Computer Science 3600 (Winter 2023):
 Handout:

Computational Problems

```
Vertex Cover (VC)
Input: An undirected graph \(G=(V, E)\) and an integer \(k>0\).
```

Question: Is there a vertex cover of G of size at most k, i.e, is there a subset $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right| \leq k$ and for all edges $(u, v) \in E$, at least one of u and v is in V^{\prime} ?

Vertex Cover Cost (VC-C)
Input: An undirected graph $G=(V, E)$.
Output: The size of the smallest vertex cover of G.

Vertex Cover Example (VC-E)
Input: An undirected graph $G=(V, E)$.
Output: One of the smallest vertex covers of G.

Clique
Input: An undirected graph $G=(V, E)$ and an integer $k>0$.
Question: Is there a clique in G of size at least k, i.e., is there a subset $V^{\prime} \subseteq V,\left|V^{\prime}\right| \geq k$, such that for all $u, v \in V^{\prime},(u, v) \in E$?

Subset sum
Input: A set $S \subset \mathcal{N}$ of integers and an integer $k \geq 0$. Question: Is there a subset S^{\prime} of S whose elements sum to k ?

Steiner tree in graphs (STG) Input: An undirected graph $G=(V, E)$, a set $V^{\prime} \subseteq V$, and an integer $k>0$.
Question: Is there a tree in G that connects all vertices in V^{\prime} and contains at most k edges?

