1. (25 marks) For each of the algorithms below, derive an asymptotic worst-case, i.e., Big-Oh, complexity function $O(f(n))$. Briefly explain the reasoning behind each derivation.
(a) (5 marks)
```
sum = 13
cond = false
for i = 1 to n do
        for j = 1 to 7 do
            sum = sum / (i + j)
        if COND(sum)
            cond = true
        else
            for j = 1 to n do
                sum = sum - j
if cond
        for j = 1 to n * log(n) do
            sum = sum + (i/j)
```

(b) (5 marks)

```
sum = 42
for i = 1 to n * n do
        j = 1
        finished = true
        while ((j <= n) and (not finished)) do
            for k = 1 to log(n) * n do
                sum = sum / (k * i) + j
            if COND(sum)
                finished = true
```

Assume that method COND () runs in $(n+13)$ timesteps.
(c) (5 marks)

```
sum = 42
for i = 1 to n * n do
    j = 1
    finished = false
    while ((i <= n) and (not finished)) do
                for k = 1 to log(n) * n do
                finished = true
        if COND(sum)
            sum = sum / (k * i) + j
```

Assume that method COND () runs in $(n+13)$ timesteps.
(d) (5 marks)

```
sum = 42
for i = 1 to n * log(n) do
    j = 1
    finished = false
    for k = 1 to n do
        if COND(sum)
            sum = sum / (k * i) + j
        while ((j <= n) and (not finished)) do
            finished = true
```

Assume that method COND () runs in $(n+13)$ timesteps.
(e) (5 marks)

```
n = number of elements in set U
for each binary vector v of length n do
        if the number of 1's in v is odd then
            add v to U
        for each subset s of the indices of elements in v with value 0 do
            if the sum of the elements in s is odd then
                add s to U
```

Assume that adding an element to a set takes constant, i.e., $0(1)$, time.
2. (20 marks) Prove or disprove the following:
(a) (5 marks) $f(n)=n^{d}+10 n^{2}$, where d is some integer constant greater than or equal to 2 , is $O\left(n^{d}\right)$.
(b) (5 marks) $f(n)=1000 \times 2^{n}$ is $0\left(2^{\frac{n}{2}}\right)$.
(c) (5 marks) $f(n)=10^{1000} \times 3^{n}$ is $0\left(2^{n}\right)$.
(d) (5 marks) $f(n)=2^{n}$ is $0\left(n^{c}\right)$, where c is some integer constant greater than or equal to 100 .
3. ($\mathbf{3 0}$ marks) Consider the following decision problems:

Dumbiell subgraph (DS)
Input: An undirected graph $G=(V, E)$ and two positive integers $k, l \geq 1$.
Question: Are there two cliques C_{1} and C_{2} and a simple path P in G such that C_{1} and C_{2} have $\geq k$ vertices apiece, P has $\geq l$ edges, P connects C_{1} and C_{2}, the cliques and path do not have any edges in common, and the only vertices that P shares with $C_{1}\left(C_{2}\right)$ is its connection-vertex?

Bounded-Weight Subset Cover (BWSSC)

Input: A set $I=\left\{i_{1}, \ldots, i_{a}\right\}$ of items, a set $R=\left\{r_{1}, \ldots, r_{b}\right\}$ of subsets of I, an integer-valued subset-weight function $w()$ such that for each $r_{x} \in R, w\left(r_{x}\right)>0$, a subset $N \subseteq I$, and integers $0<k_{1} \leq k_{2}$.
Question: Is there is a subset $R^{\prime} \subseteq R$ such that $\cup_{r \in R^{\prime}} r=N$ and $k_{1} \leq \sum_{r \in R^{\prime}} w(r) \leq k_{2}$?
a) (15 marks) Prove that problem DS is $N P$-complete by (1) showing that this problem is in $N P$ and (2) giving a polynomial-time many-one reduction (algorithm + proof of correctness) to this problem from an $N P$-hard problem.
b) (15 marks) Prove that problem BWSSC is $N P$-complete by (1) showing that this problem is in $N P$ and (2) giving a polynomial-time many-one reduction (algorithm + proof of correctness) to this problem from an $N P$-hard problem.
4. (75 marks) For each of the following problems, either prove that this problem is in P (by giving a polynomial-time algorithm) or prove that this problem is $N P$-complete (by showing that this problem is in NP and giving a polynomial-time many-one reduction (algorithm + two-way proof of correctness) to this problem from an $N P$-hard problem).

Hints:

* Two of the problems below are solvable in polynomial-time and three are $N P$-complete.
* When showing $N P$-hardness for the problems below, you may find it convenient to use reductions from some of the $N P$-complete problems given in the list in Lecture $\# 2$ of the course notes.
(a) (15 marks)
c-ZPATH $(c \mathrm{ZP})(c$ is an integer constant of value $\geq 1)$
Input: An undirected graph $G=(V, E)$.
Question: Can the vertices in G be colored with two colors such that (1) no edge's endpoint-vertices have the same color and (2) there is a path in this colored version of G with $\geq c$ edges in which no vertex or edge repeats and the vertex-colors alternate for the entire length of the path?
(b) (15 marks)

Bi-Robustness (BR)
Input: An undirected graph $G=(V, E)$, a pair of vertices $x, y \in V$, and a positive integer k.
Question: Are there two paths P_{1} and P_{2} linking x and y in G such that each path contains at least k edges and $P 1$ and $P 2$ do not intersect, i.e., $P 1$ and $P 2$ do not have any edges in common, no vertex or edge occurs more than once in $P 1$ or $P 2$, and the only vertices $P 1$ and $P 2$ have in common are x and y ?

(c) (15 marks)

c-ACCUMULABILITY $(c \mathrm{~A})(c$ is an integer constant of value ≥ 1)
Input: A directed graph $G=(V, A)$ a set of subsets $S=\left\{S_{1}, S_{2}, \ldots, S_{c}\right\}$ of V, a pair of vertices $x, y \in V-\left(\bigcup_{1=1}^{c} S_{i}\right)$, and a positive integer k.
Question: Is there a path in G from x to y such that this path includes at least one vertex from each of the subsets in S and the number of edges in this path is $\leq k$?
(d) (15 marks)
k-PClique ($k \mathrm{PC}$)
Input: An undirected graph $G=(V, E)$ and a positive integer k.
Question: Is there a subset $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right| \geq k$ and there is a path in G between each pair of vertices in V^{\prime} ?
(e) (15 marks)

0/1 Nested Knapsack (01NK)
Input: A set of items U, item size- and value-function $s()$ and $v()$, a positive integer k, and positive integers B_{1} and B_{2} such that $B_{1} \leq B_{2}$.
Question: Are there subsets U_{1} and U_{2} of U such that $U_{1} \subset U_{2}, \sum_{u \in U_{1}} s(u) \leq B_{1}$, $\sum_{u \in U_{2}} s(u) \leq B_{2}$, and $\sum_{u \in U_{2}} v(u) \geq k ?$

