The Role of Parameterized Computational Complexity Theory in
Cognitive Modeling*

H. Todd Wareham

Department of Computer Science
University of Victoria

Victoria, BC Canada

V8W 3P6

harold@csr.uvic.ca

Abstract

This paper shows how parameterized com-
putational complexity theory is better than
previously-used theories of computational com-
plexity, e.g., N P-completeness, at both measur-
ing the power of computational models of cog-
nitive systems and isolating the sources of this
power. This point is illustrated with new param-
eterized analyses of two current constraint-based
models in linguistics, Declarative Phonology and
Optimality Theory.

Introduction

Over the last fifteen years, a number of authors have
applied computational complexity theory (CCT) to
evaluate models of cognitive systems, e.g., vision, nat-
ural language, memory (Berwick & Weinberg 1984;
Barton, Berwick, & Ristad 1987; Ristad 1993; Tsot-
sos 1990; 1993; Valiant 1994). In part because of var-
ious assumptions underlying CCT, critics have ques-
tioned the relevance of such analyses (Ramer 1995;
Rounds 1991). Recent work (Downey et al. 1994) sug-
gests that certain of these criticisms can be addressed
by using the theory of parameterized computational
complexity (Downey & Fellows 1995a; 1995b); more-
over, within this parameterized framework, a more
powerful form of CCT analysis which readily exposes
the sources of computational power in cognitive mod-
els is possible. This paper will more fully develop this
framework and present new parameterized analyses of
two models in linguistics.

This paper is organized as follows. The first section
reviews the basics of CCT and discusses its relevance
as a measure of model power. The second section in-
troduces the theory of parameterized computational
complexity and discusses both how it addresses cer-
tain criticisms of previous CCT analyses and why it is
better than classical CCT at assessing the sources of
computational power in cognitive models. This discus-
sion is illustrated by parameterized analyses of Opti-
mality Theory and Declarative Phonology. The final

*To appear, AAAI-96 Workshop Working Notes: Com-
putational Cognitive Modeling: Source of the Power

section sketches somes promising directions for future
research.

Computational Complexity Theory

Computational complexity theory establishes upper
and lower bounds on how efficiently problems can be
solved by algorithms, where “efficiency” is judged in
terms of the computational resources, e.g., time or
space, required by an algorithm to solve its associated
problem. As noted by Rounds in his 1991 review, “The
presuppositions of an already established theory, such
as complexity theory, are perhaps the properties of the
theory most easily ignored in making an application”
(Rounds 1991, p. 10). With this in mind, the basics of
CCT are reviewed in this section.

Perhaps the most important presuppositions alluded
to by Rounds are implicit in the definitions of algo-
rithm complexity and efficiency. The complezity of an
algorithm 1s a function that summarizes, for each pos-
sible input size, the resource requirements of that al-
gorithm over all inputs of that size. This summary can
take many forms, e.g., best-case, average-case, worst-
case. This paper is concerned with worst-case mea-
sures — that is, if R(%) is the resource required by al-
gorithm A to solve input ¢ and I” is the set of all
inputs of size n, then the worst-case complexity of A
for value n is max;er= R(é). This complexity is fur-
ther “smoothed” by considering its behavior as n goes
to infinity. This is typically stated in O (“big-Oh”)
notation, which gives the lowest function that is an
asymptotic upper bound on the worst-case complex-
ity of the algorithm, e.g., 3n? + 10n — 5 = O(\€),
logzn/2 = O(loge \). An algorithm is efficient if its
complexity satisfies some criterion of efficiency, e.g.,
the complexity function is a polynomial of the input
size, and a problem is tractable if it has an efficient
algorithm.

Computational complexity theory establishes not
only what problems can be solved efficiently but also
what problems cannot be solved efficiently. This is
done by appropriately defining a class F of tractable
problems, a class C such that 1t is either known or
strongly conjectured that F C C, and a reducibility «

between pairs of problems that preserves tractability,
le.,if XaY and Y € F then X € F. As a reducibil-
ity establishes the computational difficulty of problems
relative to each other, e.g., if XaY then Y is at least
as computationally difficult as X, it can be used to iso-
late the hardest problems in a class C via the notions of
hardness and completeness.! If a given problem X is at
least as hard as the hardest problem in C, then X does
not have an efficient algorithm modulo the strength of
the assumption that F C C.

Ideally, a complexity-theoretic analysis of a prob-
lem 1s not just a one-sided quest for either algorithms
or hardness results. Rather, it is an ongoing dia-
logue in which both types of results are used to fully
characterize the problem by showing which restrictions
make that problem tractable and which don’t (Garey
& Johnson 1979, Section 4.1).

There are many flavors of CCT, the most familiar of
which is the theory of N P-completeness (see (Garey
& Johnson 1979; Johnson 1990; Papadimitriou 1994)
and references). In computer science, which is inter-
ested in the machine-independent asymptotic behav-
ior of algorithms, the simplifications implit in the use
of worst-case measures and O-notation are acceptable.
However, as is pointed out in the next section, it is
precisely such assumptions that make CCT analysis
questionable when dealing with the machine-specific
bounded-power computations underlying cognition.

Computational Complexity as a
Measure of Model Power:
Pros and Cons

To justify a measure M of the power associated with
a computational model, one must adequately address
the following four questions:

1. Why is M a good measure of model power?

2. What are the sources of power in a model under M?
3. How is the power of a model measured under M7
4. How are the sources of this power 1solated?

In this section, the adequacy of computational com-
plexity as as measure of model power is assessed under
the criteria implicit in these questions.

Let the power of a computational model be the com-
putational power required to solve the problem ad-
dressed by that model. Within this framework, the
power of a model is measured by the computational
complexity of its associated problems, and the sources
of this power are the various mechanisms within this
model that generate this complexity. For example, the
power of a model of object recognition by the human
visual system would be the computational complexity
of the problem of object recognition under that model,
and the possible sources of this power would be the

'Recall that a problem X is C-hard if for all problems
Y €C, YaX;if X is also in C, then X is C-complete.

various mechanisms invoked by this model to recognize
objects, e.g., layout of the visual field, superimposed
structures of neurons (Tsotsos 1990). There are sev-
eral good reasons for using computational complexity
to assess the power of cognitive models:

1. Computational complexity is asymptotic, and hence
implicitly states how a model’s resource require-
ments will “scale up” as input size increases. Such
considerations are not trivial, as many attempts at
extending solutions originally proposed for small in-
puts to inputs of realistic size have shown (Tsotsos

1993).

2. Computational complexity is machine-independent,
in two senses:

(a) O-notation abstracts away from resource-usage
details due to implementation on a particular ma-
chine; and

(b) Complexity classes defined under a variety of dif-
ferent machines (including circuit-based models
analogous to actual neural hardware (Maass 1994;
Parberry 1994; Siegelmann & Sontag 1995)) have
been inter-related and are expressed in a common

hierarchy (Johnson 1990).

The latter point is particularly important because
a complexity result relative to one machine for a
particular resource can often be readily translated
into results relative to other machines for different
resources.

Note that the use of computational complexity does
not preclude analysis of model power in terms of such
aspects as task representations and the like — rather, it
just places all such analyses within a common frame-
work in which their results can be compared.

How, then, can CCT be used to assess model power
in practice? Much current computational work in cog-
nitive science already focuses on deriving algorithms
that replicate certain behaviors of a given cognitive sys-
tem. Such “proof-of-concept” algorithms show what
can be done relative to a particular machine and in-
put size, and are thus valuable complements to ex-
aminations of and experiments on how the cogni-
tive system of interest is actually implemented in real
organisms. However, in light of known bounds on
brain structure and processing capacity (Tsotsos 1990;
1993), equally valuable insights can be derived via
complexity-theoretic hardness results which show what
cannot be done over a wide range of machines and in-
put sizes. Indeed, as argued in (Ristad 1993; Tsot-
sos 1990), both algorithmic upper-bound and hardness
lower-bound results are necessary to delineate what
types of models of cognitive systems are tractable rel-
ative to known biological limitations, and hence may
be implemented in real organisms.

The following synthesis of Ristad’s “language com-
plexity game” (Ristad 1993) and Tsotsos’s levels anal-
ysis (Tsotsos 1990) shows how such a CCT analysis of
a cognitive system might operate in practice:

1. Define a computational model of that system at the
lowest possible level of abstractness. This level de-
pends on how much is currently known about the
system and its neural implementation; for example,
as the neural structures underlying language are not
nearly as well known as those for vision, models of
linguistic systems must (for now) be defined much
more abstractly than those for visual systems.

2. Repeat until a tractable model is found:

(a) Add a new system behavior / neural limitation to
the current model.

(b) Use CCT to derive a new model that is consis-
tent with proposed behaviors / limitations and
whose associated problems have the lowest com-
putational complexity.

This preference for optimal solutions does not imply
that evolution operates by optimizing the form or func-
tion of biological systems; rather, it is a methodological
convenience like Occam’s Razor which allows investi-
gators to simultaneously restrict the space of hypothe-
sized models and order them for further consideration.

The ultimate goal of such an analysis is to iteratively
refine abstract models of both a cognitive system’s be-
havior and neural architecture into a set of algorithms
that replicates the observed system behavior and can
also be implemented in natural biological hardware.
However, there are several problems with using CCT
as it is currently defined to achieve this goal:

1. Natural cognitive computations have properties that
are incompatible with various assumptions underly-
ing CCT (Berwick & Weinberg 1984; Ramer 1995;
Rounds 1991; Tsotsos 1990). Though the sizes and
structural complexities of cognitive inputs are in
principle unbounded, they are in practice (and thus,
in the sense that the brain deals with them compu-
tationally) relatively small and simple. Hence, the
worst-case inputs which dominate CCT efficiency
may not actually be processed by the brain. More-
over, when comparing algorithms running on a spe-
cific bounded-power machine such as the brain, im-
plementation details do matter, and the machine-
invariance induced by O-notation is no longer use-
ful or acceptable. Hence, schemes which search for
models that are CCT-tractable need not converge on
models that are biologically realistic.

2. Even if the complexity-theoretic conception of
tractability is biologically realistic, current CCT
analyses say only whether a problem is tractable or
intractable. They cannot indicate which aspects of
a problem are responsible for intractability, or show
the numerical forms in which this intractable behav-
ior manifests itself.

To summarize the situation in terms of the questions
asked at the beginning of this section, computational
complexity i1s an appealing definition of model power,
and allows a natural definition of the sources of this

power; however, CCT as defined to date cannot ade-
quately measure this power or isolate its sources.

One solution to this dilemma is to abandon CCT
analysis altogether. However, one may instead choose
to attack the root of the objections raised above by cre-
ating new theories of computational complexity that
mitigate the effects of particularly inconvenient as-
sumptions. One such theory is presented in the fol-
lowing section.

Parameterized Computational
Complexity Theory

One of the most important flavors of classical CCT,
N P-completeness theory, was inspired by the need to
show that certain problems cannot have polynomial-
time algorithms (Garey & Johnson 1979); parameter-
ized computational complexity theory was inspired by
the following similar need. Most computational prob-
lems have input that consists of one or more items; for
example, an object-recognition problem might have as
input a grid of observed light/dark values and a set
of patterns corresponding to 2-D projections of known
objects. Call each such item in the input an wnput pa-
rameter. When it can be proved that a problem X
cannot have a polynomial algorithm, e.g., X is N P-
hard, that problem will exhibit one of two algorithmic
behaviors relative to any particular input parameter k
(called, in this context, a selected parameter):

1. An algorithm can exist for X whose running time
is non-polynomial in k& but polynomial in all other

input k¥ n2m;
put parameters, e.g., n‘m; or

2. All algorithms for X require either that k is non-

polynomial in conjunction with at least one other
input parameter, e.g., n*m? or that k is polynomial
but other input parameters are non-polynomial, e.g.,
2"m2k.
The former kind of algorithm is preferable if k has small
values in typical instances of a problem, e.g., when
k = 10 and n = 1000, 2¢n3 = 10'? << 10°° = nk.
However, as noted above, classical theories of compu-
tational complexity are insensitive to the distinction
noted above — they can say only that a problem does
not have polynomial-time algorithms, and are silent on
whether this non-polynomial behavior can be isolated
relative to particular input parameters.
Parameterized computational complexity theory
(Downey & Fellows 1995a; 1995b) frames this issue via
the following definitions:

Definition 1 A parameterized problem s a set L C
¥* x ¥*, where X s a fixed alphabet. For a param-
eterized problem L and y € ¥*, the fixed-parameter
problem L, = {z|(z,y) € L}.

Note that the second component of elements of L
corresponds to the selected parameter defined above.
Given a problem P, call the parameterized problem

defined relative to selected parameter k of P the k-
parameterized version of P.

Definition 2 A parameterized problem L 1is fixed-
parameter tractable if there exists a constant a and
an algorithm A to determine if (z,y) is in L in time
F(lyl) - |z|*, where f : N — N is an arbitrary func-
tion. Such an algorithm A is a fixed-parameter (f.p.)
algorithm for L.

Parameterized computational complexity theory en-
compasses both a set of techniques for deriving f.p.
tractable algorithms and an appropriate set of classes
for proving f.p. intractability. Within this theory, class
F defined in the first section of this paper corresponds
to the class FPT of fixed-parameter tractable prob-
lems, and class C is one of the members of the W-
hierarchy, a set of classes {W[1],W][2],..., W[P]} de-
fined by successively more powerful solution-checking
circuits (see (Downey & Fellows 1995a; 1995b) for de-
tails). These classes are related as follows:

FPT CW]C W2 C---C WIP]

It is conjectured that all inclusions in this hierar-
chy are proper. Hence, no W/[t]-complete problem
is f.p. tractable unless all problems in W[t] are f.p.
tractable. Over one hundred problems from areas
as diverse as VLSI design, molecular biology, and
robotics have been classified within the W-hierarchy
(see the Parameterized Complexity Home Page at
http://www-csc.uvic.ca/home/mhallett/
research.html).

Essentially, a W-hardness result for a
k-parameterized version of a problem P suggests that
the non-polynomial resource requirements of P are not
just a function of k. As a selected parameter may ac-
tually be composed of one or more input parameters,
such results can show which groups of input parame-
ters in a problem are responsible for non-polynomial
behavior. This gives parameterized analyses the fol-
lowing two advantages over regular CCT analyses:

1. The effect of assuming unbounded-size inputs is re-
duced by focusing on how various input parameters
contribute to the asymptotic behavior. This also
suggests, to a limited degree, how this behavior will
be affected by bounding these parameters to small
values.

2. Such analyses give a qualitative measure of the
contribution of an input parameter (and thus any
algorithmic mechanisms associated with that pa-
rameter) to the problem’s general complexity, e,g.,
the lower the parameterized complexity of the k-
parameterized version of a problem, the more that
problem’s general complexity depends on k.

The first advantage mitigates the effects of one of the
assumptions of CCT discussed in the previous section,;
the second allows CCT analyses to “dissect” the mech-
anisms underlying cognitive models and thus isolate

the sources of power in these models. Two examples
of such model “dissections” are given in the following
section.

A Parameterized Analysis of Two
Constraint-Based Models in Linguistics

Phonology is the area of linguistics which studies regu-
larities in the mapping between deep (mental/lexical)
and surface (spoken/phonetic) representations in nat-
ural language. Motivated in part by the intractabil-
ity inherent in the ordered content-sensitive transfor-
mation rules of classical generative grammar, several
recent proposals have replaced such rules with un-
ordered computationally trivial constraints that must
be satisfied by surface representations (see (Prince &
Smolensky 1993) and references). Unfortunately, even
though these constraints are simple, their interactions
can be a source of unforeseen computational difficul-
ties. In this section, parameterized analyses are used
to gauge the power of various mechanisms within two
such constraint-based theories, Optimality Theory and
Declarative Phonology.

In both theories, the input is a set of constraints
and a set of candidate surface representations, and the
goal is to find the subset of the given candidates that
best satisfies the given constraints. The theories dif-
fer in how candidates are evaluated relative to these
constraints:

1. In Declarative Phonology (DP) (Scobbie 1992), a
successful candidate must satisfy all constraints.

2. Optimality Theory (OT) (Prince & Smolensky

1993), in contrast to DP, assumes that there is a
fixed total order on the constraints from least to
most important. Constraints are evaluated one at
a time from most to least important under this or-
dering; at any point in this evaluation, only those
candidates that have the minimum number of viola-
tions for the current constraint are allowed to pro-
ceed to the next constraint for further evaluation.
A successful candidate is one that survives all such
constraint evaluations.

Note that at least one candidate will always be success-
ful under OT but that no candidates may be successful
under DP.

Following (Bird & Ellison 1994; Ellison 1994), the
versions of DP and OT examined here formalize both
the given set of candidate representations and each
given constraint as deterministic finite-state automata
(DFA) (see (Hopcroft & Ullman 1979) for definitions).
Each candidate representation DFA will be restricted
to accept (and hence generate) strings of a particu-
lar length. Furthermore, to investigate certain restric-
tions on the form of constraints, each constraint will
be represented by a contertual CDFA (CDFA) which
simultaneously judges acceptance or rejection of each
substring of length k£ in a given candidate string, for
some fixed constant k. Call this & the contezt-length

of that CDFA. In the case of DP, a candidate string z
satisfies (violates) a constraint C if each (any) k-length
substring of z is z is (not) accepted by the CDFA cor-
responding to C'; in the case of OT, the number of
unaccepted substrings is the number of constraint vio-
lations. This yields the following problems:

DECLARATIVE PHoNoOLOGY DERIVATION
(DP-DERIVE)

Instance: A candidate string DFA C and a set of con-
straint CDFA A.

Question: Is there a string z such that z is accepted
by C and z does not violate 4;, 1 < i < |A|?

OPTIMALITY THEORY DERIVATION (OT-DERIVE)
Instance: A candidate string DFA C'| a set of con-
straint CDFA A, a total ordering O on the members
of A, and a vector y € ZI4l.

Question: Is there a string z such that z is accepted
by C, z is a candidate selected by A under O, and z
violates constraint A; < y; times, 1 <17 < |A].

Consider now the following input parameters:

e The number of constraints (|A]);

e The length of the candidate strings (|z]);

e The size of the candidate string alphabet (]3]); and

e The maximum context-length of any constraint

CDFA (e).

Given a problem X with input parameter &, let the -
parameterized version of X be written as k-X, and the
version where k 1s fixed at constant value ¢ be k.-X.

Theorem 1 DP-DERIVE and OT-DERIVE are NP-
complete.

Theorem 2 |A|-|Z|;-DP-DERIVE and |A|-]|X]2-OT-
DERIVE are W/t]-hard for all t > 1.

Theorem 3 |z|-c-DP-DERIVE and |z|-c-OT-DERIVE
are W[2]-hard.

Theorem 4 |A|-|z|-c-DP-DERIVE and |A]-|z|-c-OT-
DERIVE are W[I]-hard.

Theorem 5 |z|-|X|-DP-DERIVE and
|z|-|X|-OT-DERIVE are in FPT.

Theorem 6 |X|3-DP-DERIVE and |X|2-OT-DERIVE
are W[P]-hard.

These results are summarized in Table 1. As |z| and
|X| together cause the lowest observed parameterized
complexity, the candidate string set generated by C'
(or, more correctly, the size of this set) is the major
source of computational power in the DP and OT mod-
els. These results have two interesting implications:

1. Contra (Bird & Ellison 1994; Ellison 1994; Tesar
1995), DP-DERIVE and OT-DERIVE are intractable
when the candidate string set is restricted to being
a regular language generated by some DFA.

by
Selected Unbounded Se|lec|ted Fixed
Parameter(s) Value Parameter | Constant
- - W[P]-hard | W[P]-hard
[A] W]t]-hard | W[t]-hard | W[t]-hard
E W2 -hard FPT FPT
c W][2]-hard ? ?
[A][] W]1]-hard FPT FPT
[Al,c W{1]-hard ? ?
|z],c W|2]-hard FPT FPT
[A],]z],c W][1]-hard FPT FPT
Table 1: The Parameterized Complexity of DP-

DERIVE and OT-DERIVE.

2. Contra the intuition of Tesar (Tesar 1995), who gives
a low-order polynomial algorithm for OT-DERIVE
when ¢ = 3, there is no polynomial-time algorithm
for OT-DERIVE when ¢ is not a constant. This
makes unlikely the efficient accommodation within
OT of proposed constraints that require unbounded-
size contexts, e.g., generalized alignment.

Future research into these models should look at fur-
ther restrictions on the candidate string set and the
form of constraints. The latter should initially fo-
cus on such aspects of constraint CDFA as the max-
imum number of states or transitions; however, dif-
ferent formalisms for expressing constraints, e.g., first
order logic, should also be examined.

Conclusion

This paper has discussed why computational complex-
ity 1s a valid measure of model power, and sketched
how the techniques of computational complexity the-
ory can be used to guide the process of model re-
finement. The theory of parameterized computational
complexity has also been presented as an alternative
that mitigates some of the problems encountered when
using currently-available flavors of CCT in the analy-
sis of cognitive systems. This presentation has been il-
lustrated by parameterized analyses of two constraint-
based models from linguistics.

Though parameterized complexity is more appro-
priate for analyzing cognitive systems than previous
complexity-theoretic techniques, it still stops short
of what will ultimately be required. To handle the
bounded inputs and computational abilities of natural
neural hardware, CCT needs to both consider more
realistic neural models and divest itself of many of
its assumptions of machine and numerical invariance,
cf. (Barton, Berwick, & Ristad 1987, pages 35-37).
Two lines of research seem promising: (1) new theo-
ries of parameterized computational complexity based
on parallel machines (Cesati & Tanni 1995), and, more
provocatively, (2) new theories of computational com-

plexity that eliminate O-notation and deal explicitly
with fixed amounts of computational resources (Cai et
al. 1993; Downey & Fellows 1994).

The ongoing nature of this research highlights what
is perhaps the most message in this paper — that com-
putational complexity theory is not a finished piece
of business, but rather an active area of mathematics
that can and does evolve in response to the needs of
researchers in both the computing and cognitive sci-
ences.

Acknowledgements

I would like to thank Carl de Marcken, Patricia Evans,
Michael Fellows, Michael Hallett, Alexis Manaster
Ramer, Eric Ristad, John Tsotsos, and Leslie Valiant
for various manuscripts, helpful conversations, and
comments on earlier versions of the work reported here.

References

Barton, G. E.; Berwick, R. C.; and Ristad, E. S.
1987. Computational Complexity and Natural Lan-
guage. Cambridge, MA: MIT Press.

Berwick, R. C., and Weinberg, A. S. 1984. The Gram-
matical Basis of Linguistic Performance: Language
Use and Acquisition. Cambridge, MA: MIT Press.

Bird, S., and Ellison, T. M. 1994. One-level phonol-
ogy: Autosegmental representations and rules as fi-
nite automata. Computational Linguistics 20(1):55—

90.

Cai, L.; Chen, J.; Downey, R. G.; and Fellows, M. R.
1993. Advice classes of parameterized tractability.
Manuscript.

Cesati, M., and Tanni, M. D. 1995. Parallel parame-
terized complexity. Manuscript.

Downey, R. G., and Fellows, M. R. 1994. O NO!
A curious document concerning the philosophy of pa-
rameterized complexity. Manuscript.

Downey, R. G., and Fellows, M. R. 1995a. Fixed-
parameter tractability and completeness 1. Basic re-
sults. STAM Journal on Computing 24(4):873-921.

Downey, R. G., and Fellows, M. R. 1995b. Fixed-
parameter tractability and completeness II. On com-
pleteness for WJl]. Theoretical Computer Science
141:109-131.

Downey, R. G.; Fellows, M. R.; Kapron, B. M.; Hal-
lett, M. T.; and Wareham, H. T. 1994. Parameterized
complexity of some problems in logic and linguistics
(extended abstract). In Nerode, A., and Matiyase-
vich, Y. V., eds., Logical Foundations of Computer
Science, Lecture Notes in Computer Science no. 813,
89-101. Berlin: Springer-Verlag.

Ellison, T. M. 1994. Phonological derivation in opti-
mality theory. In COLING’94, 1007-1013.

Garey, M. R., and Johnson, D. S. 1979. Computers
and Intractability: A Guide to the Theory of NP-

Completeness. San Francisco: W.H. Freeman and
Company.
Hopcroft, J. E., and Ullman, J. D. 1979. Introduction

to Automata Theory, Languages, and Computation.
Reading, MA: Addison-Wesley Publishing Company.
Johnson, D. S. 1990. A catalog of complexity classes.
In van Leeuwen, J., ed., The Handbook of Theoretical
Computer Science. Volume A: Algorithms and Com-

plexity, 69-161. Cambridge, MA: MIT Press.

Maass, W. 1994. Lower bounds on the computational
power of networks of spiking neurons. Technical re-
port TR94-019, The Electronic Colloquium on Com-
putational Complexity.

Papadimitriou, C. H. 1994. Computational Complez-
ity. Reading, MA: Addison-Wesley Publishing Com-
pany.

Parberry, 1. 1994. Circuit Complexity and Neural
Networks. Cambridge, MA: MIT Press.

Prince, A., and Smolensky, P. 1993. Optimality the-
ory: Constraint interaction in generative grammar.
Technical Report RuCCS TR-2, Rutgers University
Center for Cognitive Science.

Ramer, A. M. 1995. Review of Ristad, The
Language C'omplezity Game. Computational Linguis-
tics 21(1):124-131.

Ristad, E. S. 1993. The Language Complexity Game.
Cambridge, MA: MIT Press.

Rounds, W. 1991. The relevance of computational
complexity theory to natural language processing. In
Sells, P.; Shieber, S.; and Wasow, T., eds., Founda-
tional Issues in Natural Language Processing, 9-29.

Cambridge, MA: MIT Press.

Scobbie, J. M. 1992. Towards declarative phonology.
In Bird, S., ed., Declarative Perspectives in Phonol-
ogy, Edinburgh Working Papers in Cognitive Science,
Volume No. 7, 1-27. University of Edinburgh.
Siegelmann, H. T., and Sontag, E. D. 1995. On the
computational power of neural nets. Journal of Com-
puter and System Sciences 50:132-150.

Tesar, B. B. 1995. Computational Optimality The-
ory. Ph.D. Dissertation, Department of Computer
Science, University of Colorado.

Tsotsos, J. K. 1990. Analyzing vision at the complex-
ity level. Behavioral and Brain Science 13:423-469.
Tsotsos, J. K. 1993. The role of computational com-
plexity in perceptual theory. In Masin, S. C., ed.,
Foundations of Perceptual Theory, 261-296. Amster-
dam: North-Holland.

Valiant, L. G. 1994. Curcuits of the Mind. Oxford

University Press.

