Though it can be a bit daunting at first, I have found math typesetting in LaTeX to be ultimately very flexible and useful. Inline mathematics such as $I=\left\langle x, k, y, S, S^{\prime}\right\rangle$ where $x=\sum_{i=1}^{n} \log _{2} f(i), k=\binom{n^{2}}{5}-\frac{1}{q}, y=\log _{k} g(x), S=\{i \mid i \geq 53$ and $\mathrm{q}(\mathrm{i}, \mathrm{y}) \oplus$ $3=0\}$, and $S^{\prime}=\{3,4, \ldots, \sqrt{k}\}$ can be done easily. Sometimes you want math to stand out like this:

$$
S=\{i \mid i \geq 53 \text { and } \mathrm{q}(\mathrm{i}, \mathrm{y}) \oplus 3=0\}
$$

Or maybe you want numbers like this:

$$
x= \begin{cases}1 & n=1 \tag{1}\\ k & n \geq r \times 5 \text { or } k \neq i * 4 \\ 0 & \text { otherwise }\end{cases}
$$

If it's Tuesday or Friday, you may want multi-line numbered equations like this:

$$
\begin{align*}
(x+1)(x-1) & =x^{2}-x+x-1 \tag{2}\\
& =x^{2}-1 \tag{3}\\
& <x^{2} \tag{4}
\end{align*}
$$

On other days of the week, you may want something simpler, like being able to say $I=\left\langle x, k, y, S, S^{\prime}\right\rangle$ where

$$
\begin{aligned}
x & =\sum_{i=1}^{n} \log _{2} f(i) \\
k & =\binom{n^{2}}{5}-\frac{1}{q} \\
y & =\log _{k} g(x) \\
S & =\{i \mid i \geq 53 \text { and } \mathrm{q}(\mathrm{i}, \mathrm{y}) \oplus 3=0\} \\
S^{\prime} & =\{3,4, \ldots, \sqrt{k}\}
\end{aligned}
$$

One final somewhat obscure LaTeX bug before we finish our basic introduction to math in LaTeX: though useful, calligraphic font in math mode can misbehave badly. Hence, to ensure that an expression like $\mathcal{R}=k^{2}-\sqrt{q_{2}}$ does not end up as $\mathcal{R}=$ $\|^{\epsilon}-\sqrt{\amalg_{\epsilon}}$, you need to split the calligraphic command into a separate math-expression.

