
Computer Science 690A, Fall 2017

Assignment #1, Question #1

Name: XXXXXXXXXXXXXXXXXXXXX

MUN #: XXXXXXXXXXXXXXXXXXX

All this is fact. Fact explains nothing. On the contrary, it is
fact that requires explanation.

Marilynne Robinson, Housekeeping

1 Background

1.1 Parameterized Complexity Analysis

We can now talk about algorithm efficiency. Typical computational resources
of interest are time and space, which correspond to the number of instruc-
tions executed or the amount of memory used by the algorithm when it is
implemented on some standard type of computer, e.g., a deterministic Turing
machine (for detailed descriptions of the various kinds of Turing machines,
see [2, 3, 4]). For some resource R and problem Π, let RA : DΠ 7→ N be be
the function that gives the amount of resource R that is used by algorithm
A to solve a given instance of Π. The resource-usage behavior of an algo-
rithm over all possible instances of its associated problem is typically stated
in terms of a function of instance size that summarizes this behavior in some
useful manner. The creation of such functions has three steps:

1. Define an instance-length function such that each instance of the prob-
lem of interest can be assigned a positive integer size. Let the size of
instance I be denoted by |I|.

2. Define a “raw” resource-usage function that summarizes the resource-
usage behavior of A for each possible instance size. Let Rn

A = {RA(I) |
I is an instance of the problem solved by A and |I| = n} be the R-
requirements of algorithm A for all instances of size n. For each
instance-size n, choose either one element of or some function of Rn

A to
represent Rn

A. Several popular ways of doing this are:

• The highest value in Rn
A (m worst-case).

• The lowest value in Rn
A (m best-case).

1

• The average value of Rn
A relative to some probability distribution

on instances of size n (m average-case).

Let SA : N 7→ N be the function that gives this chosen value for n > 0.

3. “Smooth” the raw resource-usage function SA(n) via a function CA :
N 7→ N that asymptotically bounds SA(n) in some fashion. Several
standard types of asymptotic bounding functions g on a function f
are:

• m Asymptotic upper bound: f ∈ O(g) if there exists a constant c
and n0 ≥ 0 such that for all n > n0, f(n) < c · g(n).

• m Asymptotic lower bound: f ∈ Ω(g) if there exists a constant c
and n0 > 0 such that for all n > n0, f(n) > c · g(n).

• m Asymptotic tight bound: f ∈ Θ(g) if f ∈ O(g) and f ∈ Ω(g).

1.2 Phonological Mechanisms as Finite-State Automata

Definition 1 A m configuration of a FSA A = 〈Q,Σ, δ, s, F 〉 is a pair (q, x)
where q ∈ Q and x ∈ Σ∗.

Definition 2 Given two configurations (q, x) and (q′, x′) of a FSA A =
〈Q,Σ, δ, s, F 〉, m (q, x) yields (q′, x′) in one step, i.e., (q, x) ⊢ (q′, x′), if

x = wx′ for some w ∈ Σ ∪ {ǫ} and (q, w, q′) ∈ δ.

Let ⊢∗ represent the reflexive transitive closure of the yield relation, i.e.,
(q, x) ⊢∗ (q′, x′) if and only if either q = q′ and x = x′ or there exists some
sequence (q1, x1), (q2, x2), . . . , (qn, xn) of one or more configurations such that
(q, x) ⊢ (q1, x1) ⊢ (q2, x2) ⊢ · · · ⊢ (qn, xn) ⊢ (q′, x′).

Definition 3 Given a FSA A = 〈Q,Σ, δ, s, F 〉 and string x ∈ Σ∗, x is m

accepted by A if and only if (s, x) ⊢∗ (q, ǫ) for some q ∈ F .

Essentially, a computation of a FSA on a given string x is a path p in the
transition diagram for that FSA such that p starts at the vertex correspond-
ing to s and the concatenation of the edge-labels of the edges in p is x; if the
final vertex in p corresponds to a state in F , then x is accepted by the FSA.

2

Example 1 Consider the computation of the FSA in [3] on several given
strings. If the given string is x = baabb, x is accepted as there is a computa-
tion of the FSA on x which ends at state q3 ∈ F .

(q1, baabb) ⊢ (q1, aabb)
⊢ (q2, abb)
⊢ (q2, bb)
⊢ (q3, b)
⊢ (q3, ǫ)

However, if x = baabbab, as the state q4 in the final configuration is not in
F , x is not accepted.

(q1, baabbab) ⊢ (q1, aabbab)
⊢ (q2, abbab)
⊢ (q2, bbab)
⊢ (q3, bab)
⊢ (q3, ab)
⊢ (q4, b)
⊢ (q4, ǫ)

Each FSA can be visualized as encoding a set of strings.
In the case of those operations defined above which create automata of

exactly the same type as their given pair of automata, e.g., i/o-deterministic
FST intersection, it is possible to define versions of those operations that
take as input an arbitrarily large number of automata. Two possible ways
of defining these operations are (1) extend the constructions given above
relative to cross products on arbitrary numbers of rather than pairs of state-
sets and (2) iterate the pairwise operations over the given set of automata,
i.e., repeatedly remove two automata from the given set, apply the pairwise
operation, and put the created automaton back in the set until only one
automaton is left in the set. For the sake of simplicity, only alternative
(2) will be considered in more detail here. In the case of intersection, the
automata can be combined in a pairwise fashion in any order; however, as
composition is sensitive to the order of its operands, e.g., the composition
of A1 and A2 is not necessarily equivalent to the composition of A2 and
A1, the automata must be combined in a specified order. For simplicity in
the analyses below, assume that automata in a given set are combined in a
pairwise manner relative to their order of appearance when that set is written
down, i.e., given a set of automata A = {A1, A2, . . . , Ak}, A1 and A2 will be

3

combined to create A′, A′ and A3 will be combined to create A′′, and so
on. Under this scheme, for a given set of automata A = {A1, A2, . . . , Ak} of
the appropriate type such that |Q| is the maximum number of states in any
automaton in A and |Σ| is the maximum number of symbols in any alphabet
associated with an automaton in A, the time complexities of this iterative
process relative to several operations on automata are derived as follows:

• ǫ-free FST composition: Given that the composition FST of two ǫ-
free FSTA1 = 〈Q1,Σi,1,Σo,1, δ1, s1, F1〉 andA2 = 〈Q2,Σo,1,Σo,2, δ2, s2, F2〉
inA can be computed inO((|Q1||Q2|)

2|Σi,1||Σo,1|
2|Σo,2|) = O(|Q|4||Σ|4) =

c|Q|4|Σ|4 time for some constant c > 0, the composition FST of A can
be computed in

Σk
i=2O(|Q|2i|Σ|4) = c|Σ|4Σk

i=2|Q|2i

≤ c|Σ|4k|Q|2k

= O(|Q|2k|Σ|4k)

time.

• DFA intersection: Given that the intersection DFA of two DFA A1 =
〈Q1,Σ, δ1, s1, F1〉 and A2 = 〈Q2,Σ, δ2, s2, F2〉 in A can be computed
in O(|Q1||Q2||Σ|

2) = O(|Q|2|Σ|2) = c|Q|2|Σ|2 time for some constant
c > 0, the intersection DFA of A can be computed in

Σk
i=2O(|Q|i|Σ|2) = c|Σ|2Σk

i=2|Q|i

≤ c|Σ|2Σk
i=0|Q|i

= c|Σ|2(|Q|k+1 − 1)/(|Q| − 1)
≤ c|Σ|2|Q|k+1

= O(|Q|k+1|Σ|2)

time.

The time complexities of these operations and upper bounds on the sizes of
the created automata are given for each of these operations in Table 1. Note
that if the number of states in each of the given automata is the same, the
given upper bounds on the sizes of automata created by these operations
are exact, in that automata may be created that have numbers of states
and transitions that are equal to these upper bounds. Hence, though there
exist implementations of some of these operations that can be much more
efficient than the given naive implementations in certain applications [5, 6],
the worst-case running times of all such implementations are lower-bounded
by the given upper bounds on the sizes of the created automata.

4

Upper Bound on Asymptotic Worst-Case
Automaton Operation Automaton Size Time Complexity of

States Transitions Automaton Creation

ǫ-free FST composition |Q|k |Q|2k|Σ|2 O(|Q|2k|Σ|4k), Ω(|Q|2k|Σ|2)

DFA intersection |Q|k |Q|k|Σ| O(|Q|k+1|Σ|2), Ω(|Q|k|Σ|)
i/o-FST intersection |Q|k |Q|k|Σ|2 O(|Q|k+1|Σ|4), Ω(|Q|k|Σ|2)
ǫ-free FST intersection |Q|k |Q|2k|Σ|2 O(|Q|2k|Σ|4k), Ω(|Q|2k|Σ|2)

Table 1: Characteristics of Iterated Finite-State Automaton Operations.
This table gives the asymptotic worst-case time complexities of the oper-
ations of (as well as upper bounds on the sizes of automata created by) iter-
ating various operations defined on pairs of automata over sets of automata,
where k is the number of automata in the given set, |Q| is the maximum
number of states in any automaton in that set, and |Σ| is the maximum
number of symbols in any alphabet associated with an automaton in that
set.

2 Analysis of KIMMO System

AsKIM-Encode andKIM-Decode are special cases ofKIM(N)-Encode
and KIM(N)-Decode, respectively, all NP - and W -hardness results de-
rived above still hold for these new problems. Having insertions and dele-
tions does allow certain hardness results to hold in more restricted cases; for
instance, using the trick given in the reduction in [1, Section 5.7.2] in which a
given form in a reduction consists of two dummy terminator symbols and the
FST in A are restructured to construct arbitrary requested forms over the
nulls in the given form, it is possible to rephrase all hardness results above
such that the size of the given form alphabet and the length of the given
form are both 2. It seems inevitable that allowing insertions and deletions
will also both allow certain hardness results to hold relative to higher lev-
els of the W hierarchy and allow parameterized problems that were formerly
known to have FPT algorithms to be shown W -hard. The full extent of these
changes will not be addressed here. For now, simply observe that the FPT
algorithms based on FST intersection will still work if each FST is modified
to accept arbitrary numbers of lexical or surface nulls at any point in pro-
cessing (this can be ensured by adding to each FST the sets of transitions
{δ(q,0, x) = q | x ∈ Σs} and {δ(q, x,0) = q | x ∈ Σu} for every state q ∈ Q),
and the FPT algorithms based on brute-force enumeration of all possible re-

5

quested forms will work if the maximum number of nulls that can be added
is also a aspect in the parameter (this is so because the number of possible
null-augmented versions of a form f over an alphabet Σ that incorporate at

most k nulls is |Σ||f |
∑k

i=1

(

|f |+ i
i

)

≤ |Σ||f |k(|f |+ k)k, which is a function

of |Σ|, |f |, and k).

References

[1] G. Edward Barton, Robert C. Berwick, and Eric S. Ristad. 1987. Com-

putational Complexity and Natural Language. MIT Press, Cambridge,
MA.

[2] Michael R. Garey and David S. Johnson. 1979. Computers and In-

tractability: A Guide to the Theory of NP -Completeness. W. H. Free-
man and Company, San Francisco.

[3] John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley, Reading, MA.

[4] Harry R. Lewis and Christos H. Papdimitriou. 1981. Elements of the

Theory of Computation. Prentice Hall, Englewood Cliffs, NJ.

[5] Fernando C.N. Pereira and Michael D. Riley. 1997. Speech Recognition
by Composition of Weighted Finite Automata. In Emmanuel Roche
and Yves Schabes, eds., Finite-State Language Processing, pages 431–
453. MIT Press, Cambridge, MA.

[6] Pasi Tapanainen. 1997. Applying a Finite-State Intersection Grammar.
In Emmanuel Roche and Yves Schabes, eds., Finite-State Language Pro-
cessing, pages 311–327. MIT Press, Cambridge, MA.

6

Candidate Constraint Violations
Full Forms c1 c2 c3

f1 {a1, a1, b1} {b2} φ
f2 {b1} {a2} {a3}
f3 {b1} {b2} {b3}

(a)

Candidate Constraint Violations
Full Forms c1 c2 c3

f1 [2 1] [0 1] [0 0]
f2 [0 1] [1 0] [1 0]

⇒ f3 [0 1] [0 1] [0 1]

(b)

Candidate Constraint Violations
Full Forms [c1 c2 c3]

f1 [2 1 0 1 0 0]
f2 [0 1 1 0 1 0]

⇒ f3 [0 1 0 1 0 1]

(c)

Figure 1: Evaluation of Candidate Full Forms in Optimality Theory. (a)
Marks assigned to candidate full forms f1, f2, and f3 by binary constraints
c1, c2, and c3 which have the associated mark-sets {a1, b1}, {a2, b2}, and
{a3, b3}, respectively. (b) Evaluation of candidates when c1 ≫ c2 ≫ c3 and
ai ≻ bi, 1 ≤ i ≤ 3. Note that sets of marks from (a) have been replaced
by the appropriately-ordered weight vectors. Optimal candidates are flagged
by an arrow (⇒), mark-values that caused the elimination of candidates
are underlined, e.g., 1, and mark-values that resulted in a candidate being
chosen as optimal are framed by a box, e.g., 0 . (c) Evaluation of (b) relative
to appropriately concatenated weight vectors. This shows more clearly the
lexicographic optimality ordering on weight vectors.

7

