Computer Science 3711
Winter 2005
Midterm Exam Answers

1. (6 marks) Circle the letters associated with the appropriate answers in the following
multiple choice questions. Note that some of these questions may have more than one
answer whose letter needs to be circled.

3

(a) (3 marks) Which of the following is true of the function T'(n) = %7

a) T(n) is O((n+100)?) b) T(n) is O(57log, 2") ¢) T(n) is Q((n + 2)?)

Answer:

a) False: Start by assuming that the given statement (in particular, the
implicit big-Oh part) is true. This can be rewritten as

n3
T S c¢(n + 100)?
n3
7 = c¢(n? 4 200n + 10000)
n® < de(n® + 200n + 10000)
200 10000
n < —

4e(1
c(+n+n2)

for all n > ny for some ¢,ng > 0. Observe that as n goes to infinity, the
right hand side converges to 12¢ while the left hand side goes to infinity.
Hence, for any choice of ¢, this inequality will be false for sufficiently large
n. Hence, the given statement is false.

b) True: The given statement can be rewritten as

nz < c5710g22"4
3

n

— < cbnt
T chn

nd < 228n*

for all n > ng for some ¢, nyg > 0. As this inequality holds for ¢ = ng =1,
the given statement is true.

c) True: The given statement can be rewritten as

nz < c(n+2)?
3

n

I« 3

1 = cn

n® < den?

for all n > ng for some ¢, nyg > 0. As this inequality holds for ¢ = ng = 1,
the given statement is true.

(b) (3 marks) Which of the following is true of the function T'(n) = 10'8s"?

a) T(n) is ©(n'827) b) T(n) is Q(3'9810") ¢) T(n) is O(n?/n)

Answer: The key here is to note that 7'(n) = 10'%8s™ = plogs 10 = p2.0959_

a) False: Start by assuming that the given statement (in particular, the
implicit big-Omega part) is true. This can be rewritten as

n2.0959 2 Cnlog27
n2.0959 2 C7’L2'8074
n2.0959

1

for all n > ny for some ¢, ny > 0. As the left hand size goes to 0 as n goes
to infinity, for any choice of ¢, this inequality will be false for sufficiently
large n. Hence, the given statement is false.

b) True: The given statement can be rewritten as T'(n) = n?99%9 > 3180 =
en'8103 = en®477L for all n > ng for some ¢,ng > 0. As this inequality
holds for ¢ = nyg = 1, the given statement is true.

¢) True: The given statement can be rewritten as T'(n) = n*% < cn?\/n =
en?ns = cen25 for all n > ny for some ¢,ng > 0. As this inequality holds
for ¢ = ng = 1, the given statement is true.

2. (14 marks)

a) (4 marks) Give the recurrence for the asymptotic worst-case time complexity of
the following recursive algorithm:

procedure FUNKY-REC(m, n)

if (n < 5)
sum = 0
for i =1 tom do
sum = sum + (FUNKY-ITR(n) / i) - j
return (sum)

else if (n > 10)
sum = FUNKY-REC(m, n - 9) + (FUNKY-ITR(m) / 12)

return (sum)
else if (n > 3)
sum = 0
for i =1 to n do
sum = FUNKY-ITR(n) * 1
return (sum)
else
sum =
for i =1 tom do
1 = FUNKY-REC(m, n - 6)
sum = sum + (FUNKY-ITR(m) / i) - 1
return (sum)

Assume that procedure FUNKY-ITR(x) runs in O(log, z) time.

Answer:
O(m) ifn<b

T(m,n)=<¢ O(1 if 5<n<10
T(m,n—9)+ O(logam) otherwise

b) (10 marks) Derive an upper bound for 7'(n) using any method discussed in class

or in the textbook, where

n? n<1
T(n):{T(n/2)+cn n>1

Answer:

T(n) = T(n/2)+cn
= cn+T(n/2)
= cen—+ (c(n/2) +T(n/4))
= cn+c(n/2)+T(n/4)
n/2) + (c¢(n/4) + T(n/8))
n/2) + c¢(n/4) + T(n/8)
n/2) + c(n/4) + (¢(n/8) + T'(n/16))
n/2) + c(n/4) + c(n/8) + T(n/16)

= cn+c
= c¢cn—+c

= cn+c

~~ N N
~— ~— ~— ~—

+
|
= cn+c +

logy n

= (Z cﬁ)—i-T(ngl)

U
1=0 2

< (cni %) +0(1)

+0(1)

=
2

= 2en+0(1)
O(n)

3. (9 marks) Consider the following algorithm:

sum = 0;
for i =1 ton *x n do
if (T2(i, n))
for k =1 to n do
if ((k % 2) == 0)
1 = T3(n, k) - 2
sum = (sum * j / 1)
for j =1 to n do
sum = sum * j
if (Ti(n, sum))
sum = sum / 2

a) (3 marks) Give the parameterized asymptotic worst-case time complexity for this
algorithm.

T(n) = O(T(T1)+n’T(T2)+n’*T(T3))

b) (2 marks) Give the asymptotic worst-case time complexity of this algorithm when
the T1, T2, and T3 operations require O(n?), O(n), and O(n?) time, respectively.

T(n) = O(T(T1)+n*T(T2) +n*T(T3))
= O(n* +n*(n) +n*n?)

= O(m*+n®+n°)

(

n®)

|
S

¢) (2 marks) Give the asymptotic worst-case time complexity of this algorithm when
the T1, T2, and T3 operations require O(n), O(log, n), and O(logsn) time, re-
spectively.

T(n) = O(T(T1)+n*T(T2) +n*T(T3))
n + n*(logyn) + n’(logy n))

n + n?log, n + n*log, n)
n3log, n)

d) (2 marks) Give the asymptotic worst-case time complexity of this algorithm when
the T1, T2, and T3 operations require O(1), O(1), and O(1) time, respectively.

T(n) = O(T(T1)+n*T(T2) +n*T(T3))
= O(1+n*(1) +n’(1))
= O(n+n”+n?)

(n?

)

|
S

4. (16 marks)

Consider the following algorithm:

DFS-V(i, sol, U, B, VL, VU)
if (SIZE(sol) > B)
print ("pruned: solution too big for knapsack")
else if (VALUE(sol) > VU)
print ("pruned: solution too valuable")

else if (i == n)
if ((VALUE(sol) >= VL) and (VALUE(sol) <= VU))
print(sol)
else

DFS-V(i + 1, sol, U, B, VL, VU)
DFS-V(i + 1, UNION-COPY(sol, U[il), U, B, VL, VU)

The problem solved here is a variant of 0/1 KNAPSACK that prints all viable knapsack-
loads of a given value val such that VL < val < VU. In this algorithm, U is the set
of items, n is the number of items in U, B is the knapsack size bound, sol is a subset
of U, VL and VU are lower and upper bounds on the summed value of the items
in a solution, respectively, SIZE(sol) returns the sum of the sizes of the items in
sol, VALUE(sol) returns the sum of the values of the items in sol, and UNION-
COPY (sol,Uli]) returns a copy of sol to which the ith item in U has been added.
To answer this question, sketch the implicit tree of solution-nodes generated by the
algorithm above (marking leaf-nodes which are printed by a circle and nodes that are
pruned with a square) with the call DFS-V (0, sol,U, B,VL,VU) when U = {X,Y, Z}
such that size(X) = 3, size(Y) = 1, size(Z) = 2, value(X) = 2, value(Y) = 2, and
value(Z) =1, sol is the empty set, and B, VL, and VU have the following values:

i) (8 marks) B=5VL=1,and VU = 3:

1
{}
) / \
{} 9 {X}
/ T 10 — 13
°{Y} {X} xX.Y}

VB B 8 6w

ii) (8 marks) B=3,VL =2 and VU = 5:

1
{}
9

/ \ — 13

°{v} {X} {X,Y}

{Z} @‘ @ {X.z}| [{X.Y}] [{X.Y.Z}]

5. (15 marks) The length of the longest common vowel-preferred subsequence (LCVS) of
two strings s and s’ is defined by the following recurrence:

0 1=00rj =0
) max(D(i — 1,5 — 1) + COST(s(i), s'(5)),
PEI=1" D1 -2,
D(i—1,j)—2) otherwise

For any two symbols z and y, function COST (z,y) returns 3 = and y are both vowels,
2 if £ and y are both consonants, and 1 otherwise (recall that a vowel is one of the
letters {'A’) E') I'' O'/U'} and a consonant is any letter of the alphabet that is not a

vowel). Given the above, determine the longest common vowel-preferred subsequence
of the strings AUQIF and TUA - that is, fill in the dynamic programming matrix
given below (including one backpointer per matrix-cell), show one of the backpointer
paths that gives an optimal LCVS (given that traceback starts at the lower right-hand
corner matrix-cell, i.e., D(|s|,|s'|), and goes back to a matrix cell in row 0 or column 0),
and show the LCVS corresponding to this path, i.e., the sequence of matching symbol-
pairs induced by the recursive subclause max(D(i — 1,5 — 1) + COST(s(7), s'(7)) and
its associated diagonal backpointers.

AU Q@ O ©®

0 1 2 3 4 5

N
o
w
AN

|

I
N
o

|

|
w

