
30 COMMUNICATIONS OF THE ACM | SEPTEMBER 2022 | VOL. 65 | NO. 9

V
viewpoints

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

Point/Counterpoint
On the Model of
Computation

	 William Dally and Uzi Vishkin

energy of a memory access is due to
communication: moving the address
to the bit cell and moving the data from
the bit cell to the consumer. Because
communication dominates, accessing
a small, local memory is far less ex-
pensive than a global memory access.
On-chip SRAM memories, for example,
are built from small 8KB (64Kb) sub-
arrays. Accessing 64b from a sub-array
costs 0.64pJ and takes 300ps. Access-
ing a 256MB memory (approximately
100mm2) constructed from these sub-
arrays costs 58pJ and 12.3ns—of which
57.4pJ and 12ns are due to communi-

DOI:10.1145/3548783

Point: We Must Extend
Our Model of Computation to
Account for Cost and Location
William Dally

F
O R D E C A D E S W E have used
the RAM (random-access
memory)2 and PRAM (par-
allel RAM) models5 along
with asymptotic analysis to

measure the complexity of algorithms.
The RAM and PRAM models treat all
operations, from an integer add to a
global memory load as unit cost. This
approximation was appropriate during
the early days of computing when the
costs of arithmetic and communica-
tion were somewhat comparable. Over
time, however advancing semiconduc-
tor technology has caused the cost of
arithmetic and logic to shrink by or-
ders of magnitude while the cost of
communication has reduced at a much
slower rate. As a result, today fetching
two 32-bit words from main memory
expends 1.3nJ of energy while per-
forming a 32-bit add operation (which
requires two 32-bit words as input)
takes only 20fJ of energy 64,000x less.
A model of computation like RAM or
PRAM that treats these two operations
as equivalent does a poor job of esti-
mating the cost of a computation, and
hence does a poor job of comparing al-
ternative algorithms.

Communication Is the Dominant
Cost in Computing. Whether we con-
sider cost to be energy or time, commu-

nication dominates modern computa-
tion. A 32-bit add operation takes only
20fJ and 150ps. Moving the two 32-bit
words to feed this operation 1mm
takes 1.9pJ and 400ps. Moving the 64
bits 40mm from corner to corner on a
400mm2 chip takes 77pJ and 16ns. Go-
ing off chip takes 320pJ with a delay of
6ns per meter.

While memory accesses are costly
operations, almost all of the cost of
accessing memory is communication
cost. The time and energy needed to
read or write a single bit cell is negli-
gible. The vast majority of the time and

https://dx.doi.org/10.1145/3548783

SEPTEMBER 2022 | VOL. 65 | NO. 9 | COMMUNICATIONS OF THE ACM 31

viewpoints

V ated with general-purpose CPUs, DSAs
make the large gap between arithmetic
and communication more apparent.
The overhead of a CPU turns the 20fJ
of a 32b add operation into an 80pJ
add instruction. In comparison the
1.2nJ memory access is only 15x more
expensive rather than 64,000x. With
a DSA this overhead is eliminated re-
vealing the full size of the gap between
arithmetic and communication.

Computational Models are for Per-
formance Programming. In some situ-
ations, such as user-interface code,
programmers concentrate on func-
tionality without concern for cost. In
these situations a naïve code is fast
enough and there is no need for a model
of computation (RAM, PRAM, or other)
to estimate cost and compare alterna-
tives. In other cases, however, such
as training neural network models,
performing large scientific simula-
tions, and running optimizations, cost
is of paramount importance. Huge
amounts of energy and expensive
computation time are wasted by an in-
efficient algorithm. It is in these cases
of performance programming where
we need a model of computation to
estimate cost and compare alterna-
tives, and that model of computation
needs to reflect the communication-
dominated nature of today’s comput-
ing hardware.

The Planet Demands We Be More
Efficient. Datacenter computers alone
used 1% of global electricity in 2018,
and estimates indicate this number
will grow to 3%–13% by 2030.1 With
such a large fraction of the world’s en-
ergy going to computing, it is incum-
bent on us to design efficient computa-
tions to minimize the carbon footprint
of computation. The first step in being
more efficient is having an accurate
model to analyze algorithms, so we
can pick the most efficient algorithm
for a given problem. We can no longer
afford to ignore the constant factor dif-
ference between arithmetic and com-
munication or the increase in energy
with distance.

PECM: A Simple, Accurate Model of
Computation. Two simple changes to
the PRAM model can fix its two main
problems. To account for the large dif-
ference in cost between arithmetic op-
erations (like add) and memory access,
we assign them different costs. Arith-

cation—15mm each way, 30mm total.
Because communication completely
dominates the cost of computation,
our model of computation must con-
sider communication, and to do so, it
must have a model of location.

Consider the problem of summing a
table that fits in the on-chip memory of
a 4x4 array of 256-core processor chips
that are each 16mm on a side. Each
core is located at the center of a 2MB
SRAM array and can access the local
array with 1mm (round trip) of com-
munication cost (1.9pJ and 400ps for
a 64b access). A random access incurs
21.3mm of on-chip communication
cost for the 1/16 of accesses to the local
chip and an additional 640pJ +21.3mm
of cost for the 15/16 of accesses that
go off chip for an average random ac-
cess energy of 680pJ. With a model of
location, we can have each core sum
the 256K words in its local memory
and then forward the result up a tree
to compute the final sum. We can per-
form the same computation by placing
the threads and data randomly. The
cost of the randomly placed computa-
tion is 354x higher than the local com-
putation. The PRAM model considers
the local and random computations to
be of equal cost despite the orders of
magnitude difference in cost.

Store or Recompute. The large differ-
ence in energy between arithmetic and
communication often drives the deci-
sion whether to store or recompute an
intermediate value. Training a multi-
layer perceptron (MLP) requires the ac-
tivation values for each layer during the
back-propagation step. If there is insuf-
ficient on-chip memory, the activations
can be stored to off-chip memory at a
cost of 640pJ per 16b activation (write
+ read), an O(n) operation—where n is
the number of activations in this layer.
Alternatively the activations can be re-
computed on the fly by performing a
matrix-vector multiplication, an O(n2)
computation, at a cost of 160fJ/MAC.
The PRAM model would suggest stor-
ing the intermediate result—preferring
the O(n) store over the O(n2) M × V. How-
ever, for vectors smaller than n = 4,000,
recomputation is less expensive. For a
typical MLP with n = 256, recomputa-
tion is 16x less expensive.

Constant Factors Matter. Under the
PRAM model, the asymptotic complex-
ity of the summation example here is

O(n) for both the local and the random
cases. The 230x difference in energy is
just a constant factor, as is the 64,000x
difference in cost between an add op-
eration and a global memory access.

Constant factors do matter, how-
ever, particularly when the asymptotic
complexity is the same. The local com-
putation is 230x cheaper. Just as you
would not settle for paying 230x too
much for your groceries, you should
not pay 230x too much for a computa-
tion because you are using an incom-
plete model of computation. Large
constant factors can even overcome a
difference in asymptotic complexity
(this is why Strassen’s O(n2.8) matrix
multiply algorithm6 is rarely used).
This is the case in our store O(n) vs.
recompute O(n2) example here, where
for typical values the higher asymptot-
ic complexity is less expensive.

Caches Are Not Enough. Modern
computers use cache memories to im-
prove locality. Caches work great in
cases where there is temporal locality
(that is, reuse). However, for computa-
tions such as the summation example
here they do not help. Every word is
visited exactly once, there is no reuse.
Many HPC codes and neural-network
models with a batch size of one have
the same issue.

Domain-Specific Architectures
Highlight the Issue. With the end of
Moore’s Law, domain-specific archi-
tectures (DSAs) are emerging as a
leading candidate to continue scal-
ing computing performance.3,4 By re-
moving most of the overhead associ-

With the end
of Moore’s Law,
domain-specific
architectures are
emerging as a
leading candidate
to continue
scaling computing
performance.

32 COMMUNICATIONS OF THE ACM | SEPTEMBER 2022 | VOL. 65 | NO. 9

viewpoints

metic operations remain unit cost, but
memory operations have a higher cost,
proportional to distance. Each process-
ing element and each memory is as-
signed a location l ∈ L and a distance
function D: L × L ⇒ R is defined to de-
termine the cost of sending a message
or making a memory access between
two locations.

We can use different distance func-
tions to model different computational
targets. Two-dimensional Manhattan
distance models on-chip communica-
tion. Locations are x,y coordinates and
distance is the Manhattan distance be-

tween two coordinates. Off-chip com-
munication can be modeled by adding
additional distance when either coor-
dinate spans a chip boundary (as in the
example here).

By allowing us to reason about the
true costs of computations, this parallel
explicit communication model (PECM)
will allow us to design more efficient
computations and in doing so reduce
the carbon footprint of computing.	

References
1.	 Anders, A. and Edler, T. On global electricity usage

of communication technology trends to 2030.
Challenges 6, 1 (2015), 117–157.

2.	 Cook, S.A. and Reckhow, R.A. Time-bounded random
access machines. Journal of Computer Systems
Science 7, 4 (Apr. 1973), 354–375.

3.	 Dally, W.J., Yatish, T., and Han, S. Domain-specific
hardware accelerators. Commun. ACM 63, 7 (July
2020), 48–57.

4.	 Hennessy, J.L. and Patterson, D.A. A new golden age
for computer architecture. Commun. ACM 62, 2 (Feb.
2019), 48–60.

5.	 Karpand, R.M. et al. A survey of parallel algorithms
for shared- memory machines. In Handbook of
Theoretical Computer Science. North-Holland, 1988.

6.	 Strassen, V. Gaussian elimination is not optimal.
Numer. Math. 13, 4 (Apr. 1969), 354–356.

William Dally (dally@stanford.edu) is an adjunct
professor of computer science at Stanford University and
chief scientist and senior vice president of research at
NVIDIA, Incline Village, NV, USA.

Copyright held by author.

purpose single core CPUs, the afore-
mentioned SWS. SWS enabled the re-
markable success of such CPUs. These
CPUs are arguably the biggest success
story of the founders’ generation of the
whole information technology sector.
SWS provided superb sustainability
and resilience. It allowed CPU applica-
tions to grow from a handful of scien-
tific applications to today’s ubiquity, as
can be seen in desktop, laptop, server
and smartphone apps. However, cur-
rent exploitation of parallelism for gen-
eral-purpose application performance
falls far behind the exploitation of per-
formance of single core CPUs. It is time
to recognize the source of this crisis:
after nearly two decades of multicore
CPUs domination, SWS stagnated, fail-
ing to extend to general-purpose mul-
ticore CPUs. CPU vendors have simply
gone AWOL on this matter. Lacking
cost-effective means to exploit paral-
lelism is at the heart of the problem:
most application programmers and
their employers simply stay away from
even trying to program for parallel-
ism today’s multicores, or domain-
specific-driven accelerators such as
GPUs. This CPV aspires to rectify this
failure. Namely: seek to instate a multi-
core SWS (MSWS) for general-purpose
CPUs.

Cost-Effective Programming Is Crit-
ical Even for Performance Program-
ming. A product must accommodate
its customers. Multicore CPUs are no
different. An MSWS will need to ap-
peal to a wide range of programmers,
whose software will then make it ap-
pealing to application users at large.
For sustainability and resilience, a new

ity, object or binary code compatibil-
ity, operating systems, and a variety
of standards, for example, Figure 1.8
on functional requirements in Hen-
nesey and Patterson.5 The single core
CPU business became synonym with
making every effort to advancing ar-
chitectures and optimizing compilers
for keeping this SWS on track, making
it, as well as the RAM, so resilient, and
clear role models for the road ahead.

There Is More to a Lead Model of
Computation Than Specialized Ef-
ficiencies. The Point Viewpoint (PV)
makes a strong case for optimizations
based on quantifiable costs at the
hardware level. This CPV concurs with
applying the PECM model of compu-
tation the PV proposes to specialized
routines whose use in workloads mer-
its it, as well as to accelerators. How-
ever, the foremost problem of today’s
multicore parallelism is dearth of pro-
grammers, since programming such
systems is simply too difficult. Impos-
ing the PECM implied optimizations
on programmers is unlikely to bring
programmers back, thus qualifying
its applicability. I am also not aware
of demonstrated success of PECM for
general-purpose programming. Using
computer architecture lingo, the up-
shot of the current paragraph is that
architects of manycore platforms must
recognize not only the so-called “mem-
ory wall” and “energy wall,” but also a
“parallel programming wall.”

A Broader Perspective. This CPV
demonstrates how to approach the
debate on a computation model using
a different premise. Learn from the
traditional business model of general-

DOI:10.1145/3548784

Counterpoint: Parallel
Programming Wall and
Multicore Software Spiral:
Denial Hence Crisis
Uzi Vishkin

B
ACKGROUN D. THE SOFTWARE

SPIR A L (SWS) for single
CPU cores and the RAM
algorithmic model. An d y
G r o v e (I n t e l ’ s busi-

ness leader until 2004) termed “soft-
ware spiral” the exceptionally resilient
business model behind general-pur-
pose CPUs. Application software is the
defining component of SWS: Code
written once could yet benefit from
performance scaling of later CPU gen-
erations. SWS is comprised of several
abstraction levels. The random ac-
cess machine, or model (RAM) is most
relevant for the current Counterpoint
Viewpoint (CPV): each serial step of
an algorithm features a basic opera-
tion taking unit time (“uniform cost”
criterion). The RAM has long been the
gold standard for algorithms and data
structures. Salient aspects of the RAM
included: its simplicity; importing
from mathematics its own gold stan-
dard: mathematical induction for de-
scribing algorithms (or their impera-
tive programming code) and proving
their correctness; and good enough
support by computer systems based
on the von Neumann architecture.
Other abstraction levels and means
included a variety of benchmark suits
guiding balanced performance over a
range of tasks, software compatibil-

https://dx.doi.org/10.1145/3548784

