
Ignorance is Bliss: A Complexity Perspective on
Adapting Reactive Architectures

Todd Wareham
Department of Computer Science

Memorial University of Newfoundland
St. John’s, NL Canada A1B 3X5

Email: harold@mun.ca

Johan Kwisthout
Institute for Computing and

Information Sciences,
Radboud University

Nijmegen, the Netherlands
Email: j.kwisthout@science.ru.nl

Pim Haselager and Iris van Rooij
Donders Institute for

Brain Cognition and Behaviour,
Radboud University

Nijmegen, the Netherlands
Email: w.haselager@donders.ru.nl,

i.vanrooij@donders.ru.nl

Abstract—We study the computational complexity of adapting
a reactive architecture to meet task constraints. This compu-
tational problem has application in a wide variety of fields,
including cognitive robotics, evolutionary robotics and cognitive
neuroscience. We present a proof that—even for a rather simple
world and a simple task—adapting a reactive architecture to
perform a given task in the given world is NP -hard. The result
implies that adapting reactive architectures is computationally
intractable regardless the nature of the adaptation process (e.g.,
engineering, development, evolution, learning, etc.) unless very
special conditions apply. In order to find such special conditions
for tractability, we have performed parameterized complexity
analyses. One of our main findings is that architectures with
limited sensory and perceptual abilities are efficiently adaptable.

I. INTRODUCTION

A popular class of control architectures in behavior-based
robotics are the hybrid deliberative/reactive architectures.
These architectures combine the flexibility of a high-level
deliberative system incorporating planning, world-knowledge,
and memory with the speed and robustness of a low-level
reactive system [1], [2]. A key issue for such architectures is
linking of these two components. One approach to this is for
the deliberative component to adapt the reactive component
in response to changing conditions, either by reconfiguring
the interactions of existing reactive behaviors or augmenting
existing behaviors with newly-designed ones [1, p. 214].

There are a number of robotic implementations which show
that reactive adaptation is possible, e.g., Autonomous Robot
Architecture (AuRA) (see [1, Section 6.6.1] and references),
Planner-Reactor [3], SSS [4]. These implementations show
that one can efficiently adapt reactive architectures to meet
certain task constraints in certain situations. An open question
is to what extent such implementations can generalize to, and
scale for, other types of tasks and situations.

Computational complexity theory provides techniques for
addressing this question, and some preliminary results are
known. For instance, Selman [5] found that devising a reactive
plan for solving a given planning task is NP -hard (see also
[6]), and Dunne, Laurence, and Wooldridge [7] proved that
designing reactive agents that can perform a given achievement
or maintenance task is NP -hard (see also [8], [9], [10]). Yet,

the formalisms adopted by these researchers to model the
reactive architectures and their life worlds were of such a
high degree of generality that the intractability results may be
due more to the formalisms used than the complexity inherent
in adaptation. As our interest here is primarily in the latter,
we study specifically the complexity of adapting subsumption
reactive architectures [11] relative to simple static worlds.

Using techniques from classical complexity theory [12],
we show that adapting a subsumption-based reactive archi-
tecture so that it can navigate a given world is NP -hard.
This holds true, regardless whether the adaptation occurs by
reconfiguring reactive-behavior layers in the architecture or by
designing reactive-behavior layers anew and adding them to
the architecture. These results indicate that adapting reactive
architectures is computationally intractable unless very special
conditions apply. This raises the question of which conditions
characterize those situations in which adapting reactive ar-
chitectures is tractable. An answer to this question may be
relevant for various approaches to robotics. For instance, it can
inform roboticists about the conditions that make adaptation of
reactive architectures—e.g., as done by deliberative modules
in hybrid architectures or by an evolutionary algorithm for
adapting a reactive robot to a task environment—feasible.
Moreover, it is of interest to cognitive neuroscience as it
can inspire hypotheses about evolutionary or developmental
explanations of animal and human brain structure.

In order to find conditions for tractability, we performed
parameterized complexity analyses [13] of the problem of
adapting reactive architectures. Our analyses reveal that re-
strictions on either the internal structure of the architecture
or the perceptual complexity of its sensory inputs render
adaptation tractable. Though these results are derived in the
context of a specific navigation task, we will show that they
apply to any task for which a given candidate architecture can
be verified efficiently in a given world.

The remainder of this paper is organized as follows. In
Section II, we formalize reactive adaptation in terms of a
simplified subsumption architecture for a basic navigation task,
distinguishing between two forms of adaptation: reconfigu-
ration and design. Section III gives proofs of the general
intractability of both of these problems. Section IV describes a

methodology for identifying conditions for tractability, which
is then applied in Section V to identify such conditions for
the reconfiguration and design variants of adapting reactive
architectures. Finally, our conclusions and directions for future
work are given in Section VI.

II. FORMALIZING REACTIVE ADAPTATION

A. Adaptation for a Task

An adaptation mechanism for a particular robot architecture
A that will enable A to perform some task T relative to a
world W can be construed as a mechanism that adapts A in
some limited fashion so that it can perform T in W . The
computation performed by this mechanism is modeled by the
following informal computational problem:

T -ADAPTATION BY M (TA-M)
Input: World W , an architecture that can only partially perform
task T in W , and an integer d.
Output: An architecture A′ derived from A by at most d
modifications of type M that can fully perform T in W , if
such an A′ exists, and special symbol ⊥ otherwise.

Analyses of the computational complexity of this problem can
show both (1) whether any adaptation mechanisms suffices,
i.e., can operate in a reasonable amount of time and space,
relative to the particular choices of world, architecture, task,
and architecture-modifications, and if not, (2) under which
combinations of restrictions on these choices such adaptation
might be possible.

B. Adaptation for Basic Navigation

In this section, we will consider a particular formalization
of problem TA-M relative to the task of basic navigation for
a simplified subsumption-based reactive architecture.

Our worlds of interest will be finite square-based maps
in which compass movement is possible between adjacent
squares, i.e., north, south, east, and west, and each square is
either a freespace (which a robot can occupy or travel through)
or an obstacle. Each square has an associated type that is
recognizable by the sensors on the robot; let this set of types
be denoted by |E| and the number of such types by E.

Within such a world, the navigation task will be to, starting
from an arbitrary initial freespace, move to eventually occupy
another arbitrary final freespace denoted by a specially-marked
square-type. A robot that can do this relative to any two initial
and final freespaces in W is said to be fully navigable for
W ; otherwise, the robot is partially navigable for W . Note
there will be no optimality restrictions on the paths eventually
navigated, e.g., the path travelled need not be the shortest
possible between the initial and final freespaces.

Our robot will be a simplified subsumption-based reactive
architecture consisting of sensors, a set of layers, a total
ordering on these layers, and a set of subsumption connections
between layers. The sensors can see outwards in a radius r
around the robot in every direction up to the closest obstacle
in that direction, and can only verify, for each square-type
e ∈ E, the presence of e within that perceptual radius, i.e.,

exists(e). Each layer will consists of a single trigger-condition
that is a Boolean formula of length f over the available
sensory exists-predicates and an action a ∈ {N, S, E, W}.
If a layer’s formula evaluates to True, the layer produces
output a; otherwise, it produces the special output null. Given
a set of layers L, we will assume that the formula in each
layer contains at least one exists-predicate and no two layers
encode formulas that both compute the same Boolean function
and produce the same output. Relative to the total order on
the layers, a layer i can have subsumption-links to any layer
j that is lower than i in the ordering; between any two layers,
there can exist an output-inhibition or output-override link (but
not both). The output of any layer that subsumes at least one
lower-level layer is not available directly for output; otherwise,
that layer’s output is available. The output of a set of ordered
layers with subsumption links will be that of the highest layer
relative to the order that is both available and non-null.

Relative to such a reactive architecture, we will consider
two types of architecture modifications for adaptation:

1) Adding a selection of layers from a specified layer-
library, along with some number of subsumption-link
additions and deletions; and

2) Adding a selection of possible layers, along with some
number of subsumption-link additions and deletions.

These modifications correspond to those considered in [1],
[3], [4]. In combination with the above, these modes of
modification yield the following formalizations of problem
TA-M relative to the navigation task and subsumption-based
reactive architectures:

NAVIGATION ADAPTATION BY RECONFIGURATION
Input: A world W , a subsumption architecture A that is only
partially navigable for W , a library M of layers, and integers
s and l.
Output: A subsumption architecture A′ derived from A by
the addition of at most l layers from M and the addition or
deletion of at most s subsumption-links that is fully navigable
for W , if such an A′ exists, and special symbol ⊥ otherwise.

NAVIGATION ADAPTATION BY DESIGN
Input: A world W , a subsumption architecture A that is only
partially navigable for W , and integers s and l.
Output: A subsumption architecture A′ derived from A by the
addition of at most l layers and the addition or deletion of
at most s subsumption-links that is fully navigable for W , if
such an A′ exists, and special symbol ⊥ otherwise.

These problems will be denoted below by NA-REC and NA-
DES, respectively. Note that layers may be added in any order
relative to the layers in A in both problems, and that all layers
have trigger-formulas of length ≤ f .

III. REACTIVE ADAPTATION IS INTRACTABLE

In this section, we address whether or not reactive adaption
for the navigation task can be done efficiently relative to the
subsumption architecture and architecture modifications de-
scribed in Section II. Following general practice in Computer

Science, we define efficient solvability as being solvable in
the worst case in time polynomially bounded in the input size,
and show that a problem is not polynomial-time solvable by
proving it to be at least as difficult as the hardest problem in
problem-class NP , i.e., NP -hard (see [12], [14] for details).
Our proofs will involve polynomial-time reductions from the
following well-known NP -hard problem:

DOMINATING SET
Input: A graph G = (V,A) and an integer k.
Question: Is there a dominating set in G of size at most k,
i.e., is there a subset V ′ ⊆ V , |V ′| ≤ k, such that for each
v ∈ V , either v ∈ V ′ or ∃(v, v′) ∈ E such that v′ ∈ V ′?

Theorem 1: NA-REC is NP -hard
Proof: Given an instance I = 〈G, k〉 of DOMINATING

SET, construct the following instance I ′ = 〈W, A, M, s, l〉 of
NA-REC: Let E = {U, D, L, A,B, %, V1, V2, . . . V|V |,−, F},
with F being freespace and all other squares being obstacles.
World W is a ring-shaped track of freespaces surrounded
by obstacles on both the inner and outer sides of the track.
This track can be divided into north, east, south, and west
regions, and each region has inner and outer sides. The track
is specified as follows:
• the east region consists of D-squares on both sides.
• the south region consists of L-squares on both sides.
• the west region consists of U -squares on both sides.
• The north region has an initial pair of A-squares on the

left and a final pair of B-squares on the right. In between
are |V | blocks of length |V | if |V | is odd and |V | + 1
otherwise apiece separated by pairs of A-squares. Given
an arbitrary order on the vertices in V , square i in the
top side of each block corresponds to vertex i under the
ordering; when |V | is even, the vertices in V are split
into two even-length sub-blocks with a middle spacer-
square. Block i, 1 ≤ i ≤ |V |, corresponds to a particular
vertex vi ∈ V , and encodes the vertices adjacent to vi

(including vi itself) on the top side of the block (with
vertex-positions not in the neighbourhood (or the middle
spacer-square, if |V | is even) marked with −-squares) and
all %-squares on the bottom side of the block.

A graph G and its associated world are shown in Fig.1. Note
that regions are modified at corners of the track to ensure that
an architecture can change direction at the corners under the
layer-ordering and visibility constraints below. Architecture A
has perception-radius r = b|V |/2c and consists of |V | + 6
layers, such that the layers in descending order are:
• A layer that issues a E action if an A-square is detected;
• A layer that issues a N action if a %-square is detected;
• |V | layers, one for each vertex v ∈ V , that issue E actions

if the square corresponding to v is detected;
• A layer that issues a N action if a U -square is detected;
• A layer that issues a W action if a L-square is detected;
• A layer that issues a S action if a D-square is detected;

and
• A layer that issues a E action if a B-square is detected.

The subsumption links are output-inhibition links from the
topmost layer to each of the vertex layers. Such an architecture
for an example graph G and associated world W is shown in
part (c) of Fig.1. Finally, let M = ∅, s = k, and l = 0. Observe
that this construction can be done in time polynomial in the
size of the given instance I of DOMINATING SET.

The following observations will be useful:

1) Both A and any A′ created by subsumption-link modi-
fication can only move in a clockwise fashion in W .

2) A can move past any freespace in W except the middle
freespace in each vertex block. This is so because in each
such middle freespace, neither of the A or B-squares
surrounding the vertex-block which would allow A to
move forward can be sensed (as r = b|V |/2c).

3) The only way any A′ created from A by subsumption-
link modification can progress past the middle freespace
in a vertex block is to remove the inhibition links from
the topmost layer to one or more of the vertex layers
in A corresponding to a vertex-square that is present in
that block (which could be sensed under the given r).

The above implies that to make any A′ derived from A by
subsumption-link modification fully navigable for W , those
link modifications must enable A′ to progress past the middle
freespace of each vertex-block in W .

To prove that this construction is a reduction, we must show
that the answer to the given instance of DOMINATING SET
is “Yes” if and only if the constructed instance of NA-REC
has an associated A′ that is fully navigable for W . Let us
consider the two implications separately. If the answer to the
given instance of DOMINATING SET is “Yes”, then there is a
dominating set V ′ such that V ′ ≤ k. Construct A′ from A by
deleting the subsumption links from the topmost layer to all
|V ′| ≤ k = s vertex layers corresponding to vertices in V ′.
These layers will now be active whenever they detect squares
corresponding to vertices in V ′ in the vertex blocks in W ,
which, by the observations above, will allow A′ to navigate
between any two freespaces in W . Conversely, if there is an
A′ that is fully navigable for W , A′ was constructed from A
by removing at most s subsumption links from A; let V ′ be
the set of vertices in G corresponding to the now-active vertex
layers in A′. By the construction of W , each vertex v ∈ V is
either in V ′ or is adjacent to a vertex in V ′, implying that V ′

is a dominating set of size at most s = k in G.

Theorem 2: NA-DES is NP -hard
Proof (sketch): Follows by a slight variant of the reduc-

tion in Theorem 1 which deletes M and explicitly sets f = 1.
The proof of correctness of this reduction is identical to that
for Theorem 1.

Modulo the conjecture P 6= NP which is widely accepted to
be true [14], the above shows that neither NA-REC nor NA-
DES are polynomial-time solvable. Moreover, as |M | = l = 0
in both proofs, this holds even if no new layers are added to
the architecture, i.e., the only allowable modifications are to
the subsumption-links between existing layers.

(a) (c)

1 4 e(A)? -> E ------>
|\ | e(%)? -> N--++++
| \ | ||||
| \| e(1)? -> E -i---->
2---3 |||

e(2)? -> E --i--->
(b) ||

e(3)? -> E -i-i-->
UUUA12-3-A12-3-A12-34A--34BBBB |
U............................B e(4)? -> E ----i->
U.UA%%%%%A%%%%%A%%%%%A%%%%BB.B e(U)? -> N ------>
U.U D.D e(L)? -> W ------>
L.LLLLLLLLLLLLLLLLLLLLLLLLLD.D e(D)? -> S ------>
L............................D e(B)? -> E ------>
LLLLLLLLLLLLLLLLLLLLLLLLLLDDDD

Fig. 1. Illustration of reduction from DOMINATING SET to NA-REC given in Theorem 1. a) Sample graph G. b) World W constructed from G. c)
Subsumption architecture A associated with G and W . For clarity, freespace squares are denoted by a period instead of F in (b).

IV. A METHOD FOR IDENTIFYING TRACTABILITY
CONDITIONS

A computational problem that is intractable for unrestricted
inputs may yet be tractable for non-trivial restrictions on the
input. This insight is based on the observation that some
NP -hard problems can be solved by algorithms whose run-
ning time is polynomial in the overall input size and non-
polynomial only in some aspects of the input called param-
eters. In other words, the main part of the input contributes
to the overall complexity in a “good” way, whereas only the
parameters contribute to the overall complexity in a “bad” way.
In such cases, the problem Π is said to be fixed-parameter
tractable for that respective set of parameters. The following
definition states this idea more formally.

Definition 1: Let Π be a problem with parameters k1, k2,
. . .. Then Π is said to be fixed-parameter tractable for
parameter-set K = {k1, k2, ...} if there exists at least one
algorithm that solves Π for any input of size n in time
f(k1, k2, ...)nc, where f(·) is an arbitrary computable function
and c is a constant. If no such algorithm exists then Π is said
to be fixed-parameter intractable for parameter-set K.

In other words, a problem Π is fp-tractable for a parameter-
set K if all superpolynomial-time complexity inherent in
computing the function can be confined to the parameters
in K. In this sense the “unbounded” nature of parameters
in K can be seen as a reason for the intractability of the
unconstrained version of Π.

There are many techniques for designing fp-tractable algo-
rithms [15], [16], and fp-intractability is established in a man-
ner analogous to classical polynomial-time intractability using
parameterized reductions (in which parameters are functions
of each other) to show that a parameterized problem is at least

as hard as the hardest problems in one of the problem-classes
in the W -hierarchy {W [1], W [2], ...} (see [13] for details).

Observe that it follows from the definition of fp-tractability
that if an intractable problem Π is fp-tractable for parameter-
set K, then Π can be efficiently solved even for large inputs,
provided only that all the parameters in K are relatively small.
This strategy for rendering (otherwise intractable) problem
tractable has been successfully applied in a variety of areas
(see [13], [17] and references). In the next section we report on
our investigation of whether or not the same strategy may be
used to render the problems NA-REC and NA-DES tractable.

V. WHAT MAKES REACTIVE ADAPTATION TRACTABLE?

There are a number of parameters in our conception of
reactive adaptation that are both plausibly of small value in
practice and whose restriction might hence render reactive
adaptation tractable. Table I lists the parameters considered
here, which can be broken into three groups:

1) Restrictions on the (perceived) world (|E|);
2) Restrictions on subsumption architectures (|L|, f); and
3) Restrictions on architecture-modification (s, |M |, l).

In the remainder of this section, we will assess the fp-
tractability of NA-REC (Section V-A) and NA-DES (Section
V-B) relative to these parameters, note how these results
apply in more general settings (Section V-C), and discuss the
implications of these results (Section V-D).

A. Results for Adaptation by Reconfiguration

Corollary 1: NA-REC is fp-intractable for parameter-set
{s, f, l, |M |}.

Proof: Follows from the W [2]-hardness of DOMINATING
SET for parameter-set {k} and the reduction in Theorem 1, in
which s = k, f = 1, and |M | = l = 0.

TABLE I
PARAMETERS CONSIDERED IN ANALYSES OF NA-REC AND NA-DES.

Param. Definition Appl.
|E| Number of distinguishable square-types in world All
|L| Number of layers in derived architecture A′ All
f Maximum length of layer trigger-formula All
s Maximum number of subsumption-link changes All
l Number of layers added to A All

|M | Number of layers in provided library NA-REC

Theorem 3: NA-REC is fp-intractable for parameter-set
{s, f, l, |L|}.

Proof (sketch): Modify the reduction in Theorem 1 to let
W be such that the bottom-side squares in the vertex blocks
are now the same as the top-side squares, i.e., eliminate the
%-squares, A consist of the lowest five layers and the topmost
layer of the original A, M consist of the vertex-layers from
the original A, s = 0, and l = k. The result then follows
from the W [2]-hardness of DOMINATING SET for parameter-
set {k} and the reduction above from DOMINATING SET to
NA-REC in which s = 0, f = 1, l = k, and |L| ≤ k + 6.

Lemma 1: Given an architecture A, a world W , and initial
and final positions s and d with W , whether or not A can
navigate from s to d can be computed in O(|W ||A|) time.

Proof: The action computed by A at a position p in W
can be determined in O(|A|) time. Observe that the behavior
of A at p is fixed, in that regardless of whether p has been
encountered once or more by A, the same action is generated.
Hence, when started at s, if A doubles back on any previously-
entered square, A can never encounter d. As A can travel to
at most |W | − 2 different squares before entering d. it can be
determined in |W | moves whether A can reach d from s.

Theorem 4: NA-REC is fp-tractable for parameter-set
{|L|, |M |}.

Proof (sketch): The number of subsumption link-
configurations of A is a function of |L|, i.e., 3|L|(|L|−1)/2.
As s ≤ |L| and l ≤ |M |, the number of possible A′ that
can be generated from A is a function of |L| and |M |. To
complete the proof, observe that each such configuration A′

of A can be evaluated wrt W in polynomial time (as there
are |W |(|W | − 1)/2 source-destination pairs in W and the
reachability for each pair can be determined in O(|A||W |)
time by Lemma 1) and checked to see if A and A′ differ by
at most s subsumption-links in O(max(|A|, |A′|)) time.

Theorem 5: NA-REC is fp-tractable for parameter-set
{|E|}.

Proof (sketch): Both |L| and |M | are bounded by
the number of possible Boolean functions over |E| times
the number of possible actions a layer may generate, i.e.,
|L| ≤ 22|E| × 4. Substituting this |E|-expression for each
occurrence of |L| and |M | in the runtime of the algorithm
described in Theorem 4 gives an algorithm for NA-REC that
is fp-tractable for {|E|}.

B. Results for Adaptation by Design

Corollary 2: NA-DES is fp-intractable for parameter-set
{s, f, l, |L|}.

Proof (sketch): Modify the reduction in Theorem 3 to
eliminate M and explicitly set f = 1. The result then follows
from the W [2]-hardness of DOMINATING SET for parameter-
set {k} and the reduction above from DOMINATING SET to
NA-DES in which s = 0, f = 1, l = 0, and |L| ≤ k + 6.

Theorem 6: NA-DES is fp-tractable for parameter-set
{|E|, f}.

Proof (sketch): Consider the following algorithm: By
comparison against all possible values of the exists-predicates
for E, possible layers over E that are not already part of A can
be isolated; call this set of layers P . This set P can be further
reduced to those layers that have trigger-condition formulas
of length at most f over E; call this set P ′. Evaluate all A′

created by adding at most l layers from P ′ to and modifying at
most s subsumption-links of A to see if any are fully navigable
for W and output accordingly. To complete the proof, note that
the non-polynomial quantities in the runtime of this algorithm
(i.e., the number of possible layers over E (22|E| × 4), the
number of possible values of the exists-predicates for E
(2|E|), the number of trigger-condition formulas of length at
most f (≤ f × |E|f)) are all functions of |E| and f .

C. Generality of Results

As all fp-tractability results presented above require only
that a candidate architecture be verifiable for a task relative to
a given world in time polynomial in the size of that architecture
and world (Lemma 1), these results hold relative to reactive
adaptation for any such polynomial-time verifiable task. If
in addition tasks in a given world are encoded as logical
specifications and included in the input (as in [18]) and the
basic navigation task and worlds used in our proofs can be
encoded succinctly under the logics used, all NP -hardness
and fp-intractability results hold as well.

D. Discussion

We have found that adapting reactive architectures, whether
by recruiting pre-existing layers or by designing layers anew,
is NP -hard (Theorems 1 and 2). This NP -hardness holds
even for a basic navigation task in a simple 2D static world.
Moreover, adapting reactive architectures remains NP -hard
even if the adaptation is restricted to rewiring the given
subsumption architecture, i.e., without adding any new layers
to it. These intractability results underscore the computational
difficulty of adapting reactive architecture, be it by a human
designer, a deliberative component in a hybrid robot, or by
evolution, development or learning in a (human) brain.

To our knowledge, no explicit conjectures about the sources
of computational difficulty in reactive adaptation have been
made in the literature, but on the basis of successful reactive
system design done by humans (consisting of small (≤ 10)
numbers of layers developed in an incremental add-and-test

manner ([19], [20]; see also [1, pp. 74–77])), it seems reason-
able to conjecture that restrictions on the subsumption archi-
tectures (|L|, f) and degree of allowed modification (s, l, |M |)
should render reactive adaptation tractable. However, it does
not (Theorem 3 and Corollaries 1 and 2). What does result in
tractability is when the total number of layers that can be used
to configure a reactive architecture is small (i.e., both |L| and
|M | are small) (Theorem 4). Though useful to know, we can
imagine this condition may be of limited interest or applica-
bility for roboticists, as such reactive architectures will—by
definition—have quite restricted behavioral repertoires.

Of greater interest, perhaps, is the second class of conditions
for tractability that we have identified; viz., restrictions pertain-
ing to the sensory and perceptual abilities of the architectures.
For instance, we found that reconfiguring a reactive architec-
ture to perform a task can be done efficiently provided only
that the sensory sensitivity of the architecture (i.e., the number
of environmental features it can distinguish, |E|) is not too
large (Theorem 5). In the more general case, where also newly
designed layers can be added to the architecture, a simulta-
neous restriction of this sensory complexity and perceptual
complexity—in the sense of the ability of layers to encode
patterns in detected features (|E|, f)—renders adaptation of a
reactive architecture tractable (Theorem 6).

Of course, these tractability results are modulo the assump-
tion that for the task, world and architecture under considera-
tion there exists a reactive architecture that can be constructed
through adaptation and perform the task in the given world.
One possible reading of our finding, then, is that adapting
reactive control is feasible in environments that are struc-
tured such that the features and patterns that are relevant for
successful behavior can be succinctly represented by a small
set features and percepts of low complexity (cf. what [21]
called “being ignorantly successful”). Although it is plausible
that low perceptual complexity may characterized perception
for humans [22], [23], probably only simpler organisms are
characterized by low sensory sensitivity. It is expected then
that if such simple organisms—or more generally, agents—
enter an environment to which they can in principle adapt that
they can do so quickly. Quick adaptation of more sensory-
complex agents may still be possible, e.g., by exploiting
restriction on the classes of sensory information that can be
detected (cf. the sensory modalities) or by exploiting a limited
sensory radius (r), but if and how this could be done is an open
question for future research.

VI. CONCLUSIONS

We have presented two formal characterizations of the prob-
lem of adapting a reactive architecture, one for reconfiguring
such an architecture and one for designing parts of it anew.
Our complexity analyses reveal that, while these problems are
computationally intractable in general, there are conditions that
render them tractable. Knowledge of these conditions can be
exploited both in robotics design and in cognitive neuroscience
to understand which properties a reactive architecture needs to
have to be efficiently adaptable.

Our results were derived for simple static worlds. In future
research we will explore the extent to which they also hold
for more complex and dynamic worlds. Also, future research
will aim to identify more conditions for tractability by explor-
ing alternative ways to characterize an agent’s sensory and
perceptual complexity.

REFERENCES

[1] R. C. Arkin, Behavior-Based Robotics. Cambridge, MA: The MIT
Press, 1998.

[2] H. Hexmoor and D. Kortenkamp, “Issues on building software for
hardware agents,” Knowledge Engineering Review, vol. 10, no. 3, pp.
301–304, 1995.

[3] D. Lyons and A. Hendricks, “Planning as incremental adaptation of a
reactive system,” Robotics and Autonomous Systems, vol. 14, no. 4, pp.
255–288, 1995.

[4] J. Connell, “SSS: A hybrid architecture applied to robot navigation,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, Nice, France, 1992, pp. 2719–2724.

[5] B. Selman, “Near-optimal plans, tractability, and reactivity,” in Proceed-
ings of the Fourth International Conference on Knowledge Representa-
tion and Reasoning (KR’94), Bonn, Germany, 1994, pp. 521–529.

[6] P. Jonsson, P. Haslum, and C. Bäckström, “Towards efficient universal
planning: A randomized approach,” Artificial Intelligence, vol. 117, pp.
1–29, 2000.

[7] P. E. Dunne, M. Laurence, and M. Wooldridge, “Complexity results for
agent design,” Annals of Mathematics, Computing & Teleinformatics,
vol. 1, no. 1, pp. 19–36, 2003.

[8] M. Wooldridge, “The computational complexity of agent design prob-
lems,” in Proceedings of the Fourth International Conference on Multi-
Agent Systems (ICMAS-2000), Boston, MA, 2000, pp. 341–348.

[9] I. A. Stewart, “The complexity of achievement and maintenance prob-
lems in agent-based systems,” Artificial Intelligence, vol. 146, pp. 175–
191, 2003.

[10] M. Wooldridge and P. E. Dunne, “The complexity of agent design
problems; determinism and history dependence,” Annals of Mathematics
and Artificial Intelligence, vol. 45, pp. 343–371, 2005.

[11] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. RA-2, no. 1, pp. 14–23,
1986.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP -Completeness. San Francisco, CA: W.H. Freeman,
1979.

[13] R. Downey and M. Fellows, Parameterized Complexity. Berlin:
Springer, 1999.

[14] L. Fortnow, “The Status of the P Versus NP Problem,” Communications
of the ACM, vol. 52, no. 9, pp. 78–86, 2009.

[15] R. Niedermeier, Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006.

[16] C. Sloper and J. A. Telle, “An overview of techniques for designing
parameterized algorithms,” Computer Journal, vol. 51, no. 1, pp. 122–
136, 2008.

[17] M. Cesati. (2006) Compendium of Parameterized Prob-
lems. [Online]. Available: http://bravo.ce.uniroma2.it/home/cesati/
research/compendium/

[18] A. Pnueli and P. Rosner, “On the synthesis of a reactive module,” in
Proceedings of the Sixteenth ACM Symposium on the Principles of
Programming Languages (POPL), 1989, pp. 179–190.

[19] R. A. Brooks, “A robot that walks: Emergent behavior from a carefully
evolved network,” Neural Computation, vol. 1, no. 2, pp. 253–262, 1989.

[20] ——, “Intelligence without representation,” Artificial Intelligence Re-
view, vol. 47, pp. 139–160, 1991.

[21] W. Haselager, J. van Dijk, and I. van Rooij, “A lazy brain? Embodied
embedded cognition and cognitive neuroscience,” in Handbook of Cog-
nitive Science: An Embodied Approach, P. Calvo and T. Gomila, Eds.
Elsevier, 2008, pp. 273–290.

[22] K. Koffka, Principles of Gestalt Psychology. New York: Harcourt
Brace, 1935.

[23] P. van der Helm, “Dynamics of Gestalt psychology (Invited review of
perceptual dynamics: theoretical foundations and philosophical implica-
tions of gestalt psychology by F. Sundqvist),” Philosophical Psychology,
vol. 19, no. 1, pp. 274–279, 2006.

