Computational Complexity Analysis: A Gentle Introduction

Todd Wareham

March 7, 2016

Computational Complexity Analysis: Why Bother?

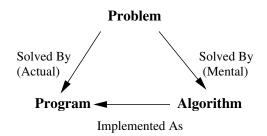
- Computations solve problems.
- Some computations fast, *e.g.*, Google search.
- Some seem hard, *e.g.*, getting good class schedules, or we hope they are, *e.g.*, cracking encrypted communications.

HOW DO WE SOLVE PROBLEMS QUICKLY?

HOW DO WE SHOW PROBLEMS ARE HARD?

HOW DO WE DEAL WITH HARD PROBLEMS?

Problems, Algorithms, and Programs



Problem: A set of inputs and their associated outputs.

- Algorithm: A sequence of instructions that solves a problem, *i.e.*, computes the output for a given input.
 - **Program**: A sequence of instructions *in some computer language* that solves a problem.

Finding the Area of a Circle

```
Problem:
           Input: A radius r.
           Output: The area of a circle with radius r.
Algorithm:
           area = 3.14159 * r * r
           print area
 Program:
           import sys
           r = sys.argv[1]
           area = 3.14159 * r * r
           print area
```

Summing a List

Problem:

Input: A list *L* of *n* numbers. **Output**: The sum of the numbers in *L*.

Algorithm:

sum = 0 for i = 1 to n do sum = sum + L[i] print sum

Program:

```
sum = 0
for i in range(1, n + 1):
    sum = sum + L[i]
print sum
```

Running Time Magnitudes

- $\log n$ Logarithmic Time (Binary Search)
 - *n* Linear Time (Summing a List)
 - n^2 Quadratic Time (List Sort)
 - 2^{*n*} Exponential Time (Bin Packing)

Polynomial Time = n^c time for constant c

Table of Doom (1 Gigaflop/s Version)

Input	Running Time				
Size (n)	$\log_2 n$	п	n^2	n ³	2 ⁿ
10	< 1	< 1	< 1	< 1	< 1
	second	second	second	second	second
50	< 1	< 1	< 1	< 1	13
	second	second	second	second	days
100	< 1	< 1	< 1	< 1	$4 imes 10^{13}$
	second	second	second	second	years
1000	< 1	< 1	< 1	1	$4 imes 10^{284}$
	second	second	second	second	years
one	< 1	< 1	2	30	-
million	second	second	minutes	years	
300	< 1	< 1	10	9×10^{5}	-
million	second	second	days	years	
five	< 1	5	8	$4 imes 10^{12}$	-
billion	second	seconds	centuries	years	

The Crux of the Matter

- Some problems are solvable in polynomial time, *e.g.*, summing a list, and can be solved in practice for large input sizes; some, *e.g.*, bin packing, cannot.
- With problems that are not known to be solvable in polynomial time, have we just not thought of a good algorithm yet, or are they genuinely intractable?

HOW CAN WE PROVE INTRACTABILITY?

Foundations of Complexity Analysis: Arm Wrestling

Arnold

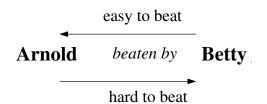
Best in Two? The Logic of Pairwise Comparison

Arnold beaten by Betty

- Establish better arm wrestler by a two-person match.
- If Arnold is beaten by Betty:

...???...

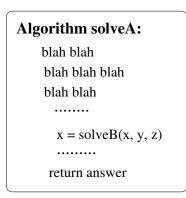
Best in Two? The Logic of Pairwise Comparison (Cont'd)



- Establish better arm wrestler by a two-person match.
- If Arnold is beaten by Betty:
 - Arnold is no better than Betty (if Betty is easy to beat then Arnold is easy to beat)
 - Betty is at least as good as Arnold (if Arnold is hard to beat then Betty is hard to beat)

Foundations of Complexity Analysis Reductions between Problems

A reduction from problem A to problem B (A reduces to B) is an algorithm for solving A that uses an algorithm for solving B.



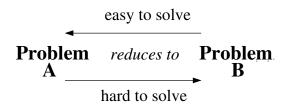
Hardest in Two? The Logic of Reducibility

Problemreduces toProblemAB

- Establish harder problem by poly-time reduction.
- If problem \mathcal{A} reduces to problem \mathcal{B} :

...??? ...

Hardest in Two? The Logic of Reducibility (Cont'd)



- Establish harder problem by poly-time reduction.
- If problem \mathcal{A} reduces to problem \mathcal{B} :
 - A is no harder than B
 (if B is easy to solve then A is easy to solve)
 - B is at least as hard as A (if A is hard to solve then B is hard to solve)

Dealing with Intractability

• First poly-time intractable problem proven in 1971; thousands proven since (including Bin Packing and many other industrially-important problems).

... but we still need to solve these problems!!!

HOW DO WE SOLVE INTRACTABLE PROBLEMS?

Tractability under Restrictions: Fixed-Parameter Tractability

- Let's relax our notion of tractability:
 - 1. Focus on a set *P* of one or more problem-aspects (**parameters**) whose values are small in practice.
 - 2. Only consider inputs with small values for P.
 - 3. Relax poly-time to fixed-parameter (fp-)time, *i.e.*, run-time $f(P)n^c$ for some function f.
- When the parameters in *P* are small, fp-time is effectively poly-time, *e.g.*, when *P* = {*k*} and *k* = 3,

$$2^k n^2 \Rightarrow 2^3 n^2 \Rightarrow 8n^2 \Rightarrow n^2$$

• Can prove fp-intractability with appropriate reductions.

Computational Complexity Analysis: The *Reader's Digest* Version

	good	bad	
classical complexity	poly-time solvable (Best)	pt-intractable	
parameterized complexity	fp-tractable (Still OK)	fp-intractable	

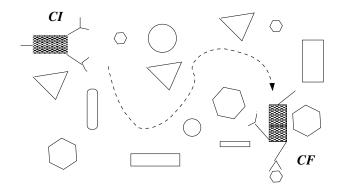
Complexity Analysis of Important Problems

The Tractable Computation Thesis: WHERE POSSIBLE, IMPORTANT PROBLEMS SHOULD BE SOLVED QUICKLY.

- Two conceptions of "quickly":
 - quick in general (poly-time solvability)
 - quick under restrictions (fp-tractability relative to P)
- If a problem is intractable, look for restrictions to make it tractable.
- One way to do this is to look for parameters whose values are small in practice and then see if these restrictions yield fp-tractability.

Robot Motion Planning

• Consider 3D motion planning in an obstacle-filled environment where we have to totally plan out a collisionless path from some initial robot-configuration c_I to a final robot-configuration c_F , *e.g.*,



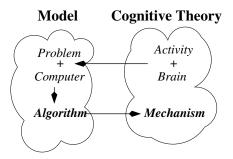
Robot Motion Planning (Cont'd)

3D ROBOT MOTION PLANNING **Input**: An environment *E* with obstacles, a robot *R*, and initial and final configurations *CI* and *CF* of *R* in *E*. **Output**: A sequence of moves of *R* from c_I to c_F in *E* that does not collide with an obstacle, if such a sequence exists, and special symbol \perp otherwise.

- Is poly-time intractable in general; however, robots often have a small number k of joints (3 for robot arm, ≤ 20 for robot hand).
- Unfortunately, is fp-intractable for parameter-set {*k*, *X*}, where *X* is **lots** of other problem-aspects (Cesati and Wareham, 1995).

Computational Models of Cognition

 Goal is to develop theories of cognitive activities stated in terms of models, problems, and algorithms.



• Each cognitive theory has an associated model whose computations can be stated as a problem.

Complexity Analysis of Cognitive Theories

The Tractable Cognition Thesis:

AS COGNITION IS FAST, PROBLEMS ASSOCIATED WITH COGNITIVE MODELS SHOULD BE SOLVABLE QUICKLY.

- Two conceptions of "quickly":
 - quick in general (poly-time solvability)
 - quick under restrictions (fp-tractability relative to P)
- If the problem associated with a model is intractable, revise mechanisms in model to make it tractable.
- One way to do this is to look for restrictions that yield fp-tractability, and then see if these restrictions hold in actual cognition.

Analogy Derivation

- Given two concepts, an analogy is essentially a mapping between common parts of both concepts.
- Analogies can be good, *e.g.*, "Genghis Khan is like Adolf Hitler", or bad, *e.g.*, "An orange is like Adolf Hitler".
- Analogy derivation underlies many cognitive processes, *e.g.*, memory retrieval, problem solving, learning.
- Sometimes, deriving analogies is easy; sometimes, it is hard. What characterizes these situations?

Analogy Derivation (Cont'd)

ANALOGY MAPPING Input:Two concepts *B* and *T*. Output: The best analogy between *B* and *T*.

- Is poly-time intractable in general; however, various conjectures have been made about what restrictions do and do not make this problem easy, *e.g.*, fp-tractable.
- All published conjectures have been proven wrong (van Rooij et al, 2008)!
- Lots of work remains to be done

Computational Complexity Analysis: What Next?

- New application areas for CCA, *e.g.*, the design and reconfiguration of robot swarms (Wareham (2015)) and software systems (Wareham and Sweers (2015)).
- New ways of designing efficient algorithms.
- New conceptions of tractability (and hence new methods for assessing such (in)tractability).
- New ways of resolving conjectures underlying intractability, *e.g.*, *P* = *NP*?

... Lots of work remains to be done ... (Thank goodness!)