
Educating Genghi:
A Complexity Perspective on
Designing Reactive Swarms

Todd Wareham

Department of Computer Science
Memorial University of Newfoundland

October 2, 2015

Introduction

• Many methods proposed to design robot swarms (Crespi
et al, 2008; Brambilla et al, 2013; Doursat et al, 2013), e.g.,

• temporal-logic decomposition (Winfield et al, 2005a)
• dataflow diagram decomposition (Winfield et al, 2005b)
• interaction-graph decomposition (Wiegand et al, 2006)
• evolutionary algorithms (Sperati et al, 2011)

• No method to date is both general and efficient.

HOW DIFFICULT IS SWARM DESIGN
IN GENERAL?

WHAT RESTRICTIONS DO (AND DO NOT)
MAKE SWARM DESIGN EASY?

Organization of this Talk

1. Defining Swarms

2. Defining Swarm Design

3. Computational Complexity Analysis:
The Reader’s Digest Version

4. Complexity of Swarm Design

5. Conclusions and Future Work

Defining Swarms:
Swarm Entity Architecture

• Use reactive subsumption architectures (Brooks, 1986).
• Architecture = sensors + layers + total order on layers +

layer subsumption interactions (inhibit/override)

Wander

Avoid

Hide

Hungry?

S

S

SSensors Actuators

Defining Swarms:
Swarm Entity Architecture (Cont’d)

• Restrictions (this talk):
• Sensors as object-existence in perceptual radius
• One action per layer, triggered by Boolean sensor-formula
• Layer either outputs action OR subsumes, not both
• Restriction on length of Boolean sensor-formulas

• Modifications:

Reconfiguration: Modify up to c layers and layer-linkages
relative to layer library M

Defining Swarms:
Overall Swarm Architecture

• Three policies: individual entity movement + entity
communication + movement conflict resolution.

• Restrictions (this talk):
• Synchronized entity movement.
• No inter-entity communication.
• No movement conflict allowed.

• Modifications:

Selection: Select |S| entities from entity library A

Defining Swarm Design

Swarm Members / Swarm Members /
Positions Given Positions Selected

No Swarm Member Given Swarm Selected Swarm
Reconfiguration Navigation Navigation

(GSN) (SSN)

Swarm Member Given Swarm Selected Swarm
Reconfiguration Navigation with Navigation with

Allowed Reconfiguration Reconfiguration
(GSN-REC) (SSN-REC)

Computational Complexity Analysis
The Reader’s Digest Version

good bad

classical poly-time solvable poly-time intractable
(unrestricted) (nc) (NP-hard)

parameterized fp-tractable fp-intractable
(restriction p) (f (p)× nc) (W-hard)

Complexity of Swarm Design
• Main results:

• SSN, GSN-REC, and SSN-REC are poly-time intractable.
• Complexity of GSN is not proven but evidence suggests it

may be poly-time intractable.

• Implications:
• Swarm design problems are intractable in general⇒

these problems cannot have efficient solution-guaranteed
deterministic or probabilistic algorithms, e.g., evolutionary
algorithms.

• Perhaps not surprising given the intractability of designing
single reactive robots (Wareham et al, 2011).

• Need to restrict these problems if we are to get tractability.

. . . What restrictions (if any) yield tractability? . . .

Complexity of Swarm Design (Cont’d)

Param. Definition Appl.
|L| Max (final) # layers per swarm member All
|E| # distinguishable world-square types All
f Max length of layer trigger-formula All
r Swarm member perceptual radius All
|S| # entities in swarm All
h # entity-types in swarm (heterogeneity) All
|a| Size of initial swarm positioning area All
|A| # entities in entity library SSN*
|M| # layers in layer library *-REC

c Max # swarm entity modifications *-REC

Complexity of Swarm Design (Cont’d)
• What restrictions don’t make swarm design easy?

• (Almost) Everything restricted individually (to constants!)
• Many, many combinations of restrictions as well . . .

• What restrictions do make swarm design easy?
• Several combinations of restrictions that restrict input size

are fp-tractable (whoopdeedoo . . .).
• 〈|E|, f , |a|〉 / 〈|E|, r, |a|〉-SSN, -GSN-REC, and SSN-REC are

fp-tractable.

• Implications:
• Many restrictions on swarm entity or overall swarm

architecture do not make swarm design efficient.
• What does seem to matter is restrictions on the sensory /

perceptual complexity of the swarm entities⇒ ignorance is
(computational) bliss! (Wareham et al, 2011).

Conclusions and Future Work

• Swarm design is intractable in general for the simplest
types of worlds, tasks, and entity / overall architectures;
however, there are plausible restrictions that may allow
instances of interest to be solved exactly.

• Future work:
• Determine computational complexity of GSN.
• Extend parameterized analysis to other aspects, e.g.,

complexity of environment.
• Analyze swarm design relative to more realistic types of

worlds, tasks, and architectures.
• Investigate related problems, e.g., reactive morphogenesis.

