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Point/Counterpoint 
On the Model of 
Computation 

	 William Dally and Uzi Vishkin

energy of a memory access is due to 
communication: moving the address 
to the bit cell and moving the data from 
the bit cell to the consumer. Because 
communication dominates, accessing 
a small, local memory is far less ex-
pensive than a global memory access. 
On-chip SRAM memories, for example, 
are built from small 8KB (64Kb) sub-
arrays. Accessing 64b from a sub-array 
costs 0.64pJ and takes 300ps. Access-
ing a 256MB memory (approximately 
100mm2) constructed from these sub-
arrays costs 58pJ and 12.3ns—of which 
57.4pJ and 12ns are due to communi-
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Point: We Must Extend  
Our Model of Computation to 
Account for Cost and Location
William Dally

F
O R  D E C A D E S  W E  have used 
the RAM (random-access 
memory)2 and PRAM (par-
allel RAM) models5 along 
with asymptotic analysis to 

measure the complexity of algorithms. 
The RAM and PRAM models treat all 
operations, from an integer add to a 
global memory load as unit cost. This 
approximation was appropriate during 
the early days of computing when the 
costs of arithmetic and communica-
tion were somewhat comparable. Over 
time, however advancing semiconduc-
tor technology has caused the cost of 
arithmetic and logic to shrink by or-
ders of magnitude while the cost of 
communication has reduced at a much 
slower rate. As a result, today fetching 
two 32-bit words from main memory 
expends 1.3nJ of energy while per-
forming a 32-bit add operation (which 
requires two 32-bit words as input) 
takes only 20fJ of energy 64,000x less. 
A model of computation like RAM or 
PRAM that treats these two operations 
as equivalent does a poor job of esti-
mating the cost of a computation, and 
hence does a poor job of comparing al-
ternative algorithms.

Communication Is the Dominant 
Cost in Computing. Whether we con-
sider cost to be energy or time, commu-

nication dominates modern computa-
tion. A 32-bit add operation takes only 
20fJ and 150ps. Moving the two 32-bit 
words to feed this operation 1mm 
takes 1.9pJ and 400ps. Moving the 64 
bits 40mm from corner to corner on a 
400mm2 chip takes 77pJ and 16ns. Go-
ing off chip takes 320pJ with a delay of 
6ns per meter.

While memory accesses are costly 
operations, almost all of the cost of 
accessing memory is communication 
cost. The time and energy needed to 
read or write a single bit cell is negli-
gible. The vast majority of the time and 
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V ated with general-purpose CPUs, DSAs 
make the large gap between arithmetic 
and communication more apparent. 
The overhead of a CPU turns the 20fJ 
of a 32b add operation into an 80pJ 
add instruction. In comparison the 
1.2nJ memory access is only 15x more 
expensive rather than 64,000x. With 
a DSA this overhead is eliminated re-
vealing the full size of the gap between 
arithmetic and communication.

Computational Models are for Per-
formance Programming. In some situ-
ations, such as user-interface code, 
programmers concentrate on func-
tionality without concern for cost. In 
these situations a naïve code is fast 
enough and there is no need for a model 
of computation (RAM, PRAM, or other) 
to estimate cost and compare alterna-
tives. In other cases, however, such 
as training neural network models, 
performing large scientific simula-
tions, and running optimizations, cost 
is of paramount importance. Huge 
amounts of energy and expensive 
computation time are wasted by an in-
efficient algorithm. It is in these cases 
of performance programming where 
we need a model of computation to 
estimate cost and compare alterna-
tives, and that model of computation 
needs to reflect the communication-
dominated nature of today’s comput-
ing hardware.

The Planet Demands We Be More 
Efficient. Datacenter computers alone 
used 1% of global electricity in 2018, 
and estimates indicate this number 
will grow to 3%–13% by 2030.1 With 
such a large fraction of the world’s en-
ergy going to computing, it is incum-
bent on us to design efficient computa-
tions to minimize the carbon footprint 
of computation. The first step in being 
more efficient is having an accurate 
model to analyze algorithms, so we 
can pick the most efficient algorithm 
for a given problem. We can no longer 
afford to ignore the constant factor dif-
ference between arithmetic and com-
munication or the increase in energy 
with distance.

PECM: A Simple, Accurate Model of 
Computation. Two simple changes to 
the PRAM model can fix its two main 
problems. To account for the large dif-
ference in cost between arithmetic op-
erations (like add) and memory access, 
we assign them different costs. Arith-

cation—15mm each way, 30mm total. 
Because communication completely 
dominates the cost of computation, 
our model of computation must con-
sider communication, and to do so, it 
must have a model of location.

Consider the problem of summing a 
table that fits in the on-chip memory of 
a 4x4 array of 256-core processor chips 
that are each 16mm on a side. Each 
core is located at the center of a 2MB 
SRAM array and can access the local 
array with 1mm (round trip) of com-
munication cost (1.9pJ and 400ps for 
a 64b access). A random access incurs 
21.3mm of on-chip communication 
cost for the 1/16 of accesses to the local 
chip and an additional 640pJ +21.3mm 
of cost for the 15/16 of accesses that 
go off chip for an average random ac-
cess energy of 680pJ. With a model of 
location, we can have each core sum 
the 256K words in its local memory 
and then forward the result up a tree 
to compute the final sum. We can per-
form the same computation by placing 
the threads and data randomly. The 
cost of the randomly placed computa-
tion is 354x higher than the local com-
putation. The PRAM model considers 
the local and random computations to 
be of equal cost despite the orders of 
magnitude difference in cost.

Store or Recompute. The large differ-
ence in energy between arithmetic and 
communication often drives the deci-
sion whether to store or recompute an 
intermediate value. Training a multi-
layer perceptron (MLP) requires the ac-
tivation values for each layer during the 
back-propagation step. If there is insuf-
ficient on-chip memory, the activations 
can be stored to off-chip memory at a 
cost of 640pJ per 16b activation (write 
+ read), an O(n) operation—where n is 
the number of activations in this layer. 
Alternatively the activations can be re-
computed on the fly by performing a 
matrix-vector multiplication, an O(n2) 
computation, at a cost of 160fJ/MAC. 
The PRAM model would suggest stor-
ing the intermediate result—preferring 
the O(n) store over the O(n2) M × V. How-
ever, for vectors smaller than n = 4,000, 
recomputation is less expensive. For a 
typical MLP with n = 256, recomputa-
tion is 16x less expensive.

Constant Factors Matter. Under the 
PRAM model, the asymptotic complex-
ity of the summation example here is 

O(n) for both the local and the random 
cases. The 230x difference in energy is 
just a constant factor, as is the 64,000x 
difference in cost between an add op-
eration and a global memory access.

Constant factors do matter, how-
ever, particularly when the asymptotic 
complexity is the same. The local com-
putation is 230x cheaper. Just as you 
would not settle for paying 230x too 
much for your groceries, you should 
not pay 230x too much for a computa-
tion because you are using an incom-
plete model of computation. Large 
constant factors can even overcome a 
difference in asymptotic complexity 
(this is why Strassen’s O(n2.8) matrix 
multiply algorithm6 is rarely used). 
This is the case in our store O(n) vs. 
recompute O(n2) example here, where 
for typical values the higher asymptot-
ic complexity is less expensive.

Caches Are Not Enough. Modern 
computers use cache memories to im-
prove locality. Caches work great in 
cases where there is temporal locality 
(that is, reuse). However, for computa-
tions such as the summation example 
here they do not help. Every word is 
visited exactly once, there is no reuse. 
Many HPC codes and neural-network 
models with a batch size of one have 
the same issue.

Domain-Specific Architectures 
Highlight the Issue. With the end of 
Moore’s Law, domain-specific archi-
tectures (DSAs) are emerging as a 
leading candidate to continue scal-
ing computing performance.3,4 By re-
moving most of the overhead associ-
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metic operations remain unit cost, but 
memory operations have a higher cost, 
proportional to distance. Each process-
ing element and each memory is as-
signed a location l ∈ L and a distance 
function D: L × L ⇒ R is defined to de-
termine the cost of sending a message 
or making a memory access between 
two locations.

We can use different distance func-
tions to model different computational 
targets. Two-dimensional Manhattan 
distance models on-chip communica-
tion. Locations are x,y coordinates and 
distance is the Manhattan distance be-

tween two coordinates. Off-chip com-
munication can be modeled by adding 
additional distance when either coor-
dinate spans a chip boundary (as in the 
example here).

By allowing us to reason about the 
true costs of computations, this parallel 
explicit communication model (PECM) 
will allow us to design more efficient 
computations and in doing so reduce 
the carbon footprint of computing.	
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purpose single core CPUs, the afore-
mentioned SWS. SWS enabled the re-
markable success of such CPUs. These 
CPUs are arguably the biggest success 
story of the founders’ generation of the 
whole information technology sector. 
SWS provided superb sustainability 
and resilience. It allowed CPU applica-
tions to grow from a handful of scien-
tific applications to today’s ubiquity, as 
can be seen in desktop, laptop, server 
and smartphone apps. However, cur-
rent exploitation of parallelism for gen-
eral-purpose application performance 
falls far behind the exploitation of per-
formance of single core CPUs. It is time 
to recognize the source of this crisis: 
after nearly two decades of multicore 
CPUs domination, SWS stagnated, fail-
ing to extend to general-purpose mul-
ticore CPUs. CPU vendors have simply 
gone AWOL on this matter. Lacking 
cost-effective means to exploit paral-
lelism is at the heart of the problem: 
most application programmers and 
their employers simply stay away from 
even trying to program for parallel-
ism today’s multicores, or domain-
specific-driven accelerators such as 
GPUs. This CPV aspires to rectify this 
failure. Namely: seek to instate a multi-
core SWS (MSWS) for general-purpose 
CPUs.

Cost-Effective Programming Is Crit-
ical Even for Performance Program-
ming. A product must accommodate 
its customers. Multicore CPUs are no 
different. An MSWS will need to ap-
peal to a wide range of programmers, 
whose software will then make it ap-
pealing to application users at large. 
For sustainability and resilience, a new 

ity, object or binary code compatibil-
ity, operating systems, and a variety 
of standards, for example, Figure 1.8 
on functional requirements in Hen-
nesey and Patterson.5 The single core 
CPU business became synonym with 
making every effort to advancing ar-
chitectures and optimizing compilers 
for keeping this SWS on track, making 
it, as well as the RAM, so resilient, and 
clear role models for the road ahead.

There Is More to a Lead Model of 
Computation Than Specialized Ef-
ficiencies. The Point Viewpoint (PV) 
makes a strong case for optimizations 
based on quantifiable costs at the 
hardware level. This CPV concurs with 
applying the PECM model of compu-
tation the PV proposes to specialized 
routines whose use in workloads mer-
its it, as well as to accelerators. How-
ever, the foremost problem of today’s 
multicore parallelism is dearth of pro-
grammers, since programming such 
systems is simply too difficult. Impos-
ing the PECM implied optimizations 
on programmers is unlikely to bring 
programmers back, thus qualifying 
its applicability. I am also not aware 
of demonstrated success of PECM for 
general-purpose programming. Using 
computer architecture lingo, the up-
shot of the current paragraph is that 
architects of manycore platforms must 
recognize not only the so-called “mem-
ory wall” and “energy wall,” but also a 
“parallel programming wall.”

A Broader Perspective. This CPV 
demonstrates how to approach the 
debate on a computation model using 
a different premise. Learn from the 
traditional business model of general-
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Counterpoint: Parallel 
Programming Wall and 
Multicore Software Spiral: 
Denial Hence Crisis
Uzi Vishkin

B 
ACKGROUN D. THE SOFTWARE 

SPIR A L ( SWS) for single 
CPU cores and the RAM 
algorithmic model. An d y 
G r o v e  ( I n t e l ’ s  busi-

ness leader until 2004) termed “soft-
ware spiral” the exceptionally resilient 
business model behind general-pur-
pose CPUs. Application software is the 
defining component of SWS: Code 
written once could yet benefit from 
performance scaling of later CPU gen-
erations. SWS is comprised of several 
abstraction levels. The random ac-
cess machine, or model (RAM) is most 
relevant for the current Counterpoint 
Viewpoint (CPV): each serial step of 
an algorithm features a basic opera-
tion taking unit time (“uniform cost” 
criterion). The RAM has long been the 
gold standard for algorithms and data 
structures. Salient aspects of the RAM 
included: its simplicity; importing 
from mathematics its own gold stan-
dard: mathematical induction for de-
scribing algorithms (or their impera-
tive programming code) and proving 
their correctness; and good enough 
support by computer systems based 
on the von Neumann architecture. 
Other abstraction levels and means 
included a variety of benchmark suits 
guiding balanced performance over a 
range of tasks, software compatibil-
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