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Introduction

• Many design methodologies proposed (Crespi et al, 2008;
Brambilla et al, 2012), e.g.,
• temporal-logic decomposition (Winfield et al, 2005a)
• dataflow diagram decomposition (Winfield et al, 2005b)
• interaction-graph decomposition (Wiegand et al, 2006)
• evolutionary algorithm (Sperati et al, 2011)

• All existing methods inadequate.



Defining Swarms:
Swarm Entity Architecture

Our reactive robot will be a simplified Brooks-style architecture [?]
consisting of sensors, a set of layers, a total ordering on these layers,
and a set of subsumption connections between layers. These
components are specified as follows:

• The sensors can see outwards in a radius r around the robot in
every direction up to the closest obstacle in that direction, and
can verify, for each square-type e ∈ E, the presence of e at any
specified position pos within that perceptual radius, i.e.,
exists(pos, e). Each robot also has a compass that allows it to
orient itself relative to the north-south and east-west axes.

• Each layer has a trigger-condition that is a Boolean formula over
the available sensory exists-predicates and an action
a ∈ {N,S,E,W}. If a layer’s formula evaluates to True, the layer
produces output a; otherwise, it produces the special output null.
Given a set of layers L, we will assume that the formula in each
layer has length at most f and no two layers compute the same
Boolean function and produce the same output.



Make Me Work Late Will You



Defining Swarms:
Swarm Entity Architecture

• Relative to the total order on the layers, a layer i can have
subsumption links to any layer j that is lower than i in the
ordering; between any two layers, there can exist an
output-inhibition or output-override link (but not both). An
output-inhibition link from a layer L to a layer L′ makes the output
of L′ null if the output of L is non-null. The set of output-override
links to a layer L′ are assumed to be in a total order, and the
output of L′ is either the value of the highest non-null
layer-override link in the total order, if there is an out-put override
link whose value is non-null, and the output specified by L′

otherwise. The output of any layer that subsumes at least one
lower-level layer is not available directly for output; otherwise,
that layer’s output is available.

The output of a set of ordered layers with subsumption links will be
that of the highest layer relative to the order that is both available and
non-null.



Defining Swarms:
Overall Swarm Architecture

• Restrictions (this talk):
• Synchronized entity movement.
• No inter-entity communication.
• No movement conflict allowed.

• Modifications:

Selection: Add / delete up to c entities (relative to
provided entity library A)



Defining Swarm Design

SWARM NAVIGATION WITH X
Input: World W, swarm S, start and finish points s and d
in W, integer c.
Output: A swarm S′ derived by at most c modifications
of type X from S that can move conflict-free from s to d,
if such an S′ exists, and special symbol ⊥ otherwise.



Defining Swarm Design (Cont’d)

• GIVEN SWARM NAVIGATION (GSN)
Given W, S, start-position s and destination-area d, can S
get from s to d?

• SELECTED SWARM NAVIGATION(SSN)
Given W, |S|, A, and areas s and d, derive S and position of
S in s such that S can get from s to d.

• GIVEN SWARM NAVIGATION WITH REC. (GSN-REC)
Given W, S, M, start-position s and destination-area d,
derive S′ from S wrt M such that S′ can get from s to d.

• SELECTED SWARM NAVIGATION WITH REC. (GSN-REC)
Given W, |S|, A, M, and areas s and d, derive S wrt A and
M and position of S in s such that S can get from s to d.



Computational Complexity Analysis

• A problem Π is poly-time solvable if Π is solvable in time
nc for input size n and constant c.

• In Computer and Cognitive Science, efficient solvability =
poly-time solvability (see van Rooij (2008) and references).

• Basic questions about a computational problem C:

1. Is C hard, i.e., is C poly-time solvable?
2. If so, what can we restrict to make C easy, i.e., (effectively)

poly-time solvable?

• Use classical complexity to show problem is not poly-time
solvable, i.e., NP-hardness (Garey and Johnson, 1979).



Computational Complexity Analysis (Cont’d)
Definition
Let Π be a problem with parameters k1, k2, . . .. Then Π is said to be
fixed-parameter (fp-) tractable for parameter-set K = {k1, k2, . . .} if
there exists at least one algorithm that solves Π for any input of size n
in time f (k1, k2, . . .)nc, where f (·) is an arbitrary function and c is a
constant. If no such algorithm exists then Π is said to be
fixed-parameter (fp-) intractable for parameter-set K.

Lemma
[?, Lemma 2.1.30] If problem Π is fp-tractable relative to
parameter-set K then Π is fp-tractable for any parameter-set K′ such
that K ⊂ K′.

Lemma
[?, Lemma 2.1.31] If problem Π is fp-intractable relative to
parameter-set K then Π is fp-intractable for any parameter-set K′

such that K′ ⊂ K.



Computer Networks : Commercialization (Cont’d)



Computational Complexity Analysis (Cont’d)

tractable intractable

classical (nc) (NP-hard)

parameterized (f (p)× nc) (W-hard)



Complexity of Swarm Design

• Main results:
• SSN, GSN-REC, and SSN-REC are poly-time intractable.

• Implications:
• Swarm design problems are intractable in general (as GSN

is not so much swarm design as swarm verification).
• Need to restrict these problems if we are to get tractability.



Complexity of Swarm Design (Cont’d)

|L| |E| f r |S| h |A| |M| cl cs |aI| |aF|

SRSM B 4 5 – – p 1 1 X X X – p
C 3 – 13 2 p p – X X X p p
D 3 5 – – p p – X X X p p

GRSMR B 3 3 – – – 2 X 1 p 0 – –
C 4 – 13 2 p p X – p 0 p p
D 4 5 – – p p X – p 0 p p
E p – 1 0 1 1 X – p 0 1 1
F p 5 – – 1 1 X – p 0 1 1
G – – 3 1 1 1 X 0 p 0 1 1
H – 5 – – 1 1 X 0 p 0 1 1

SRSMR B 4 5 – – p 1 1 0 0 0 – p
C 3 – 13 2 p p – 0 0 0 p p
D 3 5 – – p p – 0 0 0 p p
E p – 1 0 1 1 1 – p 0 1 1
F p 5 – – 1 1 1 – p 0 1 1
G – – 3 1 1 1 1 0 p 0 1 1
H – 5 – – 1 1 1 0 p 0 1 1



Future Work

• Extend parameterized analysis to other aspects, e.g.,
perceptual radius.

• Analyze swarm design relative to other types of worlds,
tasks, and architectures.

• Investigate related problems, e.g., reactive morphogenesis.


