as conditions were added, eventually reaching
accuracies of 95% (see [5] for details).

B. Integration into Phon: Software Architecture

As mentioned above, the Maddocks algorithm was
developed using the Phon Java classes encoding ut-
terance structure and the syllabification mechanism
(see [3, Chapter 6] for details). Three issues arose
when this algorithm was integrated into Phon:

1. As both Phon and the aligner will continue to
evolve, it should be possible to change the aligner
code independently of the Phon code and vice versa;
2. As Phon operates over multiple natural languages,
it should be possible to provide more than one in-
stance of the aligner at any time; and
3. As the algorithm will not always produce align-
ments that are linguistically accurate, it should be
possible for the user to modify the alignment pro-
duced by the algorithm.

These issues were resolved using the software archi-
tecture sketched in Figure 3. Issue (1) was dealt with
by making the aligner a separate module that imple-
ments and communicates with Phon via the Aligner
interface. Issue (2) is dealt with by implementing
an Alignment Factory class, which is responsible for
creating concrete instances of aligners and returning
them to Phon. Issue (3) was partially dealt with by
ensuring that the Aligner interface is rich enough to
allow access to all internal structures of a produced
alignment as well as the ability to construct a new
alignment in a piecewise fashion without having to
invoke the Maddocks algorithm. However, as will
be described in the next section, resolution of this
issue also required the development and implementa-
tion of a straightforward user interface for modifying
algorithm-produced alignments.

Fig. 4. Phone and Syllable Alignment Display

C. Integration into Phon: User Interface Design

In Phon, phone and syllable alignments are dis-
played such that aligned target and actual phones
are placed on the same vertical axis and aligned tar-
get and actual syllables are similarly grouped within
boxes (see Figure 4). As algorithm-produced align-
ments may be linguistically inaccurate, users need to
be able to perform the following two activities:

1. Modify existing alignments by modifying individ-
ual linkages between phones and/or syllables; and
2. Validate user-modified alignments against stan-
dard constraints to prevent nonsensical alignments,
e.g., two phone- or syllable-pair linkages cannot cross.

The first activity has been implemented by allow-
ing users to void the alignment (by mouse-clicking
an icon displayed at the right end of the alignment)
and then reconstruct the alignment from left to right
by using mouse-clicks to successive select and link
entities from both sequences and add these linkages
to the modified alignment (see Figures 5 and 6). In
the case of phone alignments, a linkage will always
be between one phone in the actual sequence and
one phone in the target sequence; however, in the
case of syllable alignments, many-one linkages can
be made between one syllable in either the actual or
target sequence and one or more (adjacent) syllables
in the other sequence. Note that phone and syllable
alignments can be modified independently; however,
as syllable alignments depend on phone alignments,
the syllable alignment algorithm is automatically in-
voked after modification of a phone alignment to re-
vise the syllable alignment if necessary. The second
activity will be implemented by allowing users to val-
idate an alignment by mouse-clicking a second icon
displayed at the right end of the alignment, which
will then graphically highlight portions of the align-
ment (if any) that violate constraints and need to be
further modified.



Fig. 5. Phone Alignment Modification

Fig. 6. Syllable Alignment Modification

IV. Algorithm Parameter Optimization

Since the accuracy of the phone and syllable align-
ment algorithms depend on the values assigned to
the reward and penalty condition parameters, find-
ing the optimal values for these parameters relative
to a given corpus is of the utmost importance. Given
a set of linguistically correct alignments, it is pos-
sible to assess the relative worth of any particular
parameter-setting by seeing how many alignments in
that set can be done correctly using that parameter-
setting. Unfortunately, given the large number of pa-
rameters and the very large number of possible values
for each parameter (namely, the set of all integers),
a brute force approach to optimization is not viable.

We choose to overcome this parameter-optimization
problem using a genetic algorithm (GA) (see [6] and
references therein). Essentially, a GA tries to find
optimal solutions to a problem of interest by mim-
icking the evolutionary process by which populations
of organisms adapt to their environments. In a bi-
ological population, the traits inherited by each or-
ganism from its parents determine that organism’s
fitness and hence the likelihood that this organism
will survive long enough to pass those traits on to
the next generation. In a GA, the organisms in a
population correspond to possible solutions to the

Generate initial population of size X

WHILE population fitness increases DO

Generate new population of size X’ > X

Evaluate fitness of new population

Trim new population to include only

the X fittest members

Output population

Fig. 7. Generic Genetic Algorithm Structure

problem of interest, and a fitness function (which is
often just the solution cost or value) determines a
solution’s fitness and hence the likelihood that this
solution will be used to produce the solutions in the
next generation. In both cases, over time, the av-
erage fitness of the population increases until opti-
mal or near-optimal fitness is achieved, resulting in
healthy organisms and good solutions, respectively.

The process described above can be implemented
algorithmically using the generic framework given in
Figure 7. Given this framework and a problem of
interest, three things have to specified in order to
produce a GA for that problem:
1. How are solutions encoded in the population?
2. How are solutions in one generation combined to
produce solutions in the next generation?
3. What is the solution fitness function?
Part (2) above is typically done by mutation (con-
struct a new solution by randomly changing portions
of a parent solution) and/or recombination (con-
struct one or more new solutions by stitching to-
gether fragments of two parent solutions). One of
the more popular forms of recombination is crossover,
which involves swapping elements in one parent so-
lution with the corresponding elements in a second
parent solution. Note that all of these operations
are based on actual biological mechanisms by which
parental DNA is combined and changed to produce
child DNA in organisms.

How can we specify the elements listed above to
create a GA for optimizing alignment parameters?
The obvious solution-encoding of a set of alignment
parameters is as an integer array. This encoding
allows efficient crossover and mutation operations;
moreover, the fitness of a solution is simply the accu-
racy of the alignment algorithm operating under the
parameter-values encoded in that solution relative to
a given corpus of correct alignments.

The resulting GA has been implemented and tested
against several corpora from English and Dutch.
Though our results are still preliminary, it appears
that this algorithm can find parameter-settings with
98%+ accuracies using small populations of solutions
in relatively few iterations. For example, given an



Fig. 8. Average GA Population Fitness Increases Over Time

initial population of random parameter-settings, an
accuracy of 98.5% was achieved relative to the 168-
pair corpus mentioned in Section III-A in sixty gen-
erations using a population consisting of 20 solutions
(see Figure 8); when populations of even moderately
accurate seed parameter-settings are used initially,
the algorithm converges even faster.

V. Future Work

The major direction for future research on the syl-
lable alignment module will be to integrate the stand-
alone genetic algorithm for alignment parameter op-
timization described in Section IV into Phon. We
envision its operation as follows:

1. The user will associate a particular group of align-
ment parameter settings with a corpus. This group
can be selected from a set comprised of a generic
parameter-setting and parameter-settings generated
in previous research.
2. The user will validate (and thus select) the align-
ments in what is hopefully a representative subset of
the records in the corpus. For example, in a corpus
of 1000 records, the user might validate a subset of
100 records.
3. Upon activation by the user, the GA will revise
the parameter settings to attain the most accurate
results possible based on the validated records. As
certain parameter settings may be set to 0, this would
also correspond to revising the set of relevant reward
and penalty conditions.
4. The new settings will then be used to align subse-
quent records in the corpus.

Note that the parameter / optimizer framework de-
scribed above for utterance alignment is fairly gen-
eral and could be applied to any automated activity
within Phon; hence, another possible direction for fu-
ture work would be to develop a more accurate utter-
ance syllabification algorithm using this framework.

Acknowledgments

The authors would like to thank Brian MacWhin-
ney (Department of Linguistics, Carnegie Mellon
University) for providing funding to support the ini-
tial and ongoing development of Phon. The authors
would also like to thank the Deans of Arts and Sci-
ence as well as the Heads of the Departments of Com-
puter Science and Linguistics of Memorial University
of Newfoundland for bureaucratically enabling our
collaboration.

References

[1] Connolly, J.H. 1997. Quantifying target-realization dif-
ferences. Clinical Linguistics & Phonetics, 11:267–298.

[2] Covington, M.A. 1996. An Algorithm to Align Words
for Historical Comparison. Computational Linguistics,
22(4): 481–496

[3] Hedlund, G.J. and O’Brien, P. 2004. A Software Sys-
tem for Linguistic Data Capture and Analysis. B.Sc.h.
dissertation, Department of Computer Science, Memorial
University of Newfoundland.

[4] Kondrak, G. 2003. Phonetic alignment and similarity.
Computers and the Humanities, 37(3): 273–291.

[5] Maddocks, K. 2005. An Effective Algorithm for the
Alignment of Target and Actual Syllables for the Study of
Language Acquisition. B.Sc.h. dissertation, Department
of Computer Science, Memorial University of Newfound-
land.

[6] Reeves, C.R. and Rowe, J.E. 2003. Genetic Algorithms:
Principles and Perspectives – A Guide to GA Theory.
Kluwer Academic Publishers, Boston, MA.

[7] Rose, Y. 2003. ChildPhon: A Database Solution for the
Study of Child Phonology. In B. Beachley, A. Brown, and
F. Conlin (eds) Proceedings of the 27th Annual Boston
University Conference on Language Development, pp.
674–685. Cascadilla Press, Somerville, MA.

[8] Rose, Y., MacWhinney, B., Byrne, R., Hedlund, G.J.,
Maddocks, K., O’Brien, P., and Wareham, T. 2005. In-
troducing Phon: A Software Solution for the Study of
Phonological Acquisition. To appear, Proceedings of the
30th Annual Boston University Conference on Language
Development.

[9] Sankoff, D. and Kruskal, J.B. (eds.) 1983. Time Warps,
String Edits, and Macromolecules: The Theory and
Practice of String Comparison. Addison-Wesley, Read-
ing, MA.

[10] Somers, H.L. 1999. Aligning Phonetic Segments for Chil-
dren’s Articulation Assessment Computational Linguis-
tics, 25(2): 267–275.


