Introduction to Finite-State Techniques

Lecture notes to master class “Finite-State Techniques in NLP”,
July 8-12, 1996, Groningen (The Netherlands)

Mark-Jan Nederhof *

University of Groningen
The Netherlands
markjan@let.rug.nl

Abstract

In this document, we describe some fundamentals of formal language theory per-
taining to regular languages, finite automata, rational transductions and related no-
tions.

1 Introduction

Formal language theory studies formal languages, which are languages which can be de-
scribed very precisely. For example, programming languages are formal languages, since
what is a correct program and what is not is determined very precisely by a compiler for
that programming language, which will accept some programs as correct and some oth-
ers as incorrect (because of typos, or perhaps because of some more serious conflict with
the syntax of that programming language). As this example suggests, in formal language
theory one is foremost interested in the set of strings that a language contains; one is
generally not interested in what these strings mean.

Natural languages, e.g. English, Dutch or Japanese, are not formal, because no well-
defined boundary exists between correct sentences of English, Dutch or Japanese and those
that are incorrect. Yet, useful formal approzimations can be found for such languages.
Such formal definitions approximating phenomena of natural languages can be encoded
into computer programs and be used for automated processing of natural language (i.e.
computer-aided translation, spell checking, grammar checking, etc.), or these formal de-
scriptions can be used in their own right by linguists to express theories about natural
language.

Regular languages are very primitive languages, yet allow approximations of interesting
phenomena of natural languages. In this document we will discuss regular languages, and
a simple machine model for processing regular languages, i.e. the finite automata. Further,
we will describe how we can specify relations between regular languages. First we will fix
some terminology about formal languages.

Some of the material in this document was adopted from [LP81] and [Ber79].

*Supported by the Dutch Organization for Scientific Research (NWO), under grant 305-00-802.

2 Formal languages

By an alphabet we mean a finite set of symbols. An example of an alphabet is the Roman
alphabet {a,b,c,...,z,y, 2}, but other alphabets may be used too. For example, we may
use a binary alphabet of the form {0, 1}, containing only two symbols. An alphabet is a set
of symbols to which we want to restrict ourselves when we discuss some formal language.

Given an alphabet, we can construct a string of symbols from the alphabet. For
example, “road” is a string over the Roman alphabet, since it consists of 4 symbols
selected from the set {a,b,c,...,z,y,z}. There is one special string that we can make
irrespective of the chosen alphabet, and that is the empty string. Because “nothingness”
is so hard to print, we introduce the symbol € to indicate the empty string.

We can put two strings next to each other to make a new string. This is called con-
catenation, and we use the operator o to denote that two strings should be concatenated.
For example, road o runner denotes the concatenated string roadrunner. If no confusion
can result, we omit the o operator; so if z and y denote strings, then we may write zy
instead of = o y to denote the concatenated string.

The length of a string w, denoted |w|, is exactly what you would expect: the number
of symbols occurring in it. We of course count a symbol twice if it occurs in the string
twice, e.g. |runner| = 6.

We can now formulate a number of properties about strings. In the following, =, y and
z denote arbitrary strings.

z(yz) = (zy)z
rXroe = I
€EOCTr = T

lef] = 0

lzyl = |z|+y|

The first equation states that concatenation is associative, which means that if you glue
three strings together, then it does not matter in which order you do this. For example,
both (bike o repair) o shop = bikerepair o shop = bikerepairshop and bike o (repair o shop) =
bike o repairshop = bikerepairshop result in the same string. Note that because of associa-
tivity, both z(yz) and (zy)z may be written simply as zyz without causing confusion.

We denote the set of all strings over an alphabet ¥ as X*. The asterisk in X* is called
the Kleene star; we will encounter it once more below.

A language over an alphabet is a subset of ¥*, in other words, a language is a certain
selection from the strings that one can make with the alphabet.

As an example, suppose that we take alphabet ¥ = {a,b}. The set ¥* consists of all
strings that we can make from a’s and b’s. One example of a language over ¥ is the set L
of all strings consisting of equal numbers of a’s and b’s. For example aabbba € L, since the
number of a’s equals the number of b’s, whereas abbaa ¢ L, since it has one a too many.

The operation of concatenation can also be applied to languages. Suppose that L; and
Lo are languages, then L; o Ly denotes the set of all strings that we can make by taking
a string from L; and concatenating it with some string from Ly. Formally

LioLy = {vw|veL ANwe Ly}
For example, if

Ly = {w € {a,b}" | w has an even number of a’s}

Ly, = {we€{a,b}" | w consists of an a followed by zero of more b’s}
then
LioLy = {w € {a,b}" | w has an odd number of a’s}

Similarly, the Kleene star can be applied to languages. If L is a language, then L*
denotes the set of all strings which result from taking zero or more strings from L and
concatenating them. Formally:

L* = {w|w=wiowyo...owg, k>0, wy,...,wg € L}
A related construction of a language from another language is

LT = {w|w=wiowyo...owg, k>0, wi,...,wg € L}
We have for any language L:

LT = L*oL
e € L*

Note that 0* = {€}. Further, e € L™ implies € € L.
The complement of a language, denoted L, is the set of all strings over the alphabet
(it is essential that we know what the alphabet is!) that are not in L. Formally

I = {wes*|wé¢ L}

3 Regular expressions

The regular expressions over an alphabet X are defined inductively as follows:
1. @ is a regular expression.
2. Each symbol from ¥ is a regular expression.
3. If o and 3 are regular expressions, then so is (a0 3).

4. If a and [are regular expressions, then so is (a U 3).

5. If o is a regular expression, then so is (a)*.
An example of a regular expression is (a U b)*ab*. Some brackets have been omitted to
improve readability; we have also omitted o, as explained in the previous section. We
assign higher precedence to concatenation than to union, so e.g. ab U c is interpreted as
((ab) Uc); and we assign higher precedence to Kleene star than to concatenation or union,
so e.g. ab* U c¢* is interpreted as ((a(b)*) U (¢)*).

Symbols a € ¥ in regular expressions are interpreted as the singleton languages {a}.
The other operators (@, *, U and o) represent the corresponding operations on languages
and sets. Thus, the regular expression (a Ub)*ab* denotes all strings over {a, b} containing
at least one a.

The languages that can be described using regular expressions are called regular lan-
guages.

a

Figure 1: A deterministic finite automaton

4 Finite automata

Regular expressions are a generative formalism, i.e. it is easy to build a string in the
language described by a regular expression, but it is less easy to decide whether a given
string is in the language described by a regular expression.

In this section we give a model for language recognition devices for regular languages,
i.e. we give a mathematical model of a device that decides whether a given string is in a
fixed regular language.

There are two kinds of finite automata, viz. deterministic and nondeterministic ones.
Both read the input string from left to right, each time being in a certain state. The
next state after reading a symbol from the input string depends on the previous state
and on the symbol read. In a deterministic finite automaton, this next state is uniquely
determined.

4.1 Deterministic finite automata

Formally, a deterministic finite automaton is a 5-tuple M = (K, X, 4, s, F'), where K is a
finite set of states, of which s is the initial state, in which the automaton is when it starts
to read the input, F' is a subset of K representing the final states, i.e. those that indicate
that the input is correct when it has been completely read. The function § from K x X
to K computes a new state from a previous state and an input symbol.

An example is the deterministic finite automaton M = ({qo,q1}, {a,b},d,q0,{q0}),
where § is given by

d(go,a) = @
6(90,0) = qo
6(g1,0) = qo
d(q1,b) qQ

More friendly looking than this formal definition of § is the picture in Figure 1. States
are depicted as vertices, and an arrow from state g to state ¢’ labelled a represents that
d(g,a) = ¢'. The initial state is marked by a “>"-sign, and the final states are marked by
an extra circle around the state.

The semantics of a finite automaton is given as follows. We define a configuration to
be a tuple consisting of a state and part of the input that has not been read yet.! We

L The formal term for this is suffiz of the input. In general, a string y is a suffiz of a longer string zy.

define the binary relation F between configurations as: (g,aw) + (¢’,w) if and only if
d(g,a) = ¢'. The relation - denotes that one configuration can result from another by
applying one step of the automaton. The result of applying zero or more steps is denoted
by F*. Formally, F* is what we call the transitive and reflexive closure of .

The automaton starts with the configuration (s, v), where v is the input. The input is
accepted when (s,v) F* (g, €), some final state g.

For the above example, we describe how the automaton accepts input abaabba by

(qo, abaabba) F (qi1, baabba)
F (q1, aabba)
F (qo, abba)
F (q1, bba)
F (g1, ba)
E (a1,)
F (q0,€)

The first configuration in this sequence consists of the initial state and the input. After
the automaton has read all input symbols, it is in state go. Since this is a final state, this
means the input is to be considered correct.

In general, the example automaton above accepts all input strings in {a, b}* that have
an even number of a’s. The other strings over alphabet {a, b} will not be accepted, because
the automaton will end in a configuration (g1, ¢€), and ¢; is not a final state.

Related to H* is the function 4, which results from generalizing § to apply to strings
over the alphabet instead of to single symbols. Intuitively, S(q, w) is the state reached
from state q by reading w. Formally:

g =g
0(g,aw) = 0(6(q,a),w)

The set of all strings that a certain automaton accepts is called the language accepted
by that automaton. Formally, the language accepted by an automaton can be defined by
{veX*| (s,v) F* (g,€), some g € F}, or alternatively by {v € ¥* | d(s,v) € F}.

4.2 Nondeterministic finite automata

For nondeterministic finite automata the new state obtained after reading an input symbol
may not be uniquely determined. That is, perhaps we may have (g, aw) F (¢, w), but at
the same time (g, aw) F (¢, w), for another state ¢”.

Formally, a nondeterministic finite automaton is a 5-tuple M = (K, ¥, A, s, F'), where
A is no longer a function but a relation. This transition relation is a finite subset of
K x ¥* x K. Note that strings over the alphabet ¥ may be involved instead of individual
symbols from Y. This additional extension, next to nondeterminism, is not essential, but
is often a handy feature.

One may draw similar figures for nondeterministic finite automata as in the case of
Figure 1, with the difference that several arrows may leave a state that are not mutually
exclusive, e.g. two arrows that leave a single state may be labelled by the same symbol a,
or more generally, one arrow may be labelled by a string which is a prefix of the string
with which another arrow is labelled.?

2We say v is a prefiz of string w if w can be written as vz, some string z. Cf. “suffix”.

g2

Figure 2: A nondeterministic finite automaton

Further, it may be the case that for some symbols in the input, no next state may be
found. In that case the automaton may get stuck before reaching the end of the input.

Figure 2 provides an example. We have A = {(q0, abc,ql), (¢0,ab,ql), (q1,¢,q0),
(¢1,a,92)}.

The formal definition for - is now that (g, vw) I (¢’, w) if there is a tuple (q,v,¢') € A.
The nondeterminism of finite automata is sometimes called angelic, in the sense that if
there is one way to obtain some configuration (g, €), ¢ € F, from the initial configuration,
then the input is considered correct, irrespective of other derivable configurations (g, €),
g ¢ F, and those where the automaton gets stuck because no transitions are applicable.
Formally, a string w is accepted by the automaton if (s, w) F* (g, €), where s is the initial
state, and ¢ is some final state.?

4.3 The powerset-construction

Nondeterminism is a useful feature, but has the disadvantage that it cannot be imple-
mented on a computer. If we restrict ourselves to classical mechanics (no quantum me-
chanics), then nondeterminism does not even exist in the “real” world. The only thing we
can hope to do therefore is to build mathematical models for it, where either a machine
“guesses right” in the case of nondeterminism (cf. the infamous “little birdie”), or where
the world splits itself into multiple worlds. This second option we explore further here.

Consider the nondeterministic finite automaton in Figure 3.

There are a number of ways to process the input aaa. These are given in the form of
a search tree in Figure 4. The labels of the nodes are configurations. The root of the tree
is the initial configuration. The tree branches at nondeterminism. The input is accepted
if there is at least one leaf labelled with a final configuration, i.e. (g, €) with ¢ € F. In the
example, there are three ways to reach a final configuration.

In the search tree, a number of layers can be distinguished. E.g. the top-most layer
consists of all configurations that can be reached before any input has been read (in
particular, we may apply transitions of the form (g, €,q')). The second layer results from
reading the first input symbol (also here, transitions of the form (g, €, ¢') might have been
applied, were they applicable). Because transitions of the form (g,v,q’), where |v| > 1,

3The opposite of angelic nondeterminism is demonic nondeterminism, whereby a process is considered
to fail if at least one of the possible ways to perform the process fails.

o7

Figure 3: Another nondeterministic finite automaton

(91, aaa)

(@3e) (a2e) (ghe) (g4.e)

Figure 4: Search tree

form a small snag in this layer structure, we will assume in this section that these do not
exist.

The observation about the layers in the search tree gives us the intuition how we
can transform a nondeterministic finite automaton into a deterministic one: introduce
new states that represent sets of states of the original automaton. The initial state of
the transformed automaton represents all states of the old automaton that are reachable
without reading any input (cf. the top-most layer in Figure 4). In the new automaton
there is a transition labelled a from state q to state ¢’ if the states of the old automaton
that ¢’ represents can be reached from the states of the old automaton that g represents
by reading a.

We call this the powerset-construction, since the states in the new automaton rep-
resent subsets of the set of states in the old automaton. Somewhat more formally,
given M = (K,X,A,s, F), where we assume A C K X (¥ U {€}) x K, we construct
M' = (K',%,6,s', F'), where K' = 2K i.e. the set of all subsets of K (also called the

4Any nondeterministic finite automaton can be transformed into one where such transitions do not
occur: any arrow labelled v is replaced by |v| arrows labelled by the consecutive symbols in v.

\

{g1,03,04}

Figure 5: Result of the powerset-construction

power set of K), s’ is the set of all states in M’ reachable from s using only e-transitions:

s'={q| (s,6) " (g,)}
F' is the set of all subsets of K containing at least one final state from M:
F'={QCK|QNF#0}
and § represents the transition function of the new automaton given by:

8(Q,a) ={d' | 3a € Ql(q,a) " (¢, &)}

(where by I we refer to the original automaton M).

An example is given in Figure 5. Not all states are given: those that are not reachable
from the new initial state s’ = {q1, ¢3} have been omitted.

The existence of the above powerset-construction implies that for any nondeterministic
finite automaton, there is a deterministic finite automaton accepting the same language.
Since it is trivial to formulate a construction the other ways around (a deterministic
finite automaton can be seen as a special kind of nondeterministic finite automaton) we
now know that both types of finite automaton are equivalent, with regard to the kind of
language that they can accept. However, a nondeterministic finite automaton can be more
succinct than a deterministic one.

Sometimes, a finite automaton is described using a transition relation, as opposed
to a transition function, yet no actual nondeterminism occurs, i.e. in no configuration
more than one transition is applicable. In that case, we may treat the automaton as
deterministic, although strictly speaking it does not satisfy the mathematical definition of
deterministic finite automata.

5 The relation between regular languages and finite au-

tomata

Any language described by a finite automaton (be it deterministic of nondeterministic)
can also be described by a regular expression and vice versa. In other words, the regular

M2: @ b

. /\/Q

\

Figure 6: Union of regular languages. (We construct M3 from M; and My by merging the
states and transitions from M; and Mj, and introducing a new initial state.)

languages can also be defined to be the class of languages accepted by (non)deterministic
finite automata.

We will not prove this (see e.g. [LP81] for a proof) but we will argue in detail that
some properties hold both for regular expressions and for finite automata.

For example, that the regular languages are closed under union (i.e. if L; and Ly are
regular, then also L; U Ly is regular), can be argued by mentioning that U is an operator
that may occur in regular expressions, but also by giving a construction of one finite
automaton from two others. In particular, suppose that we have two finite automata
M; and My accepting languages L1 and Lg, respectively, then we can construct a third
automaton M3 which accepts the language L; U Ly. Figure 6 gives an example. Similarly,
we can construct an automaton accepting the concatenation of two regular languages
(Figure 7). A third construction shows that also the Kleene star operator can be expressed
as the construction of one finite automaton from another: if M; accepts some language L,
then My accepts the language L*. See Figure 8 for an example.

The general constructions can be found in [LP81].

An interesting property which does not follow immediately from the structure of regular
expressions or finite automata is that regular languages are closed under intersection. I.e. if
L1 and Lg are regular languages, then so is L1NLy. The proof can be given by constructing
a finite automaton Mj from two automata M; and My, much as above. The construction
is a little more complicated however.

Suppose that we have M; = (K1,2,51,81,F1) and Ms = (Kz, 2,52,82,F2).5 The new

SWithout loss of generality, we assume the automata have the same alphabet and are deterministic.

v TTA) e OO

M3:

Figure 7: Concatenation of regular languages. (We construct M3 from M; and My by
merging the states and transitions from M; and Mz, and connecting the former final
states from M; to the former initial state of Ms.)

automaton Ms that we construct simulates M; and M, simultaneously. Its states are
pairs, consisting of a state that M; would be in, and one that Ms would be in. Formally,
M3 = (Kl X Kg, 2,53, (81, 82),F1 X F2), where we define 63 by

03((q1,92),a) = (d1(q1,0a),02(g2,0))

for all 1 € K1, g2 € K3, and a € X. See Figure 9 for an example.

Another property which can be easily proven by a construction of finite automata is
closure of regular languages under complementation: suppose we take a regular language,
described by a deterministic finite automaton, and we make all final states non-final, and
all formerly non-final states final. Then the resulting automaton accepts exactly those
strings that the old automaton did not accept. Therefore, if L is regular, then so is L.

6 Rational relations

Rational relations have much in common with regular languages. A regular relation can
also be described using a regular expression or a finite automaton, but with a special
alphabet, consisting of pairs (v1,v2), where v; is a string over an input alphabet ¥ and
vg is a string over an output alphabet 5.

For example, suppose that the input and output alphabets are ¥; = X9 = {a,b}. We
can make a regular expression describing a rational relation between strings in ¥] and X3
as

((a,a) U (b,d))* (aba,aa) ((a,a)U (b,d))*

An example of a string generated by this expression is (a,a)(b,b)(aba,aa)(b,b). If we
concatenate all first components in the pairs, we obtain ababab and if we concatenate all
second components then abaab. The difference is that an occurrence of b between two a’s

10

M1:

M2:

Figure 8: Kleene star applied to a regular language. (We construct Ms from M; by
introducing a new initial state, which is also final. Further, from old final states epsilon
transitions lead back to the former initial state.)

has been removed. In general, the above regular expression describes a rational relation
between ¥ and X3 given by: v is in relation to w if v contains a b between two a’s, and
w is identical, except that the b has been removed.

Formally, if we have a regular language L over ¥} x X3, then this describes the binary
relation R defined by: v R w if and only if there is a sequence (vi,w1) - - (Um,wm) € L,
some m, such that v = vi0...0v, and w = wy o...0 w,. If we want to see binary
relations as sets of pairs, then we can interpret R alternatively as a set C X7 x X3 defined
by

R={(vio...0ovpm,wi0...0wy) | (vi,w1) -+ (Vm,wn) € L}

By definition, we call such a relation a rational relation. Note that since we can describe
regular languages by both regular expressions and finite automata, we can also describe
rational relations by means of regular expressions over the product alphabet X7 x X or
by means of a finite automaton of which the arrows are labelled by pairs of strings. Such
a finite automaton is then called a finite transducer. Usually, we label the arrows of finite
transducers with single elements from %} x 3.

For the running example, we have the alternative formulation of the rational relation
by means of the finite transducer in Figure 10. Instead of using pairs (v, w), we label the
arrows in the transducer with expressions of the form v/w.

The class of rational relations is closed under concatenation, union, and Kleene star.
This directly follows from the corresponding closure properties of regular languages. Sur-
prisingly however, rational relations are not closed under intersection. For example, con-

SInstead of an arrow labelled with (vi,w1) - - - (Vm,wm) € (X7 X £3)*, m # 1, we may as well label the
arrow with a single tuple (v1 - Um, w1 - Wm).

11

M1: T

M2: /\

M3:

Figure 9: The intersection of two regular languages.

sider the rational relations given by’

R, = (a,b)*(,0)* ={(a™,b"c™) | n,m € {0,1,2,...}}
Ry = (&b)*(a,¢)* ={(a",0"c") | n,m € {0,1,2,...}}

The intersection is
RiNRy = {(a",b"c")|ne€{0,1,2,...}}

which can be shown not to be rational [Ber79, p. 58].

For finite automata, transitions with strings v € ¥*, |v| > 1, are not really essential for
description of regular languages. Similarly, finite transducers can do without transitions
that read or write more than one symbol at a time. The formal statement is that any
rational relation can be described by a finite transducer which only has labels v/w, where
v € X1 U{e} and w € g U {e}.

Note that a rational relation can be turned into a regular language by omitting either
the input or output components. For example, by omitting the input components in
(a,b)*(e,c)* one obtains b*c*, a regular language. This observation implies that each

" A superscript n, as in ™, means the concatenation of n occurrences of a string. E.g. a® = aaa.

12

ala ala

aba/aa

b/b b/b

Figure 10: A finite transducer

rational relation relates strings in two regular languages, the input language and the output
language. For Figure 10, the input language is the set of all strings over {a,b} containing
at least one occurrence of aba, and the output language is the set of all strings over {a, b}
containing at least one occurrence of aa.

7 Rational functions

A rational function is a special kind of rational relation, where each input string is related
to at most one output string. Formally, a rational relation R is a rational function if for all
v, the set {w | (v, w) € R} has either zero or one elements. Note that a rational function
is in general a partial function, since {w | (v,w) € R} may contain zero elements for some
v € X7.

For example, the rational relation given by the regular expression

(zz,aa)* U (z,b)(zz,bb)*

is a rational function that maps a string of z’s to a string of the same length of a’s if the
length of the string is even. If the length is odd, then the output is a string of b’s of the
same length.

On the other hand, the rational relation

(zzz,000)* U (zz,bb)*

is not a function, since a string =™, where n is a multiple of 6, is related to both a™ and
b"™ by the rational relation.

In [Ber79, p. 94] it is proved that it is decidable whether a rational relation is a function,
by taking a finite transducer and investigating the transductions for a finite number of
strings.

Related to rational functions are unambiguous (finite) transducers. We call transducers
unambiguous if for any input string, there is at most one path through the automaton from
the initial to a final state for that input string. Of course, any unambiguous transducer
represents a rational function (for that at most one path for a given input string, there
is only one output string). Conversely, for any rational function there is an unambiguous
transducer (see [Ber79, p. 115] for the proof).

13

X/a _/
xla
qo

©

Figure 11: An unambiguous transducer (adopted from [Ber79))

For example, for the rational function described by (zz,aa)* U (z,b)(zz, bb)*, we can
construct the unambiguous transducer from Figure 11.

Unambiguous transducers are closer to implementable algorithms than arbitrary (fi-
nite) transducers. Yet, there may still be nondeterminism while processing an input string
and computing the output string: even if there can be only one path through the automa-
ton leading to a final state when the input has been read completely, during intermediate
steps one may need to hypothesize alternative paths through the automaton.

This is illustrated by Figure 11. While processing the string of x’s, one needs to
hypothesize about both the paths leading through ¢f and ¢8 and those leading through
g2 and ¢4. Only upon finding the end of the string can it be determined which is the
correct path.

8 Sequential transducers

In this section we discuss a type of automaton which can be directly implemented on
a computer. Formally, a sequential transducer is a 5-tuple M = (K, ¥1,¥s,46, s), where
K is a finite set of states, of which s is the initial state, X7 and X9 are the input and
output alphabets, respectively, and J is a partial function from K x ¥; to K x ¥3. A
sequential transducer can be seen as a finite transducer of which all states are final, and
that is deterministic, i.e. for any present state and next input symbol there is at most one
transition to another state, and in this transition only one output string can be written.

Formally, the initial configuration is (s, v, €), where v is the input string. The relation
F is defined by: (g,av,w) & (¢',v,wz) if §(g,a) = (¢, z).

A sequential transducer describes a partial function, called sequential function. For-
mally, a string v is mapped to a string w if (s,v,€) F* (g,€,w), some state gq.

Consider for example the sequential transducer given in Figure 12, with ¥; = {z,y}
and ¥y = {a,b}. (That d(g,a) = (¢, z) is indicated by an arrow from a node representing
g to one representing ¢’ labelled a/z.) This function maps a string v over X; of length n
to a™ if v starts with an x, and maps it to b" otherwise.

14

A yla

xla

Figure 12: A sequential transducer (adopted from [Ber79))

The definition of sequential transducers above is biased towards left-to-right process-
ing. Therefore, sequential transducers are also called more specifically left sequential
transducers. This implies that there are also right sequential transducers, which process
input from right-to-left. Here, the configurations contain prefixes of the input, and F is
defined by: (g,va,w) F (¢',v,zw) if §(g,a) = (¢, z).

A left sequential function (i.e. a function defined by means of a left sequential trans-
ducer) is not necessarily also a right sequential function. E.g. the left sequential function
from Figure 12 cannot be described by any right sequential transducer. (Informally, this
can be shown by the argument that some right sequential transducer would have to start
writing either a’s or b’s for each of the symbols it reads in the input from right-to-left,
before it can have any knowledge whether the left-most symbol of the input is an z or y.)

Any (left or right) sequential function is a rational function. However, not each rational
function is sequential. For example, the rational function specified in Figure 11 is not a
sequential function.

A particular property of (left) sequential functions is that if w is mapped to v and
if wz is mapped to some string v', then v’ is of the form vy, some y. This property of
called preservation of left factors. In a similar way, right sequential functions preserve
right factors.

9 Subsequential transducers

A slight extension of the sequential functions are the subsequential functions described
below.

A subsequential transducer is a 6-tuple M = (K,X1,X5,d, A, s), where) is a partial
function from K to X3, and the other components are as in the definition of sequential
transducers.

The purpose of the new component A is to place an additional string after the output
string when the end of the input string has been reached. Formally, an input v is mapped
to an output w by the subsequential function if (s, v,€) H* (g,€,w’), A(q) = z and w = w'z.

15

(0,2)/

(L1)/0
o&. .’ (L0)/0 \(L1)/1
(0.0)/1
€ 1
#

Figure 13: A subsequential transducer for addition (adopted from [Ber79])

Any sequential function is a subsequential function (take A(g) = € for all ¢ € K), but
not each subsequential function is a sequential function. An example where detection of
the end of the input is necessary, and where sequential transducers do not suffice is binary
addition, described as follows.

Suppose we have two strings ai---a, and by ---b, over {0,1} of the same length.
These strings represent two binary numbers. We want to compute the addition zc¢; - - - ¢,
where z is € or 1, by means of a subsequential transducer. As input string we take
(an,bn)---(a1,b1) € ({0,1} x {0,1})*. We compute also the binary addition in reverse
form, i.e. ¢, - - - c12, in the output string.

The subsequential transducer has two states presenting the “carry” from the addition
of the previous two “bits”. When all bits from the input have been seen, then the remaining
carry should be written to the output and for this we need A. Our solution is given in
Figure 13. We indicate A(¢) = w by an arrow labelled w from ¢ to the symbol #.

The class of subsequential functions is properly contained in the class of rational func-
tions. It is decidable whether a rational relation is subsequential, and also whether it is
furthermore sequential [Ber79, p. 128].

Intuitively, subsequential transducers relate to finite transducers as deterministic finite
automata relate to nondeterministic finite automata. However, the powerset-construction
of finite automata does not carry over in a trivial way to transducers, which is apparent
when we consider that the subsequential functions are properly contained in the rational
relations. However, a construction in [RS95], which is related to the powerset-construction,
is capable of deriving subsequential transducers from those finite transducers that describe
subsequential functions.

Two (sub)sequential functions f from X to ¥* and g from ¥* to X3 can be composed
into a partial function go f from X} to X3, defined by (go f)z = g(f(z)), for all z € X}.8
In other words, the output of f is input to g.

The composition of two (sub)sequential functions is again (sub)sequential. In the
following section we investigate what happens if a left sequential transducer is composed
with a right sequential transducer.

8The composition operator o should not be confused with the operator of the same name that is
sometimes used to denote concatenation.

16

10 Bimachines

A bimachine is a 9-tuple M = (K', K", %1,%5,6!,67,s',s",7), where K! and K" are two
sets of states, 1 and X are the input and output alphabets, as before, §' is a function
from K! x %1 to K!, 67 is a function from K" x ¥ to K", s' € K! is the left-initial state
and s” € K" is the right-initial state, and + is a partial function from K! x %1 x K" to 3.

A bimachine operates simultaneously from left-to-right and from right-to-left. Starting
with s, states in K are computed at each of the input positions from left-to-right by 4.
Conversely, starting with s”, states in K" are computed at each of the input positions
from right-to-left by 4".

Suppose the input is given by a1 ---an € 1. We compute the states l1,...,l, € K
and r1,...,7, € K" by

L = P

lm+1 = 5l(lm,am), forl<m<n
rm = 8§

Tm—1 = 0 (rm,am), for1<m<mn

The output string is now defined by the concatenation y(l1,a1,71) 0 --- 0 Y(lp,an,Ts),
provided « is defined on all its argument in this expression; otherwise the transduction on
input ai - - - a, is not defined.

As an example, consider the function f from X7 to X3, with ¥; = {z,y} and Xy =
{a, b}, defined by

fw) = a¥l if w=zw'z some v’

plel , otherwise

In words, a string is mapped to a string of the same length, consisting of a’s if the input
has z’s at its two ends, and consisting of b’s otherwise.

We can build a bimachine for this problem by taking K* = {1,0,1}, K" = {1,0,1},
st=1,s, =1, and 6 and 6" such that

ML,z) = 1
L,y) = 0
o1l,2) = 1,z€3%;
o0,z) = 0, zeX;
iM(L,z) = 1
M(L,y) = 0
0"(1,z) = 1, z€ ¥y
0"(0,2) = 0, z€X;
and < such that
v(L,z,1) = a
v(l,z,l) = a
v(1,2,1) = a, z€%;
v(p,2,q9) = b, for all other arguments

17

For input zyzz we obtain the states 1,1,1,1 € K'! and 1,1,1,1 € K,. The out-
put is computed by ~y(L,z,1)y(1,y,1)v(1,z,1)y(1,z, L) = aaaa. For input yzyr we
obtain 1,0,0,0 € K’ and 1,1,1,1 € K,, in which case the output is computed by
~v(L,y,1)v(0,z,1)y(0,y,1)y(0,z, L) = bbbb.

Any rational function can be described by a bimachine, provided this function maps
€ to €. (Bimachines cannot map € to a non-empty string.) Conversely, any bimachine
describes a rational function. For a proof, see [Ber79, p. 125].

If again we restrict ourselves to functions that map € to €, then bimachines represent
exactly the functions that can be described by means of the composition of a left sequential
function and a right sequential function.® Proof can be found in [Ber79, p. 126]. Here we
just demonstrate that the bimachine of the running example can also be described as the
composition of a left sequential function and a right sequential function.

We define the left sequential transducer by M! = ({1,0,1},%1,{1,0,1} x 1,6, 1),
where &' is defined by

SH(L,

(Liz) = (1,(L,2))
&'(Ly) = (0,(L,9)
o1,2) = (1,(1,2), z€ 5
8H0,2) = (0,(0,2)), z€ %4

Application of M! to zyzz yields (L,z)(1,y)(1,z)(1,z), and application to yzyz yields
(L;9)(0,2)(0,9)(0,).

We define the right sequential transducer by M" = ({L,0,1},{L,0,1} x £1,%5,4", 1),
where §" is defined by

(L, (1,z)) = (1,a)

§"(L,(¢,2)) = (1,b), g€ {L,0}
6"(L,(¢,9)) = (0,b), ¢€{L,0,1}
"(1,(L,z)) = (1,a)

T, (LY) = (L)

0"(1,(1,2)) = (1,a),z€ X4

0"(1,(0,2)) = (1,b),z€ %

0"(0,(¢g,2)) = (0,b),z€ ¥, €{L,0,1}

Application of M" to (L,z)(1,y)(1,z)(1,z) yields aaea and application to
(L,9)(0,2)(0,y)(0,z) yields bbbb.

Generalisation of this example results in the above-mentioned proof that any bimachine
is the composition of a left sequential function and a right sequential function.

For a practical application of bimachines, see [Roc94].

11 Suggestions for further reading

A good introduction to finite automata and regular languages can be found in [HU79,
Chapters 2 and 3], [LP81, Chapters 1 and 2] and [Har78, Chapters 1 and 2|. A few
definitions regarding finite transducers can be found in [Gur89]. One of the most thorough

®0Or conversely as the composition of a right sequential function and a left sequential function.

18

books on finite-state transductions and related topics is [Ber79], which is however difficult
to read for students without sufficient mathematical background.

References

[Ber79] J. Berstel. Transductions and Context-Free Languages. B.G. Teubner, Stuttgart,
1979.

[Gur89] E.M. Gurari. An Introduction to the Theory of Computation. Computer Science
Press, 1989.

[Har78] M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[LP81] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, 1981.

[Roc94] E. Roche. Two parsing algorithms by means of finite state transducers. In The
15th International Conference on Computational Linguistics, volume 1, pages
431-435, Kyoto, Japan, August 1994.

[RS95] E. Roche and Y. Schabes. Deterministic part-of-speech tagging with finite-state

transducers. Computational Linguistics, 21(2):227-253, 1995.

19

