
Computational Complexity Analysis:
A Gentle Introduction

Todd Wareham

March 7, 2016

Computational Complexity Analysis:
Why Bother?

• Computations solve problems.
• Some computations fast, e.g., Google search.
• Some seem hard, e.g., getting good class schedules, or we

hope they are, e.g., cracking encrypted communications.

HOW DO WE SOLVE PROBLEMS QUICKLY?

HOW DO WE SHOW PROBLEMS ARE HARD?

HOW DO WE DEAL WITH HARD PROBLEMS?

Problems, Algorithms, and Programs

Problem

Program Algorithm

Solved BySolved By

Implemented As

(Mental)(Actual)

Problem: A set of inputs and their associated outputs.
Algorithm: A sequence of instructions that solves a problem,

i.e., computes the output for a given input.
Program: A sequence of instructions in some computer

language that solves a problem.

Finding the Area of a Circle

Problem:
Input: A radius r.
Output: The area of a circle with radius r.

Algorithm:
area = 3.14159 * r * r
print area

Program:
import sys
r = sys.argv[1]
area = 3.14159 * r * r
print area

Summing a List

Problem:
Input: A list L of n numbers.
Output: The sum of the numbers in L.

Algorithm:
sum = 0
for i = 1 to n do

sum = sum + L[i]
print sum

Program:
sum = 0
for i in range(1, n + 1):

sum = sum + L[i]
print sum

Running Time Magnitudes

log n Logarithmic Time (Binary Search)

n Linear Time (Summing a List)

n2 Quadratic Time (List Sort)

2n Exponential Time (Bin Packing)

Polynomial Time = nc time for constant c

Table of Doom (1 Gigaflop/s Version)

Input Running Time
Size (n) log2 n n n2 n3 2n

10 < 1 < 1 < 1 < 1 < 1
second second second second second

50 < 1 < 1 < 1 < 1 13
second second second second days

100 < 1 < 1 < 1 < 1 4× 1013

second second second second years
1000 < 1 < 1 < 1 1 4× 10284

second second second second years
one < 1 < 1 2 30 –

million second second minutes years
300 < 1 < 1 10 9× 105 –

million second second days years
five < 1 5 8 4× 1012 –

billion second seconds centuries years

The Crux of the Matter

• Some problems are solvable in polynomial time, e.g.,
summing a list, and can be solved in practice for large
input sizes; some, e.g., bin packing, cannot.

• With problems that are not known to be solvable in
polynomial time, have we just not thought of a good
algorithm yet, or are they genuinely intractable?

HOW CAN WE PROVE INTRACTABILITY?

Foundations of Complexity Analysis:
Arm Wrestling

Arnold Betty

Best in Two?
The Logic of Pairwise Comparison

Arnold Bettybeaten by
.

• Establish better arm wrestler by a two-person match.
• If Arnold is beaten by Betty:

. . . ??? . . .

Best in Two?
The Logic of Pairwise Comparison (Cont’d)

Arnold Bettybeaten by
.

hard to beat

easy to beat

• Establish better arm wrestler by a two-person match.
• If Arnold is beaten by Betty:

1. Arnold is no better than Betty
(if Betty is easy to beat then Arnold is easy to beat)

2. Betty is at least as good as Arnold
(if Arnold is hard to beat then Betty is hard to beat)

Foundations of Complexity Analysis
Reductions between Problems

• A reduction from problem A to problem B (A reduces to
B) is an algorithm for solving A that uses an algorithm for
solving B.

blah blah

blah blah blah

blah blah

x = solveB(x, y, z)

return answer

........

.........

Algorithm solveA:

Hardest in Two?
The Logic of Reducibility

. .

A
Problem Problem

B
.reduces to

• Establish harder problem by poly-time reduction.
• If problem A reduces to problem B:

. . . ??? . . .

Hardest in Two?
The Logic of Reducibility (Cont’d)

. .

A
Problem Problem

B
.reduces to

hard to solve

easy to solve

• Establish harder problem by poly-time reduction.
• If problem A reduces to problem B:

1. A is no harder than B
(if B is easy to solve then A is easy to solve)

2. B is at least as hard as A
(if A is hard to solve then B is hard to solve)

Dealing with Intractability

• First poly-time intractable problem proven in 1971;
thousands proven since (including Bin Packing and
many other industrially-important problems).

. . . but we still need to solve these problems!!!

HOW DO WE SOLVE INTRACTABLE PROBLEMS?

Tractability under Restrictions:
Fixed-Parameter Tractability

• Let’s relax our notion of tractability:

1. Focus on a set P of one or more problem-aspects
(parameters) whose values are small in practice.

2. Only consider inputs with small values for P.
3. Relax poly-time to fixed-parameter (fp-)time, i.e., run-time

f (P)nc for some function f .

• When the parameters in P are small, fp-time is effectively
poly-time, e.g., when P = {k} and k = 3,

2kn2 ⇒ 23n2 ⇒ 8n2 ⇒∼ n2

• Can prove fp-intractability with appropriate reductions.

Computational Complexity Analysis:
The Reader’s Digest Version

good bad

classical poly-time solvable pt-intractable
complexity (Best)

parameterized fp-tractable fp-intractable
complexity (Still OK)

Complexity Analysis of Important Problems

The Tractable Computation Thesis:
WHERE POSSIBLE, IMPORTANT PROBLEMS

SHOULD BE SOLVED QUICKLY.

• Two conceptions of “quickly”:
• quick in general (poly-time solvability)
• quick under restrictions (fp-tractability relative to P)

• If a problem is intractable, look for restrictions to make it
tractable.

• One way to do this is to look for parameters whose values
are small in practice and then see if these restrictions yield
fp-tractability.

Robot Motion Planning
• Consider 3D motion planning in an obstacle-filled

environment where we have to totally plan out a
collisionless path from some initial robot-configuration
cI to a final robot-configuration cF, e.g.,

CI

CF

Robot Motion Planning (Cont’d)

3D ROBOT MOTION PLANNING

Input: An environment E with obstacles, a robot R, and
initial and final configurations CI and CF of R in E.
Output: A sequence of moves of R from cI to cF in E that
does not collide with an obstacle, if such a sequence exists,
and special symbol ⊥ otherwise.

• Is poly-time intractable in general; however, robots often
have a small number k of joints (3 for robot arm, ≤ 20 for
robot hand).

• Unfortunately, is fp-intractable for parameter-set {k,X},
where X is lots of other problem-aspects (Cesati and
Wareham, 1995).

Computational Models of Cognition

• Goal is to develop theories of cognitive activities stated in
terms of models, problems, and algorithms.

Computer

Problem
 +

Activity

Algorithm Mechanism

Model

Brain
 +

Cognitive Theory

• Each cognitive theory has an associated model whose
computations can be stated as a problem.

Complexity Analysis of Cognitive Theories

The Tractable Cognition Thesis:
AS COGNITION IS FAST, PROBLEMS ASSOCIATED WITH
COGNITIVE MODELS SHOULD BE SOLVABLE QUICKLY.

• Two conceptions of “quickly”:
• quick in general (poly-time solvability)
• quick under restrictions (fp-tractability relative to P)

• If the problem associated with a model is intractable,
revise mechanisms in model to make it tractable.

• One way to do this is to look for restrictions that yield
fp-tractability, and then see if these restrictions hold in
actual cognition.

Analogy Derivation

• Given two concepts, an analogy is essentially a mapping
between common parts of both concepts.

• Analogies can be good, e.g., “Genghis Khan is like Adolf
Hitler”, or bad, e.g., “An orange is like Adolf Hitler”.

• Analogy derivation underlies many cognitive processes,
e.g., memory retrieval, problem solving, learning.

• Sometimes, deriving analogies is easy; sometimes, it is
hard. What characterizes these situations?

Analogy Derivation (Cont’d)

ANALOGY MAPPING

Input:Two concepts B and T.
Output: The best analogy between B and T.

• Is poly-time intractable in general; however, various
conjectures have been made about what restrictions do
and do not make this problem easy, e.g., fp-tractable.

• All published conjectures have been proven wrong
(van Rooij et al, 2008)!

• Lots of work remains to be done . . .

Computational Complexity Analysis:
What Next?

• New application areas for CCA, e.g., the design and
reconfiguration of robot swarms (Wareham (2015)) and
software systems (Wareham and Sweers (2015)).

• New ways of designing efficient algorithms.
• New conceptions of tractability (and hence new methods

for assessing such (in)tractability).
• New ways of resolving conjectures underlying intractability,

e.g., P = NP?

. . . Lots of work remains to be done . . .
(Thank goodness!)

